Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Karupaiah T, Aik CK, Heen TC, Subramaniam S, Bhuiyan AR, Fasahat P, et al.
    J Sci Food Agric, 2011 Aug 30;91(11):1951-6.
    PMID: 21480266 DOI: 10.1002/jsfa.4395
    BACKGROUND: We evaluated glycaemic response of a brown rice variant (BR) developed by cross-breeding. Subjects (n = 9) consumed 50 g carbohydrate equivalents of BR, white rice (WR) and the polished brown rice (PR) in comparison to 50 g glucose reference (GLU) in a cross-over design. Plasma glucose and insulin at 0, 15, 45, 60, 90, 120 and 180 min were measured and incremental area under the curve (IAUC) and indices for glucose (GI) and insulin (II) calculated.
    RESULTS: BR compared to PR or WR produced the lowest postprandial glycaemia (GI: 51 vs 79 vs 86) and insulinaemia (II: 39 vs 63 vs 68) irrespective of amylose content (19 vs 23 vs 26.5%). Only BR was significantly different from GLU for both plasma glucose (P = 0.012) and insulin (P = 0.013) as well as IAUC(glu) (P = 0.045) and IAUC(ins) (P = 0.031). Glycaemic and insulinaemic responses correlated positively (r = 0.550, P < 0.001). Linear trends for IAUC(glu) and IAUC(ins) indicated a greater secretion of insulin tied in with a greater glycaemic response for WR (r(2) = 0.848), moderate for PR (r(2) = 0.302) and weakest for BR (r(2) = 0.122).
    CONCLUSION: The brown rice variant had the lowest GI and II values but these advantages were lost with polishing.
    Matched MeSH terms: Crosses, Genetic*
  2. Ab Halim AAB, Rafii MY, Osman MB, Oladosu Y, Chukwu SC
    Biomed Res Int, 2021;2021:8350136.
    PMID: 34095311 DOI: 10.1155/2021/8350136
    High kernel elongation (HKE) is one of the high-quality characteristics in rice. The objectives of this study were to determine the effects of ageing treatments, gene actions, and inheritance pattern of kernel elongation on cooking quality in two populations of rice and determine the path of influence and contribution of other traits to kernel elongation in rice. Two rice populations derived from crosses between MR219 × Mahsuri Mutan and MR219 × Basmati 370 were used. The breeding materials included two F1 progenies from the two populations, and their respective parents were grown in four different batches at a week interval to synchronize the flowering between the female and male plants. Scaling tests and generation means analysis were carried out to determine ageing effects and estimate additive-dominance gene action and epistasis. The estimation of gene interaction was based on quantitative traits. Path coefficient analysis was done using SAS software version 9.4 to determine the path of influence (direct or indirect) of six quantitative traits on HKE. Results obtained showed that nonallelic gene interaction was observed in all traits. The results before ageing and after ageing showed significant differences in all traits, while the gene interaction changed after ageing. The HKE value improved after ageing, suggesting that ageing is an external factor that could influence gene expression. The epistasis effect for HKE obtained from the cross Mahsuri Mutan × MR219 showed duplicate epistasis while that obtained from a cross between Basmati 370 × MR219 showed complimentary epistasis. Besides, the heritability of HKE was higher in Basmati 370 × MR219 compared to that obtained in Mahsuri Mutan × MR219. The path analysis showed that the cooked grain length and length-width ratio positively significantly affected HKE. It was concluded that ageing treatment is an external factor that could improve the expression of HKE. The findings from this study would be useful to breeders in the selection and development of new specialty (HKE) rice varieties.
    Matched MeSH terms: Crosses, Genetic
  3. Turner BC
    Fungal Genet. Biol., 2003 Jul;39(2):142-50.
    PMID: 12781673
    Two new loci found in one strain of Neurospora crassa (P2604) collected in Malaya are related to the meiotic drive system Spore killer Sk-2. Sk-2 was found in Neurospora intermedia and introgressed into N. crassa. P2604 showed high resistance to killing when crossed to Sk-2. This resistance was found to be linked to, but not allelic to, resistance locus r(Sk-2) on LGIIIL. Analysis showed that the high resistance phenotype of P2604 requires resistance alleles at two different loci on LGIIIR. Strains carrying a resistance allele at only the proximal or the distal locus, respectively, were obtained and intercrossed. Highly resistant strains were obtained by rejoining the two genes. The proximal locus alone confers a low level of resistance. This locus was named pr(Sk-2) for partial resistance to Sk-2. The distal locus was named mod(pr) because its only known phenotype is to modify pr(Sk-2).
    Matched MeSH terms: Crosses, Genetic
  4. Naroui Rad MR, Abdul Kadir M, Rafii MY, Jaafar HZ, Naghavi MR
    Genet. Mol. Res., 2012;11(4):3882-8.
    PMID: 23212327 DOI: 10.4238/2012.November.12.5
    This study was carried out to evaluate the genetic effect of quantitative trait loci (QTLs) conferring drought tolerance in wheat. A population of 120 F(2) individuals from the cross between the drought-tolerant S-78-11 and drought-sensitive Tajan cultivars were analyzed for their segregation under drought stress conditions. The relative water content under drought stress conditions exhibited continuous variation, indicating the minor gene effects on the trait. Single-marker analysis (SMA) was carried out to detect the main QTL association with drought tolerance. The SMA results revealed that the simple sequence repeat markers GWM182 and GWM292 on chromosome 5D and GWM410 on chromosome 5A exhibited significant association with drought tolerance, accounting for 30, 22, and 21% of the total variation, respectively. The 3 genetic loci, especially GWM182, can be used in marker-assisted selection methods in drought tolerance breeding in wheat.
    Matched MeSH terms: Crosses, Genetic
  5. Hii JL
    PMID: 749225
    Anopheles (Cellia) litoralis King and Anopheles (Cellia) sundaicus Rodenwaldt, vectors of malaria, were collected from the same brackis and sea-water habitats in six localities in Sabah. They share the same breeding habitats with predominance of one species over the other. The two species although distinct have small morphological differences and are taxonomically separated by certain wing characters. Hybridization between the two species was successful. Reciprocal crosses produced viable progeny which appeared to develop normally to adults. Hybridized females laid fewer viable eggs in comparison with the parents. The F1 hybrids resembled the litoralis parent in most characters. Backcrosses of both litoralis and sundaicus parents with the F1 hybrids yielded no eggs. F1 male hybrids were thus assumed to be sterile. The results obtained from cross matings between the two species suggested something more than subspecific status.
    Matched MeSH terms: Crosses, Genetic
  6. Bahari M, Rafii MY, Saleh GB, Latif MA
    ScientificWorldJournal, 2012;2012:543158.
    PMID: 22566772 DOI: 10.1100/2012/543158
    The experiments were carried out in two research stations (MARDI Bukit Tangga, Kedah, and MARDI Seberang Perai, Penang) in Malaysia. The crossings were performed using the four inbred lines in complete diallel cross including selfs and reciprocals. We evaluated the yield components and fruit characters such as fruit yield per plant, vine length, days to fruit maturity, fruit weight, total soluble solid content, and rind thickness over a period of two planting seasons. General combining ability and its interaction with locations were statistically significant for all characteristics except number of fruits per plant across the environments. Results indicated that the additive genetic effects were important to the inheritance of these traits and the expression of additive genes was influenced greatly by environments. In addition, specific combining ability effect was statistically evident for fruit yield per plant, vine length, days to first female flower, and fruit weight. Most of the characters are simultaneously controlled by additive and nonadditive gene effects. This study demonstrated that the highest potential and promising among the crosses was cross P2 (BL-14) × P3 (6372-4), which possessed prolific plants, with early maturity, medium fruit weight and high soluble solid contents. Therefore this hybrid might be utilized for developing high yielding watermelon cultivars and may be recommended for commercial cultivation.
    Matched MeSH terms: Crosses, Genetic*
  7. Azad MA, Shah-E-Alam M, Hamid MA, Rafii MY, Malek MA
    ScientificWorldJournal, 2014;2014:589586.
    PMID: 24737982 DOI: 10.1155/2014/589586
    A study was performed using 6 × 6 F1 diallel population without reciprocals to assess the mode of inheritance of pod yield and related traits in groundnut with imposed salinity stress. Heterosis was found for pod number and yield. Data on general and specific combining ability (gca and sca) indicated additive and nonadditive gene actions. The gca: sca ratios were much less than unity suggesting predominant role of nonadditive gene effects. Cultivars "Binachinabadam-2" and "Dacca-1" and mutant M6/25/64-82 had the highest, second highest, and third highest pod number, as well as gca values, respectively. These two cultivars and another mutant M6/15/70-19 also had the highest, second highest, and third highest pod yield, as well as gca values, respectively. Therefore, "Dacca-1", "Binachinabadam-2", M6/25/64-82, and M6/15/70-19 could be used as source of salinity tolerance. Cross combinations showing high sca effects arising from parents with high and low gca values for any trait indicate the influence of nonadditive genes on their expression. Parents of these crosses can be used for biparental mating or reciprocal recurrent selection for developing high yielding varieties. Crosses with high sca effects having both parents with good gca effects could be exploited by pedigree breeding to get transgressive segregants.
    Matched MeSH terms: Crosses, Genetic
  8. Ahmad NS, Redjeki ES, Ho WK, Aliyu S, Mayes K, Massawe F, et al.
    Genome, 2016 Jul;59(7):459-72.
    PMID: 27253730 DOI: 10.1139/gen-2015-0153
    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an indigenous underutilized legume that has the potential to improve food security in semi-arid Africa. So far, there are a lack of reports of controlled breeding populations that could be used for variety development and genetic studies. We report here the construction of the first genetic linkage map of bambara groundnut using a F3 population derived from a "narrow" cross between two domesticated landraces (Tiga Nicuru and DipC) with marked divergence in phenotypic traits. The map consists of 238 DArT array and SSR based markers in 21 linkage groups with a total genetic distance of 608.3 cM. In addition, phenotypic traits were evaluated for a quantitative trait loci (QTL) analysis over two generations. A total of 36 significant QTLs were detected for 19 traits. The phenotypic effect explained by a single QTL ranged from 11.6% to 49.9%. Two stable QTLs were mapped for internode length and growth habit. The identified QTLs could be useful for marker-assisted selection in bambara groundnut breeding programmes.
    Matched MeSH terms: Crosses, Genetic
  9. Sayyed AH, Wright DJ
    Pest Manag Sci, 2001 May;57(5):413-21.
    PMID: 11374157
    A field population of Plutella xylostella from Malaysia (SERD4) was divided into five sub-populations and four were selected (G2-G5) with the Bacillus thuringiensis insecticidal crystal (Cry) toxins Cry1Ac, Cry1Ab, Cry1Ca and Cry1Da. Bioassay at G6 gave resistance ratios of 88, 5, 2 and 3 for Cry1Ac, Cry1Ab, Cry1Ca and Cry1Da respectively compared with the unselected sub-population (UNSEL-SERD4). The Cry1Ac-selected population showed little cross-resistance to Cry1Ab, Cry1Ca and Cry1Da, (3-, 2- and 3-fold compared with UNSEL-SERD4), whereas the Cry1Ab-SEL sub-population showed marked cross-resistance to Cry1Ac (40-fold), much greater than Cry1Ab itself. In contrast, the Cry1Ca- and Cry1Da-SEL sub-population showed little if any cross-resistance to Cry1Ac and Cry1Ab. The mode of inheritance of resistance to Cry1Ac was examined in Cry1Ac-selected SERD4 by standard reciprocal crosses and back-crosses using a laboratory insecticide-susceptible population (ROTH). Logit regression analysis of F1 reciprocal crosses indicated that resistance to Cry1Ac was inherited as an incompletely dominant trait. At the highest dose of Cry1Ac tested, resistance was recessive, while at the lowest dose it was almost completely dominant. The F2 progeny from a back-cross of F1 progeny with ROTH were tested with a concentration of Cry1Ac that would kill 100% of ROTH. The mortality ranged between 50 and 95% in seven families of back-cross progeny, which indicated that more than one allele on separate loci were responsible for resistance to Cry1Ac.
    Matched MeSH terms: Crosses, Genetic
  10. Sayyed AH, Moores G, Crickmore N, Wright DJ
    Pest Manag Sci, 2008 Aug;64(8):813-9.
    PMID: 18383197 DOI: 10.1002/ps.1570
    Bacillus thuringiensis Berliner (Bt) crystal (Cry) toxins are expressed in various transgenic crops and are also used as sprays in integrated pest management and organic agricultural systems. The diamondback moth (Plutella xylostella L.) is a major worldwide pest of crucifer crops and one that has readily acquired field resistance to a broad range of insecticides.
    Matched MeSH terms: Crosses, Genetic
  11. Hafandi A, Begg DP, Premaratna SD, Sinclair AJ, Jois M, Weisinger RS
    Comp. Med., 2014 Apr;64(2):106-9.
    PMID: 24674584
    Dietary deficiency of ω3 fatty acid during development leads to impaired cognitive function. However, the effects of multiple generations of ω3 fatty-acid deficiency on cognitive impairment remain unclear. In addition, we sought to test the hypothesis that the cognitive impairments of ω3 fatty-acid-deficient mice are mediated through the arachidonic acid-cyclooxygenase (COX) pathway. To address these issues, C57BL/6J mice were bred for 3 generations and fed diets either deficient (DEF) or sufficient (SUF) in ω3 fatty acids. At postnatal day 21, the F3 offspring remained on the dam's diet or were switched to the opposite diet, creating 4 groups. In addition, 2 groups that remained on the dam's diet were treated with a COX inhibitor. At 19 wk of age, spatial-recognition memory was tested on a Y-maze. Results showed that 16 wk of SUF diet reversed the cognitive impairment of F3 DEF mice. However, 16 wk of ω3 fatty-acid-deficient diet impaired the cognitive performance of the F3 SUF mice, which did not differ from that of the F3 DEF mice. These findings suggest that the cognitive deficits after multigenerational maintenance on ω3 fatty-acid-deficient diet are not any greater than are those after deficiency during a single generation. In addition, treatment with a COX inhibitor prevented spatial-recognition deficits in F3 DEF mice. Therefore, cognitive impairment due to dietary ω3 fatty-acid deficiency appears to be mediated by the arachidonic acid-COX pathway and can be prevented by 16 wk of dietary repletion with ω3 fatty acids or COX inhibition.
    Matched MeSH terms: Crosses, Genetic
  12. Tan H
    Theor Appl Genet, 1977 Jan;50(1):29-34.
    PMID: 24407495 DOI: 10.1007/BF00273794
    Estimates of general combining ability of parents for yield and girth obtained separately from seedlings and their corresponding clonal families in Phases II and IIIA of the RRIM breeding programme are compared. A highly significant positive correlation (r = 0.71***) is found between GCA estimates from seedling and clonal families for yield in Phase IIIA, but not in Phase II (r = -0.03(NS)) nor for girth (r= -0.27(NS)) in Phase IIIA. The correlations for Phase II yield and Phase IIIA girth, however, improve when the GCA estimates based on small sample size or reversed rankings are excluded.When the best selections (based on present clonal and seedling information) are compared, all five of the parents top-ranking for yield are common in Phase IIIA but only two parents are common for yield and girth in Phases II and IIIA respectively. However, only one parent for yield in Phase II and two parents for girth in Phase IIIA would, if selected on clonal performance, have been omitted from the top ranking selections made by previous workers using seedling information.These findings, therefore, justify the choice of parents based on GCA estimates for yield obtained from seedling performance. Similar justification cannot be offered for girth, for which analysis is confounded by uninterpretable site and seasonal effects.
    Matched MeSH terms: Crosses, Genetic
  13. Se CH, Chuah KA, Mishra A, Wickneswari R, Karupaiah T
    Nutrients, 2016 May 20;8(5).
    PMID: 27213446 DOI: 10.3390/nu8050308
    Consumption of white rice predisposes some Asian populations to increased risk of type 2 diabetes. We compared the postprandial glucometabolic responses to three newly-developed crossbred red rice variants (UKMRC9, UKMRC10, UKMRC11) against three selected commercial rice types (Thai red, Basmati white, Jasmine white) using 50-g carbohydrate equivalents provided to 12 normoglycaemic adults in a crossover design. Venous blood was drawn fasted and postprandially for three hours. Glycaemic (GI) and insulin (II) indices, incremental areas-under-the-curves for glucose and insulin (IAUCins), indices of insulin sensitivity and secretion, lactate and peptide hormones (motilin, neuropeptide-Y, orexin-A) were analyzed. The lowest to highest trends for GI and II were similar i.e., UKMRC9 < Basmati < Thai red < UKMRC10 < UKMRC11 < Jasmine. Postprandial insulinaemia and IAUCins of only UKMRC9 were significantly the lowest compared to Jasmine. Crude protein and fiber content correlated negatively with the GI values of the test rice. Although peptide hormones were not associated with GI and II characteristics of test rice, early and late phases of prandial neuropeptide-Y changes were negatively correlated with postprandial insulinaemia. This study indicated that only UKMRC9 among the new rice crossbreeds could serve as an alternative cereal option to improve diet quality of Asians with its lowest glycaemic and insulinaemic burden.
    Matched MeSH terms: Crosses, Genetic*
  14. Ngu MS, Thomson MJ, Bhuiyan MA, Ho C, Wickneswari R
    Genet. Mol. Res., 2014;13(4):9477-88.
    PMID: 25501158 DOI: 10.4238/2014.November.11.13
    Grain weight is a major component of rice grain yield and is controlled by quantitative trait loci. Previously, a rice grain weight quantitative trait locus (qGW6) was detected near marker RM587 on chromosome 6 in a backcross population (BC2F2) derived from a cross between Oryza rufipogon IRGC105491 and O. sativa cv. MR219. Using a BC2F5 population, qGW6 was validated and mapped to a region of 4.8 cM (1.2 Mb) in the interval between RM508 and RM588. Fine mapping using a series of BC4F3 near isogenic lines further narrowed the interval containing qGW6 to 88 kb between markers RM19268 and RM19271.1. According to the Duncan multiple range test, 8 BC4F4 near isogenic lines had significantly higher 100-grain weight (4.8 to 7.5% over MR219) than their recurrent parent, MR219 (P < 0.05). According to the rice genome automated annotation database, there are 20 predicted genes in the 88-kb target region, and 9 of them have known functions. Among the genes with known functions in the target region, in silico gene expression analysis showed that 9 were differentially expressed during the seed development stage(s) from gene expression series GSE6893; however, only 3 of them have known functions. These candidates provide targets for further characterization of qGW6, which will assist in understanding the genetic control of grain weight in rice.
    Matched MeSH terms: Crosses, Genetic*
  15. Sayyed AH, Wright DJ
    J Econ Entomol, 2004 Dec;97(6):2043-50.
    PMID: 15666763
    Bioassays (at generation 1, G1) using fipronil, spinosad, indoxacarb, and Bacillus thuringiensis toxins Cry1Ac and Cry1Ca with a newly collected field population of Plutella xylostella (L.) from farmers fields in the Cameron Highlands, Malaysia, indicated a resistance ratio of approximately 400-, 1,170-, 330-, 2,840-, and 1,410-fold, respectively, compared with a laboratory-susceptible population of P. xylostella (ROTH). At G3, the field-derived population was divided into two subpopulations, one was selected (G3 to G7) with fipronil (fip-SEL), whereas the second was left unselected (UNSEL). Bioassays at G8 found that selection with fipronil gave a resistance ratio of approximately 490 compared with UNSEL and approximately 770 compared with ROTH. The resistance ratio for fipronil, spinosad, indoxacarb, Cry1Ac, and Cry1Ca in the UNSEL population declined significantly by G8. Logit regression analysis of F1 reciprocal crosses between fip-SEL (at G8) and UNSEL indicated that resistance to fipronil in the fip-SEL population was inherited as an autosomal, incompletely recessive (D(LC) = 0.37) trait. At the highest dose of fipronil tested, resistance was completely recessive, whereas at the lowest dose it was incompletely recessive. A direct test of monogenic inheritance based on a backcross of F1 progeny with fip-SEL suggested that resistance to fipronil was controlled by a single locus. The fip-SEL population at G8 showed little change in its response to spinosad and indoxacarb compared with G1, whereas its susceptibility to Cry1Ac and Cry1Ca increased markedly over the selection period. This suggests that there may be some low level of cross-resistance between fipronil, spinosad, and indoxacarb.
    Matched MeSH terms: Crosses, Genetic
  16. Takigahira T, Kohyama TI, Suwito A, Kimura MT
    Genetica, 2015 Jun;143(3):279-85.
    PMID: 25663497 DOI: 10.1007/s10709-015-9824-7
    Drosophila bipectinata from Iriomote-jima (IR) is susceptible to the endoparasitoid Leptopilina victoriae from Kota Kinabalu (L. victoriae KK), but D. bipectinata from Kota Kinabalu (KK) and Bogor (BG) is resistant. The cross experiments between the resistant (KK) and susceptible (IR) populations of D. bipectinata suggested that the resistance to this parasitoid is a dominant trait and controlled by a single locus or few linked loci on an autosome. In the AFLP analysis using the IR, KK and BG populations of D. bipectinata and the resistant and susceptible populations derived from a mixed population of these three geographic populations, a DNA fragment almost specific to susceptible flies was detected. It also revealed that genes from the IR population were more frequently maintained in the mixed population compared with those from the KK and BG populations, suggesting that at least a number of genes from the IR population are more advantageous under the laboratory conditions. This explains our previous results that the resistance was lowered in the mixed population although the resistance itself is suggested to incur only low costs; i.e., the resistance gene(s) from the KK and BG populations would have been linked with some genes that are disadvantageous under the laboratory conditions.
    Matched MeSH terms: Crosses, Genetic
  17. Hasan N, Rafii MY, Abdul Rahim H, Nusaibah SA, Mazlan N, Abdullah S
    Genet. Mol. Res., 2017 Jan 23;16(1).
    PMID: 28128411 DOI: 10.4238/gmr16019280
    Rice (Oryza sativa L.) blast disease is one of the most destructive rice diseases in the world. The fungal pathogen, Magnaporthe oryzae, is the causal agent of rice blast disease. Development of resistant cultivars is the most preferred method to achieve sustainable rice production. However, the effectiveness of resistant cultivars is hindered by the genetic plasticity of the pathogen genome. Therefore, information on genetic resistance and virulence stability are vital to increase our understanding of the molecular basis of blast disease resistance. The present study set out to elucidate the resistance pattern and identify potential simple sequence repeat markers linked with rice blast disease. A backcross population (BC2F1), derived from crossing MR264 and Pongsu Seribu 2 (PS2), was developed using marker-assisted backcross breeding. Twelve microsatellite markers carrying the blast resistance gene clearly demonstrated a polymorphic pattern between both parental lines. Among these, two markers, RM206 and RM5961, located on chromosome 11 exhibited the expected 1:1 testcross ratio in the BC2F1 population. The 195 BC2F1 plants inoculated against M. oryzae pathotype P7.2 showed a significantly different distribution in the backcrossed generation and followed Mendelian segregation based on a single-gene model. This indicates that blast resistance in PS2 is governed by a single dominant gene, which is linked to RM206 and RM5961 on chromosome 11. The findings presented in this study could be useful for future blast resistance studies in rice breeding programs.
    Matched MeSH terms: Crosses, Genetic
  18. Sayyed AH, Haward R, Herrero S, Ferré J, Wright DJ
    Appl Environ Microbiol, 2000 Apr;66(4):1509-16.
    PMID: 10742234
    Four subpopulations of a Plutella xylostella (L.) strain from Malaysia (F(4) to F(8)) were selected with Bacillus thuringiensis subsp. kurstaki HD-1, Bacillus thuringiensis subsp. aizawai, Cry1Ab, and Cry1Ac, respectively, while a fifth subpopulation was left as unselected (UNSEL-MEL). Bioassays at F(9) found that selection with Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai gave resistance ratios of >95, 10, 7, and 3, respectively, compared with UNSEL-MEL (>10,500, 500, >100, and 26, respectively, compared with a susceptible population, ROTH). Resistance to Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai in UNSEL-MEL declined significantly by F(9). The Cry1Ac-selected population showed very little cross-resistance to Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai (5-, 1-, and 4-fold compared with UNSEL-MEL), whereas the Cry1Ab-, B. thuringiensis subsp. kurstaki-, and B. thuringiensis subsp. aizawai-selected populations showed high cross-resistance to Cry1Ac (60-, 100-, and 70-fold). The Cry1Ac-selected population was reselected (F(9) to F(13)) to give a resistance ratio of >2,400 compared with UNSEL-MEL. Binding studies with (125)I-labeled Cry1Ab and Cry1Ac revealed complete lack of binding to brush border membrane vesicles prepared from Cry1Ac-selected larvae (F(15)). Binding was also reduced, although less drastically, in the revertant population, which indicates that a modification in the common binding site of these two toxins was involved in the resistance mechanism in the original population. Reciprocal genetic crosses between Cry1Ac-reselected and ROTH insects indicated that resistance was autosomal and showed incomplete dominance. At the highest dose of Cry1Ac tested, resistance was recessive while at the lowest dose it was almost completely dominant. The F(2) progeny from a backcross of F(1) progeny with ROTH was tested with a concentration of Cry1Ac which would kill 100% of ROTH moths. Eight of the 12 families tested had 60 to 90% mortality, which indicated that more than one allele on separate loci was responsible for resistance to Cry1Ac.
    Matched MeSH terms: Crosses, Genetic
  19. Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ
    Appl Environ Microbiol, 2004 Dec;70(12):7010-7.
    PMID: 15574894
    The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was autosomal and recessive. At the highest dose of Cry1Ac tested, resistance was completely recessive, while at the lowest dose, it was incompletely dominant. A direct test of monogenic inheritance based on a backcross of F1 progeny with the Karak population suggested that resistance to Cry1Ac was controlled by a single locus. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed greatly reduced binding to brush border membrane vesicles prepared from this field population.
    Matched MeSH terms: Crosses, Genetic
  20. Ashkani S, Rafii MY, Rahim HA, Latif MA
    Mol Biol Rep, 2013 Mar;40(3):2503-15.
    PMID: 23203411 DOI: 10.1007/s11033-012-2331-3
    Rice blast is one of the major fungal diseases that badly reduce rice production in Asia including Malaysia. There is not much information on identification of QTLs as well as linked markers and their association with blast resistance within local rice cultivars. In order to understanding of the genetic control of blast in the F3 families from indica rice cross Pongsu seribu2/Mahsuri, an analysis of quantitative trait loci against one of the highly virulent Malaysian rice blast isolate Magnaporthe oryzae, P5.0 was carried out. Result indicated that partial resistance to this pathotype observed in the present study was controlled by multiple loci or different QTLs. In QTL analysis in F3 progeny fifteen QTLs on chromosomes 1, 2, 3, 5, 6, 11 and 12 for resistance to blast nursery tests was identified. Three of detected QTLs (qRBr-6.1, qRBr-11.4, and qRBr-12.1) had significant threshold (LOD >3) and approved by both IM and CIM methods. Twelve suggestive QTLs, qRBr-1.2, qRBr-2.1, qRBr-4.1, qRBr-5.1, qRBr-6.2, qRBr-6.3, qRBr-8.1, qRBr-10.1, qRBr-10.2, qRBr-11.1, qRBr-11.2 and qRBr-11.3) with Logarithmic of Odds (LOD) <3.0 or LRS <15) were distributed on chromosomes 1, 2, 4, 5, 6, 8, 10, and 11. Most of the QTLs detected using single isolate had the resistant alleles from Pongsu seribu 2 which involved in the resistance in the greenhouse. We found that QTLs detected for deferent traits for the using isolate were frequently located in similar genomic regions. Inheritance study showed among F3 lines resistance segregated in the expected ratio of 15: 1 for resistant to susceptible. The average score for blast resistance measured in the green house was 3.15, 1.98 and 29.95 % for three traits, BLD, BLT and % DLA, respectively.
    Matched MeSH terms: Crosses, Genetic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links