Displaying publications 1 - 20 of 116 in total

Abstract:
Sort:
  1. Venil CK, Zakaria ZA, Ahmad WA
    Acta Biochim. Pol., 2015;62(2):185-90.
    PMID: 25979288 DOI: 10.18388/abp.2014_870
    Flexirubins are the unique type of bacterial pigments produced by the bacteria from the genus Chryseobacterium, which are used in the treatment of chronic skin disease, eczema etc. and may serve as a chemotaxonomic marker. Chryseobacterium artocarpi CECT 8497, an yellowish-orange pigment producing strain was investigated for maximum production of pigment by optimizing medium composition employing response surface methodology (RSM). Culture conditions affecting pigment production were optimized statistically in shake flask experiments. Lactose, l-tryptophan and KH2PO4 were the most significant variables affecting pigment production. Box Behnken design (BBD) and RSM analysis were adopted to investigate the interactions between variables and determine the optimal values for maximum pigment production. Evaluation of the experimental results signified that the optimum conditions for maximum production of pigment (521.64 mg/L) in 50 L bioreactor were lactose 11.25 g/L, l-tryptophan 6 g/L and KH2PO4 650 ppm. Production under optimized conditions increased to 7.23 fold comparing to its production prior to optimization. Results of this study showed that statistical optimization of medium composition and their interaction effects enable short listing of the significant factors influencing maximum pigment production from Chryseobacterium artocarpi CECT 8497. In addition, this is the first report optimizing the process parameters for flexirubin type pigment production from Chryseobacterium artocarpi CECT 8497.
    Matched MeSH terms: Culture Media/chemistry*
  2. Sivakumar P, Law YS, Ho CL, Harikrishna JA
    Acta. Biol. Hung., 2010 Sep;61(3):313-21.
    PMID: 20724277 DOI: 10.1556/ABiol.61.2010.3.7
    An efficient in vitro plant regeneration system was established for elite, recalcitrant Malaysian indica rice, Oryza sativa L. CV. MR 219 using mature seeds as explant on Murashige and Skoog and Chu N6 media containing 2,4-dichlorophenoxy acetic acid and kinetin either alone or in different combinations. L-proline, casein hydrolysate and L-glutamine were added to callus induction media for enhancement of embryogenic callus induction. The highest frequency of friable callus induction (84%) was observed in N6 medium containing 2.5 mg l(-1) 2,4-dichlorophenoxy acetic acid, 0.2 mg l(-1) kinetin, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate, 20 mg l(-1) L-glutamine and 30 g l(-1) sucrose under culture in continuous lighting conditions. The maximum regeneration frequency (71%) was observed, when 30-day-old N6 friable calli were cultured on MS medium supplemented with 3 mg l(-1) 6-benzyl aminopurine, 1 mg l(-1) naphthalene acetic acid, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate and 3% maltose. Developed shoots were rooted in half strength MS medium supplemented with 2% sucrose and were successfully transplanted to soil with 95% survival. This protocol may be used for other recalcitrant indica rice genotypes and to transfer desirable genes in to Malaysian indica rice cultivar MR219 for crop improvement.
    Matched MeSH terms: Culture Media/chemistry
  3. Musa M, Nasir NF, Thirumulu KP
    PMID: 24653569
    Royal jelly is a nutritious substance produced by the young nurse bees and contains significant amounts of proteins which are important for cell growth and proliferation. The aim of this study was to evaluate the effect of royal jelly as an alternative to fetal bovine serum (FBS) in cell culture using cell proliferation assays and live cell imaging.
    Matched MeSH terms: Culture Media/chemistry*
  4. Ahmad WA, Yusof NZ, Nordin N, Zakaria ZA, Rezali MF
    Appl Biochem Biotechnol, 2012 Jul;167(5):1220-34.
    PMID: 22278051 DOI: 10.1007/s12010-012-9553-7
    The present work highlighted the production of violacein by the locally isolated Chromobacterium violaceum (GenBank accession no. HM132057) in various agricultural waste materials (sugarcane bagasse, solid pineapple waste, molasses, brown sugar), as an alternative to the conventional rich medium. The highest yield for pigment production (0.82 g L⁻¹) was obtained using free cells when grown in 3 g of sugarcane bagasse supplemented with 10% (v/v) of L-tryptophan. A much lower yield (0.15 g L⁻¹) was obtained when the cells were grown either in rich medium (nutrient broth) or immobilized onto sugarcane bagasse. Violacein showed similar chemical properties as other natural pigments based on the UV-Vis, Fourier transform infrared spectroscopy, thin-layer chromatography, nuclear magnetic resonance, and mass spectrometry analysis. The pigment is highly soluble in acetone and methanol, insoluble in water or non-polar organic solvents, and showed good stability between pH 5-9, 25-100 °C, in the presence of light metal ions and oxidant such as H₂O₂. However, violacein would be slowly degraded upon exposure to light. This is the first report on the use of cheap and easily available agricultural wastes as growth medium for violacein-producing C. violaceum.
    Matched MeSH terms: Culture Media/chemistry
  5. Ma YC, Gao MR, Yang H, Jiang JY, Xie W, Su WP, et al.
    Appl Biochem Biotechnol, 2023 Jun;195(6):3628-3640.
    PMID: 36648604 DOI: 10.1007/s12010-023-04319-x
    C50 carotenoids, as unique bioactive molecules, have many biological properties, including antioxidant, anticancer, and antibacterial activity, and have a wide range of potential uses in the food, cosmetic, and biomedical industries. The majority of C50 carotenoids are produced by the sterile fermentation of halophilic archaea. This study aims to look at more cost-effective and manageable ways of producing C50 carotenoids. The basic medium, carbon source supplementation, and optimal culture conditions for Halorubrum sp. HRM-150 C50 carotenoids production by open fermentation were examined in this work. The results indicated that Halorubrum sp. HRM-150 grown in natural brine medium grew faster than artificial brine medium. The addition of glucose, sucrose, and lactose (10 g/L) enhanced both biomass and carotenoids productivity, with the highest level reaching 4.53 ± 0.32 μg/mL when glucose was added. According to the findings of orthogonal studies based on the OD600 and carotenoids productivity, the best conditions for open fermentation were salinity 20-25%, rotation speed 150-200 rpm, and pH 7.0-8.2. The up-scaled open fermentation was carried out in a 7 L medium under optimum culture conditions. At 96 h, the OD600 and carotenoids productivity were 9.86 ± 0.51 (dry weight 10.40 ± 1.27 g/L) and 7.31 ± 0.65 μg/mL (701.40 ± 21.51 μg/g dry weight, respectively). When amplified with both universal bacterial primer and archaeal primer in the open fermentation, Halorubrum remained the dominating species, indicating that contamination was kept within an acceptable level. To summarize, open fermentation of Halorubrum is a promising method for producing C50 carotenoids.
    Matched MeSH terms: Culture Media/chemistry
  6. Philip N, Garba B, Neela VK
    Appl Microbiol Biotechnol, 2018 Jul;102(13):5427-5435.
    PMID: 29736823 DOI: 10.1007/s00253-018-9047-9
    Preservation of leptospiral cultures is tantamount to success in leptospiral diagnostics, research, and development of preventive strategies. Each Leptospira isolate has imperative value not only in disease diagnosis but also in epidemiology, virulence, pathogenesis, and drug development studies. As the number of circulating leptospires is continuously increasing and congruent with the importance to retain their original characteristics and properties, an efficient long-term preservation is critically needed to be well-established. However, the preservation of Leptospira is currently characterized by difficulties and conflicting results mainly due to the biological nature of this organism. Hence, this review seeks to describe the efforts in developing efficient preservation methods, to discover the challenges in preserving this organism and to identify the factors that can contribute to an effective long-term preservation of Leptospira. Through the enlightenment of the previous studies, a potentially effective method has been suggested. The article also attempts to evaluate novel strategies used in other industrial and biotechnological preservation efforts and consider their potential application to the conservation of Leptospira spp.
    Matched MeSH terms: Culture Media/chemistry
  7. Abd Razak DL, Abdullah N, Khir Johari NM, Sabaratnam V
    Appl Microbiol Biotechnol, 2013 Apr;97(7):3207-13.
    PMID: 22576946 DOI: 10.1007/s00253-012-4135-8
    The potential for using agricultural and industrial by-products as substrate for the production of the edible mushroom, Auricularia polytricha, was evaluated using several formulations of selected palm oil wastes mixed with sawdust and further supplemented with selected nitrogen sources. The best substrate formulations were sawdust (SD) mixed with oil palm frond (OPF; 90:10) added with 15% spent grain (SG) and sawdust mixed with empty fruit bunch (EFB; 50:50) added with 10% spent grain (SG) with mycelia growth rate of 8 mm/day and 7 mm/day respectively. These two substrate formulations were then subjected to different moisture content levels (65%, 75% and 85%). Highest total fresh sporophore yield at 0.43% was obtained on SD+OPF (90:10)+15% SG at 85% moisture content, followed closely by SD+EFB (50:50)+10% SG with 0.40% total yield, also at 85% moisture content. Each of the substrate formulations at 85% moisture content gave the highest biological efficiency (BE) at 288.9% and 260.7%, respectively. Both yield and biological efficiency of A. polytricha on these two formulations were almost three times higher when compared to sawdust substrate alone, thus proving the potential of these formulations to improve yield of this mushroom.
    Matched MeSH terms: Culture Media/chemistry
  8. Lau NS, Tsuge T, Sudesh K
    Appl Microbiol Biotechnol, 2011 Mar;89(5):1599-609.
    PMID: 21279348 DOI: 10.1007/s00253-011-3097-6
    Burkholderia sp. synthase has been shown to polymerize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate, and 3-hydroxy-4-pentenoic acid monomers. This study was carried out to evaluate the ability of Burkholderia sp. USM (JCM 15050) and its transformant harboring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae to incorporate the newly reported 3-hydroxy-4-methylvalerate (3H4MV) monomer. Various culture parameters such as concentrations of nutrient rich medium, fructose and 4-methylvaleric acid as well as harvesting time were manipulated to produce P(3HB-co-3H4MV) with different 3H4MV compositions. The structural properties of PHA containing 3H4MV monomer were investigated by using nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). The relative intensities of the bands at 1,183 and 1,228 cm⁻¹ in the FTIR spectra enabled the rapid detection and differentiation of P(3HB-co-3H4MV) from other types of PHA. In addition, the presence of 3H4MV units in the copolymer was found to considerably lower the melting temperature and enthalpy of fusion values compared with poly(3-hydroxybutyrate) (P(3HB)). The copolymer exhibited higher thermo-degradation temperature but similar molecular weight and polydispersity compared with P(3HB).
    Matched MeSH terms: Culture Media/chemistry
  9. Kahar UM, Ng CL, Chan KG, Goh KM
    Appl Microbiol Biotechnol, 2016 Jul;100(14):6291-307.
    PMID: 27000839 DOI: 10.1007/s00253-016-7451-6
    Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0-6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26-72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362-370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.
    Matched MeSH terms: Culture Media/chemistry*
  10. El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M
    BMC Biotechnol, 2018 11 09;18(1):71.
    PMID: 30413198 DOI: 10.1186/s12896-018-0481-7
    BACKGROUND: Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020.

    RESULTS: The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h.

    CONCLUSIONS: Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.

    Matched MeSH terms: Culture Media/chemistry
  11. Elsayed EA, Farid MA, El-Enshasy HA
    BMC Biotechnol, 2019 07 16;19(1):46.
    PMID: 31311527 DOI: 10.1186/s12896-019-0546-2
    BACKGROUND: Natamycin is an antifungal polyene macrolide antibiotic with wide applications in health and food industries. Currently, it is the only antifungal food additive with the GRAS status (Generally Regarded as Safe).

    RESULTS: Natamycin production was investigated under the effect of different initial glucose concentrations. Maximal antibiotic production (1.58 ± 0.032 g/L) was achieved at 20 g/L glucose. Under glucose limitation, natamycin production was retarded and the produced antibiotic was degraded. Higher glucose concentrations resulted in carbon catabolite repression. Secondly, intermittent feeding of glucose improved natamycin production due to overcoming glucose catabolite regulation, and moreover it was superior to glucose-beef mixture feeding, which overcomes catabolite regulation, but increased cell growth on the expense of natamycin production. Finally, the process was optimized in 7.5 L stirred tank bioreactor under batch and fed-batch conditions. Continuous glucose feeding for 30 h increased volumetric natamycin production by about 1.6- and 1.72-folds in than the batch cultivation in bioreactor and shake-flasks, respectively.

    CONCLUSIONS: Glucose is a crucial substrate that significantly affects the production of natamycin, and its slow feeding is recommended to alleviate the effects of carbon catabolite regulation as well as to prevent product degradation under carbon source limitation. Cultivation in bioreactor under glucose feeding increased maximal volumetric enzyme production by about 72% from the initial starting conditions.

    Matched MeSH terms: Culture Media/chemistry
  12. Faridnia F, Hussin AS, Saari N, Mustafa S, Yee LY, Manap MY
    Benef Microbes, 2010 Jun;1(2):149-54.
    PMID: 21831754 DOI: 10.3920/BM2009.0035
    Consumption of probiotics has been associated with decreased risk of colon cancer and reported to have antimutagenic/ anti-carcinogenic properties. One possible mechanism for this effect involves physical binding of the mutagenic compounds, such as heterocyclic amines (HCAs), to the bacteria. Therefore, the objective of this study was to examine the binding capacity of bifidobacterial strains of human origin on mutagenic heterocyclic amines which are suspected to play a role in human cancers. In vitro binding of the mutagens Trp-p-2, IQ, MeIQx, 7,8DiMeIQx and PhIP by three bacterial strains in two media of different pH was analysed using high performance liquid chromatography. Bifidobacterium pseudocatenulatum G4 showed the highest decrease in the total HCAs content, followed by Bifidobacterium longum, and Escherichia coli. pH affects binding capacity; the highest binding was obtained at pH 6.8. Gram-positive tested strains were found to be consistently more effective than the gram-negative strain. There were significant decreases in the amount of HCAs in the presence of different cell concentrations of B. pseudocatenulatum G4; the highest decrease was detected at the concentration of 10(10) cfu/ml. The results showed that HCAs were able to bind with all bacterial strains tested in vitro, thus it may be possible to decrease their absorption by human intestine and increase their elimination via faeces.
    Matched MeSH terms: Culture Media/chemistry
  13. Abdul Khalil K, Mustafa S, Mohammad R, Bin Ariff A, Shaari Y, Abdul Manap Y, et al.
    Biomed Res Int, 2014;2014:787989.
    PMID: 24527457 DOI: 10.1155/2014/787989
    This study was undertaken to optimize skim milk and yeast extract concentration as a cultivation medium for optimal Bifidobacteria pseudocatenulatum G4 (G4) biomass and β -galactosidase production as well as lactose and free amino nitrogen (FAN) balance after cultivation period. Optimization process in this study involved four steps: screening for significant factors using 2(3) full factorial design, steepest ascent, optimization using FCCD-RSM, and verification. From screening steps, skim milk and yeast extract showed significant influence on the biomass production and, based on the steepest ascent step, middle points of skim milk (6% wt/vol) and yeast extract (1.89% wt/vol) were obtained. A polynomial regression model in FCCD-RSM revealed that both factors were found significant and the strongest influence was given by skim milk concentration. Optimum concentrations of skim milk and yeast extract for maximum biomass G4 and β -galactosidase production meanwhile low in lactose and FAN balance after cultivation period were 5.89% (wt/vol) and 2.31% (wt/vol), respectively. The validation experiments showed that the predicted and experimental values are not significantly different, indicating that the FCCD-RSM model developed is sufficient to describe the cultivation process of G4 using skim-milk-based medium with the addition of yeast extract.
    Matched MeSH terms: Culture Media/chemistry*
  14. Dinarvand M, Rezaee M, Masomian M, Jazayeri SD, Zareian M, Abbasi S, et al.
    Biomed Res Int, 2013;2013:508968.
    PMID: 24151605 DOI: 10.1155/2013/508968
    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO₃, Zn⁺², and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R²) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO₃, 1.5 mM (v/v) Zn⁺², and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry.
    Matched MeSH terms: Culture Media/chemistry*
  15. Wang Y, Lee SM, Dykes GA
    Biofouling, 2013;29(3):307-18.
    PMID: 23528127 DOI: 10.1080/08927014.2013.774377
    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.
    Matched MeSH terms: Culture Media/chemistry
  16. Darah I, Sumathi G, Jain K, Lim SH
    Bioprocess Biosyst Eng, 2011 Sep;34(7):795-801.
    PMID: 21347668 DOI: 10.1007/s00449-011-0529-8
    The ability of immobilized cell cultures of Aspergillus niger FETL FT3 to produce extracellular tannase was investigated. The production of enzyme was increased by entrapping the fungus in scouring mesh cubes compared to free cells. Using optimized parameters of six scouring mesh cubes and inoculum size of 1 × 10(6) spores/mL, the tannase production of 3.98 U/mL was obtained from the immobilized cells compared to free cells (2.81 U/mL). It was about 41.64% increment. The immobilized cultures exhibited significant tannase production stability of two repeated runs.
    Matched MeSH terms: Culture Media/chemistry
  17. Azaman SN, Ramakrishnan NR, Tan JS, Rahim RA, Abdullah MP, Ariff AB
    Biotechnol Appl Biochem, 2010 Aug;56(4):141-50.
    PMID: 20604747 DOI: 10.1042/BA20100104
    Induction strategies for the periplasmic production of recombinant human IFN-alpha2b (interferon-alpha2b) by recombinant Escherichia coli Rosetta-gami 2(DE3) were optimized in shake-flask cultures using response surface methodology based on the central composite design. The factors included in the present study were induction point, which related to the attenuance of the cell culture, IPTG (isopropyl beta-D-thiogalactoside) concentration and induction temperature. Second-order polynomial models were used to correlate the abovementioned factors to soluble periplasmic IFN-alpha2b formation and percentage of soluble IFN-alpha2b translocated to the periplasmic space of E. coli. The models were found to be significant and subsequently validated. The proposed induction strategies consisted of induction at an attenuance of 4 (measured as D600), IPTG concentration of 0.05 mM and temperature of 25 degrees C. The optimized induction strategy reduced inclusion-body formation as evidenced by electron microscopy and yielded 323.8 ng/ml of IFN-alpha2b in the periplasmic space with translocation of 74% of the total soluble product. In comparison with the non-optimized condition, soluble periplasmic production and the percentage of soluble IFN-alpha2b translocated to the periplasmic space obtained in optimized induction strategies were increased by approx. 20-fold and 1.4-fold respectively.
    Matched MeSH terms: Culture Media/chemistry
  18. Bayat O, Baradaran A, Ariff A, Mohamad R, Rahim RA
    Biotechnol Lett, 2014 Mar;36(3):581-5.
    PMID: 24185903 DOI: 10.1007/s10529-013-1390-4
    Human interferon alpha (IFN-α) was expressed in two strains of Lactococcus lactis by aid of two promoters (P32 and Pnis) giving rise to two recombinant strains: MG:IFN and NZ:IFN, respectively. The expression of IFN was confirmed by ELISA and western blotting. Highest production was achieved using glucose for growth of both recombinant strains with nisin, used for induction of the recombinant strain with Pnis promoter, at 30 ng/ml. The optimum time for MG:IFN was 9 h and for NZ:IFN was 4.5 h. The highest productions by MG:IFN and NZ:IFN were 1.9 and 2.4 μg IFN/l, respectively. Both of the expressed IFNs showed bioactivities of 1.9 × 10(6) IU/mg that were acceptable for further clinical studies.
    Matched MeSH terms: Culture Media/chemistry
  19. Ismail NF, Hamdan S, Mahadi NM, Murad AM, Rabu A, Bakar FD, et al.
    Biotechnol Lett, 2011 May;33(5):999-1005.
    PMID: 21234789 DOI: 10.1007/s10529-011-0517-8
    L-Asparaginase II signal peptide was used for the secretion of recombinant cyclodextrin glucanotransferase (CGTase) into the periplasmic space of E. coli. Despite its predominant localisation in the periplasm, CGTase activity was also detected in the extracellular medium, followed by cell lysis. Five mutant signal peptides were constructed to improve the periplasmic levels of CGTase. N1R3 is a mutated signal peptide with the number of positively charged amino acid residues in the n-region increased to a net charge of +5. This mutant peptide produced a 1.7-fold enhancement of CGTase activity in the periplasm and significantly decreased cell lysis to 7.8% of the wild-type level. The formation of intracellular inclusion bodies was also reduced when this mutated signal peptide was used as judged by SDS-PAGE. Therefore, these results provide evidence of a cost-effective means of expression of recombinant proteins in E. coli.
    Matched MeSH terms: Culture Media/chemistry
  20. Cha TS, Yee W, Phua PSP, Loh SH, Aziz A
    Biotechnol Lett, 2021 Apr;43(4):803-812.
    PMID: 33438120 DOI: 10.1007/s10529-021-03077-2
    OBJECTIVE: The effects of a brief (3 days) and prolonged (6 days) period of incubation in darkness and light on the biomass content, lipid content and fatty acid profile in Chlorella vulgaris UMT-M1 were determined.

    RESULTS: Three days of incubation in darkness increased saturated fatty acid (SFA) content from 34.0 to 41.4% but decreased monounsaturated fatty acid (MUFA) content from 36.7 to 29.8%. Palmitic acid (C16:0) content was increased from 23.2 to 28.9%, whereas oleic acid (C18:1) content was reduced from 35.4 to 28.8%. Total oil content was slightly decreased from 20.4 to 18.7% after 3 days of darkness, without a significant reduction in biomass compared to 3 days of incubation in light. Biomass and oil content was highest in cultures incubated for 6 days in light, however the stimulatory and inhibitory effects of darkness (or light) on SFA and MUFA content was no longer present at 6 days of incubation.

    CONCLUSIONS: Findings from this study suggests that fatty acid composition in C. vulgaris could be modulated to favor either C16:0 or C18:1 by a brief period of either darkness or light incubation, prior to harvesting.

    Matched MeSH terms: Culture Media/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links