Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Pandurangan AK, Saadatdoust Z, Esa NM, Hamzah H, Ismail A
    Biofactors, 2015 Jan-Feb;41(1):1-14.
    PMID: 25545372 DOI: 10.1002/biof.1195
    Colorectal cancer (CRC) is the third most common malignancy in males and the second most common cancer worldwide. Chronic colonic inflammation is a known risk factor for CRC. Cocoa contains many polyphenolic compounds that have beneficial effects in humans. The objective of this study is to explore the antioxidant properties of cocoa in the mouse model of azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated cancer, focusing on the activation of Nrf2 signaling. Mice were treated with AOM/DSS and randomized to receive either a control diet or a 5 and 10% cocoa diet during the study period. On day 62 of the experiment, the entire colon was processed for biochemical and histopathological examination and further evaluations. Increased levels of malondialdehyde (MDA) were observed in AOM/DSS-induced mice; however, subsequent administration of cocoa decreased the MDA. Enzymatic and nonenzymatic antioxidants, such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, were decreased in the AOM/DSS mice. Cocoa treatment increases the activities/levels of enzymatic and nonenzymatic antioxidants. Inflammatory mediators, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, were elevated during AOM/DSS-induction, and treatment with 5 and 10% cocoa effectively decreases the expression of iNOS and COX-2. The NF-E2-related factor 2 and its downstream targets, such as NQO1 and UDP-GT, were increased by cocoa treatment. The results of our study suggest that cocoa may merit further clinical investigation as a chemopreventive agent that helps prevent CAC.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  2. Abdelwahab SI, Mohan S, Abdulla MA, Sukari MA, Abdul AB, Taha MM, et al.
    J Ethnopharmacol, 2011 Sep 2;137(2):963-70.
    PMID: 21771650 DOI: 10.1016/j.jep.2011.07.010
    Boesenbergia rotunda (L) Mansf. has been used for the treatment of gastrointestinal disorders including peptic ulcer. In the current study we aimed to investiagte the anti-ulcer activities of methanolic extract of B. rotunda (MEBR) and its main active compound, pinostrobin on ethanol-induced ulcer in rats. The possible involevement of lipid peroxidation, nitric oxide, cyclooxygenases and free radical scavenging mechanisms also has been investigated.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  3. Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:560-566.
    PMID: 25686984 DOI: 10.1016/j.msec.2015.01.056
    The recent proposal of using Zn-based alloys for biodegradable implants was not supported with sufficient toxicity data. This work, for the first time, presents a thorough cytotoxicity evaluation of Zn-3Mg alloy for biodegradable bone implants. Normal human osteoblast cells were exposed to the alloy's extract and three main cell-material interaction parameters: cell health, functionality and inflammatory response, were evaluated. Results showed that at the concentration of 0.75mg/ml alloy extract, cell viability was reduced by ~50% through an induction of apoptosis at day 1; however, cells were able to recover at days 3 and 7. Cytoskeletal changes were observed but without any significant DNA damage. The downregulation of alkaline phosphatase protein levels did not significantly affect the mineralization process of the cells. Significant differences of cyclooxygenase-2 and prostaglandin E2 inflammatory biomarkers were noticed, but not interleukin 1-beta, indicating that the cells underwent a healing process after exposure to the alloy. Detailed analysis on the cell-material interaction is further discussed in this paper.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  4. Hamsin DE, Hamid RA, Yazan LS, Taib CN, Yeong LT
    PMID: 24641961 DOI: 10.1186/1472-6882-14-102
    In our previous studies conducted on Ardisia crispa roots, it was shown that Ardisia crispa root inhibited inflammation-induced angiogenesis in vivo. The present study was conducted to identify whether the anti-angiogenic properties of Ardisia crispa roots was partly due to either cyclooxygenase (COX) or/and lipoxygenase (LOX) activity inhibition in separate in vitro studies.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  5. Hussein SZ, Mohd Yusoff K, Makpol S, Mohd Yusof YA
    PLoS One, 2013;8(8):e72365.
    PMID: 24015236 DOI: 10.1371/journal.pone.0072365
    The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  6. Abdelgawad MA, Bakr RB, Ahmad W, Al-Sanea MM, Elshemy HAH
    Bioorg Chem, 2019 11;92:103218.
    PMID: 31536956 DOI: 10.1016/j.bioorg.2019.103218
    To enhance the cytotoxicity of benzimidazole and/or benzoxazole core, the benzimidazole/benzoxazole azo-pyrimidine were synthesized through diazo-coupling of 3-aminophenybenzimidazole (6a) or 3-aminophenylbenzoxazole (6b) with diethyl malonate. The new azo-molanates 6a&b mixed with urea in sodium ethoxide to afford the benzimidazolo/benzoxazolopyrimidine 7a&b. The structure elucidation of new synthesized targets was proved using spectroscopic techniques NMR, IR and elemental analysis. The cytoxicity screening had been carried out against five cancer cell lines: prostate cancer (PC-3), lung cancer (A-549), breast cancer (MCF-7), pancreas cancer (PaCa-2) and colon cancer (HT-29). Furthermore, the antioxidant activity, phospholipase A2-V and cyclooxygenases inhibitory activities of the target compounds 7a&b were evaluated and the new compounds showed potent activity (cytotoxicity IC50 range from 4.3 to 9.2 µm, antioxidant activity from 40% to 80%, COXs or LOX inhibitory activity from 1.92 µM to 8.21 µM). The docking of 7a&b was made to confirm the mechanism of action.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  7. Cui X, Wang R, Bian P, Wu Q, Seshadri VDD, Liu L
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):3391-3398.
    PMID: 31394949 DOI: 10.1080/21691401.2019.1649269
    Nimbolide, a triterpenoid isolated from flower of neem tree possess various therapeutic properties. The objective of the study was to assess the anti-arthritic activity of nimbolide in arthritis induced rats. Nimbolide (20 mg/kg per day) was given orally to arthritic rats induced with Complete Freund's Adjuvant and changes in paw volume, body weight, organ indices (thymus and spleen), arthritic score, biochemical parameters and proinflammatory cytokines levels were determined. Histopathological analysis was also performed. Western blot analysis was also performed. Rats treated with nimbolide displayed marked reduction in arthritic score, organ indices, volume of paw, edema formation, along with substantial enhancement in body weight. Histopathological findings showed significant reduction in destruction of joints and inflammation following nimbolide treatment. The protective action of arthritic rats treated with nimbolide was also substantiated by molecular and biochemical studies. The results of the study show that nimbolide treatment has markedly enhanced health and reduced inflammation via lessening the proinflammatory cytokines expression in arthritic rats. Hence, nimbolide may be used as a potent therapeutic drug in treating rheumatoid arthritis.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  8. Mariod AA, Salama SM
    ScientificWorldJournal, 2020;2020:6326452.
    PMID: 32549800 DOI: 10.1155/2020/6326452
    The current study has been conducted to evaluate the effect of different processing techniques on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and the gastroprotective potential of Chenopodium quinoa red seeds in acute gastric injury induced by absolute ethanol in rats. Seven groups of female Sprague Dawley rats were assigned to normal and absolute ethanol (absolute EtOH) groups, given distilled water, reference control omeprazole (OMP, 20 mg/kg), pressure-cooked quinoa seeds (QP, 200 mg/kg), first stage-germinated quinoa seeds (QG, 200 mg/kg), Lactobacillus plantarum bacteria-fermented quinoa seeds (QB, 200 mg/kg), and Rhizopus oligosporus fungus-fermented quinoa seeds (QF, 200 mg/kg). One hour after treatment, all groups were given absolute ethanol, except for the normal control rats. All animals were sacrificed after an additional hour, and the stomach tissues were examined for histopathology of hematoxylin and eosin staining, immunohistochemistry of cyclooxygenase 2 (COX-2), and nitric oxide synthase (iNOS). Stomach homogenates were evaluated for oxidative stress parameters and prostaglandin E2 (PGE2). Gene expression was performed for gastric tumor necrosis factor alpha (TNF-α) and nuclear factor kappa of B cells (NF-kB). QB and QG recorded the highest DPPH scavengers compared to QF and QP. The gastroprotective potential of QB was comparable to that of OMP, followed by QF, then QG, and QP as confirmed by the histopathology, immunohistochemistry, and gene expression assessments. In conclusion, differently processed red quinoa seeds revealed variable antioxidant capacity and gastroprotective potential, while the bacterial fermented seeds (QB) showed the highest potential compared to the other processing techniques. These results might offer promising new therapy in the treatment of acute gastric injury.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  9. Seow LJ, Beh HK, Umar MI, Sadikun A, Asmawi MZ
    Int Immunopharmacol, 2014 Nov;23(1):186-91.
    PMID: 25194675 DOI: 10.1016/j.intimp.2014.08.020
    Gynura segetum, family Compositae, is a cultivated species and can be found growing in the tropical regions of Indonesia and Malaysia. The plant is known for its use for the treatment of cancer, inflammation, diabetes, hypertension and skin afflictions. In the current study, in vivo anti-inflammatory effect of the methanol extract G. segetum leaf and its antioxidant effect in vitro have been investigated for the first time. The in vitro antioxidant activities of the methanol extract were measured using common methods including total phenolic content; total flavonoid content; scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and β-carotene bleaching assays. The in vivo anti-inflammatory activities were tested using the cotton pellet implanted animal model. The measurement of pro-inflammatory cytokine (TNF-α and IL-1) levels in the blood samples of the rats was carried out by using ELISA kits. The inhibitory activity on cyclooxygenase (COX) enzyme of methanol extract was also evaluated. The methanol extract exhibited good antioxidant activity which is associated with their total phenolic and flavonoid contents. Methanol extract strongly inhibited the granuloma tissue formation in rats and the anti-inflammatory potential was mediated through the inhibition of pro-inflammatory cytokines and COX-2 enzyme activities. Taken together, the present study suggests that G. segetum's leaf is a natural source of antioxidants and has potential therapeutic benefits against chronic inflammation.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  10. Mohd Aluwi MF, Rullah K, Yamin BM, Leong SW, Abdul Bahari MN, Lim SJ, et al.
    Bioorg Med Chem Lett, 2016 05 15;26(10):2531-8.
    PMID: 27040659 DOI: 10.1016/j.bmcl.2016.03.092
    The syntheses and bioactivities of symmetrical curcumin and its analogues have been the subject of interest by many medicinal chemists and pharmacologists over the years. To improve our understanding, we have synthesized a series of unsymmetrical monocarbonyl curcumin analogues and evaluated their effects on prostaglandin E2 production in lipopolysaccharide-induced RAW264.7 and U937 cells. Initially, compounds 8b and 8c exhibited strong inhibition on the production of PGE2 in both LPS-stimulated RAW264.7 (8b, IC50=12.01μM and 8c, IC50=4.86μM) and U937 (8b, IC50=3.44μM and 8c, IC50=1.65μM) cells. Placing vanillin at position Ar2 further improved the potency when both compounds 15a and 15b significantly lowered the PGE2 secretion level (RAW264.7: 15a, IC50=0.78μM and 15b, IC50=1.9μM while U937: 15a, IC50=0.95μM and 15b, IC50=0.92μM). Further experiment showed that compounds 8b, 8c, 15a and 15b did not target the activity of downstream inflammatory COX-2 mediator. Finally, docking simulation on protein targets COX-2, IKK-β, ERK, JNK2, p38α and p38β were performed using the conformation of 15a determined by single-crystal XRD.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  11. Malik A, Arooj M, Butt TT, Zahid S, Zahid F, Jafar TH, et al.
    Drug Des Devel Ther, 2018;12:1431-1443.
    PMID: 29872266 DOI: 10.2147/DDDT.S154169
    Background: The present study investigates the hepato- and DNA-protective effects of standardized extracts of Cleome brachycarpa (cabralealactone), Solanum incanum (solasodin), and Salvadora oleioides (salvadorin) in rats.

    Materials and methods: Hepatotoxicity was induced with intraperitoneal injection of carbon tetrachloride (CCl4) (1 mL/kg b.wt.) once a week for 12 weeks. The hepato- and DNA protective effects of the extracts in different combinations were compared with that of a standard drug Clavazin (200 mg/kg b.wt.). Tissue alanine aminotransferase, alpha-fetoprotein, tumor necrosis factor alpha (TNF-α), isoprostanes-2α, malondialdehyde, and 8-hydroxydeoxyguanosine, the significant hallmarks of oxidative stress, were studied.

    Results: Histopathological findings of the liver sections from the rat group which received CCl4+cabralealactone, solasodin, and salvadorin demonstrated improved centrilobular hepatocyte regeneration with moderate areas of congestion and infiltration comparable with Clavazin. For in silico study, the identified compounds were subjected to molecular docking with cyclooxygenase-2 and TNF-α followed by a molecular dynamics study, which indicated their potential as anti-inflammatory agents.

    Conclusion: Cabralealactone, solasodin, and salvadorin confer some hepatoprotective and DNA-damage protective effects against CCl4-induced toxicity. They successfully restored the normal architecture of hepatocytes and have the potential to be used as inhibitor to main culprits, that is, cyclooxygenase-2 and TNF-α. They can combat oxidative stress and liver injuries both as mono and combinational therapies. However, combination therapy has more ameliorating effects.

    Matched MeSH terms: Cyclooxygenase 2/metabolism
  12. Liew CY, Tham CL, Lam KW, Mohamad AS, Kim MK, Cheah YK, et al.
    Immunopharmacol Immunotoxicol, 2010 Sep;32(3):495-506.
    PMID: 20109039 DOI: 10.3109/08923970903575708
    HMP [3-(2-hydroxyphenyl)-1-(5-methyl-furan-2-y-l) propenone] was evaluated for its ability to inhibit the synthesis of major proinflammatory mediators and cytokines in interferon-gamma (IFN-gamma)- and lipopolysaccharide (LPS)-induced RAW 264.7 cells and phorbol myristate acetate (PMA)-differentiated/LPS-induced U937 cells. HMP suppressed the production of nitric oxide (NO) with significant inhibitory effects at doses as low as 0.78 microM (P < 0.05). Prostaglandin E2 (PGE2) secretion was also inhibited at doses of 12.5 microM and above (P < 0.01). The secretion of both TNF-alpha and IL-6 were only inhibited at the highest dose used (25 microM; P < 0.001). IL-1beta secretion was also inhibited from 12.5 microM onwards (P < 0.01). This inhibition was demonstrated to be caused by down-regulation of inducible enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), without direct effect upon iNOS or COX-2 enzyme activity. HMP only inhibited iNOS (P < 0.001) and IL-1beta (P < 0.05) gene expression at the highest tested concentration. HMP did not affect the secretion of chemokines IL-8 and monocyte chemotactic protein-1 (MCP-1) and the anti-inflammatory cytokine IL-10. The most striking effect of HMP was its NO inhibitory activity and therefore we conclude that HMP is a selective inhibitor of iNOS.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  13. Hsum YW, Yew WT, Hong PL, Soo KK, Hoon LS, Chieng YC, et al.
    Planta Med, 2011 Jan;77(2):152-7.
    PMID: 20669087 DOI: 10.1055/s-0030-1250203
    Chronic inflammation is one of the predisposing factors for neoplastic transformation. Targeting inflammation through suppression of the pro-inflammatory pathway by dietary phytochemicals provides an important strategy for cancer prevention. Maslinic acid is a novel natural triterpenoid known to inhibit proliferation and induce apoptosis in some tumor cell lines. Although maslinic acid has cytotoxic and pro-apoptotic effects on cancer cells, the underlying mechanisms of its effects on the inflammatory pathway have yet to be elucidated. It has been reported that abnormal expression of pro-inflammatory enzyme cyclooxygenase-2 (COX-2) causes promotion of cellular proliferation, suppression of apoptosis, enhancement of angiogenesis and invasiveness. In the present study, the suppressive effect of maslinic acid on COX-2 expression and the binding activity of upstream transcription factors NF- κB and AP-1, which are known to regulate COX-2 transcriptional activation, were assessed using Raji cells. The anti-inflammatory action of maslinic acid was benchmarked against oleanolic acid and other standard drugs. Western blot analysis and electrophoretic mobility shift assay (EMSA) were employed to analyze COX-2 expression as well as NF- κB and AP-1 binding activity. Our results showed that maslinic acid suppresses COX-2 expression in a concentration-dependent manner. Likewise, the constitutive nuclear NF- κB (p65) activity as well as phorbol 12-myristate 13-acetate (PMA)- and sodium N-butyrate (SnB)-induced AP-1 binding activity in Raji cells were significantly reduced following treatment with maslinic acid. Since maslinic acid suppresses COX-2 expression in Raji cells at concentrations that also lowered the NF- κB (p65) and AP-1 binding activity, it is possible that the suppression of COX-2 by this natural triterpenoid might be achieved, at least in part, via the NF- κB and AP-1 signaling pathways.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  14. Rasheed ZB, Lee YS, Kim SH, Teoh T, MacIntyre DA, Bennett PR, et al.
    PMID: 36213265 DOI: 10.3389/fendo.2022.983924
    BACKGROUND: Prematurity is the leading cause of childhood death under the age of five. The aetiology of preterm birth is multifactorial; however, inflammation and infection are the most common causal factors, supporting a potential role for immunomodulation as a therapeutic strategy. 15-Deoxy-Delta-12,14-prostaglandin J2 (15dPGJ2) is an anti-inflammatory prostaglandin and has been shown to delay lipopolysaccharide (LPS) induced preterm labour in mice and improve pup survival. This study explores the immunomodulatory effect of 15dPGJ2 on the transcription factors NF-κB and AP-1, pro-inflammatory cytokines, and contraction associated proteins in human cultured myocytes, vaginal epithelial cell line (VECs) and primary amnion epithelial cells (AECs).

    METHODS: Cells were pre-incubated with 32µM of 15dPGJ2 and stimulated with 1ng/mL of IL-1β as an in vitro model of inflammation. Western immunoblotting was used to detect phosphorylated p-65 and phosphorylated c-Jun as markers of NF-κB and AP-1 activation, respectively. mRNA expression of the pro-inflammatory cytokines IL-6, IL-8, and TNF-α was examined, and protein expression of COX-2 and PGE2 were detected by western immunoblotting and ELISA respectively. Myometrial contractility was examined ex-vivo using a myograph.

    RESULTS: 15dPGJ2 inhibited IL-1β-induced activation of NF-κB and AP-1, and expression of IL-6, IL-8, TNF-α, COX-2 and PGE2 in myocytes, with no effect on myometrial contractility or cell viability. Despite inhibiting IL-1β-induced activation of NF-κB, expression of IL-6, TNF-α, and COX-2, 15dPGJ2 led to activation of AP-1, increased production of PGE2 and increased cell death in VECs and AECs.

    CONCLUSION: We conclude that 15dPGJ2 has differential effects on inflammatory modulation depending on cell type and is therefore unlikely to be a useful therapeutic agent for the prevention of preterm birth.

    Matched MeSH terms: Cyclooxygenase 2/metabolism
  15. Bukhari SN, Zhang X, Jantan I, Zhu HL, Amjad MW, Masand VH
    Chem Biol Drug Des, 2015 Jun;85(6):729-42.
    PMID: 25328063 DOI: 10.1111/cbdd.12457
    A novel series of 1,3-diphenyl-2-propen-1-one (chalcone) derivatives was synthesized by a simple, eco-friendly, and efficient Claisen-Schmidt condensation reaction and used as precursors for the synthesis of new pyrazoline derivatives. All the synthesized compounds were screened for anti-inflammatory related activities such as inhibition of phospholipase A(2) (PLA(2)), cyclooxygenases (COX-1 and COX-2), IL-6, and TNF-α. The results of the above studies show that the compounds synthesized are effective inhibitors of above pro-inflammatory enzymes and cytokines. Overall, the results of the studies reveal that the pyrazolines with chlorophenyl substitution (1b-6b) seem to be important for inhibition of enzymes and cytokines. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX-inhibitory activities of the investigated compounds.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  16. George A, Chinnappan S, Chintamaneni M, Kotak C V, Choudhary Y, Kueper T, et al.
    PMID: 25252832 DOI: 10.1186/1472-6882-14-355
    The study was aimed to evaluate the anti-inflammatory activity of ethanolic and aqueous extracts of Polygonum minus (Huds) using in vitro and in vivo approaches.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  17. Tan BL, Esa NM, Rahman HS, Hamzah H, Karim R
    PMID: 25129221 DOI: 10.1186/1472-6882-14-304
    Brewers' rice is locally known as temukut, is a byproduct of the rice milling process, and consists of broken rice, rice bran, and rice germ. Unlike rice bran, the health benefit of brewers' rice has yet to be fully studied. Our present study aimed to identify the chemopreventive potential of brewers' rice with colonic tumor formation and to examine further the mechanistic action of brewers' rice during colon carcinogenesis.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  18. Saad N, Esa NM, Ithnin H
    Asian Pac J Cancer Prev, 2013;14(5):3093-9.
    PMID: 23803085
    BACKGROUND: Phytic acid (PA) is a polyphosphorylated carbohydrate that can be found in high amounts in most cereals, legumes, nut oil, seeds and soy beans. It has been suggested to play a significant role in inhibition of colorectal cancer. This study was conducted to investigate expression changes of β-catenin and cyclooxygenase-2 (COX-2) and cell proliferation in the adenoma-carcinoma sequence after treatment with rice bran PA by immunocytochemistry.

    MATERIALS AND METHODS: Seventy-two male Sprague-Dawley rats were divided into 6 equal groups with 12 rats in each group. For cancer induction two intraperitoneal injections of azoxymethane (AOM) were given at 15 mg/kg bodyweight over a 2-weeks period. During the post initiation phase, two different concentrations of PA, 0.2% (w/v) and 0.5% (w/v) were administered in the diet.

    RESULTS: Results of β-catenin, COX-2 expressions and cell proliferation of Ki-67 showed a significant contribution in colonic cancer progression. For β-catenin and COX-2 expression, there was a significant difference between groups at p<0.05. With Ki-67, there was a statistically significant lowering the proliferating index as compared to AOM alone (p<0.05). A significant positive correlation (p=0.01) was noted between COX-2 expression and proliferation. Total β-catenin also demonstrated a significant positive linear relationship with total COX-2 (p=0.044).

    CONCLUSIONS: This study indicated potential value of PA extracted from rice bran in reducing colonic cancer risk in rats.

    Matched MeSH terms: Cyclooxygenase 2/metabolism
  19. Lee KH, Abas F, Alitheen NB, Shaari K, Lajis NH, Ahmad S
    Molecules, 2011 Nov 23;16(11):9728-38.
    PMID: 22113581 DOI: 10.3390/molecules16119728
    Our preliminary screening had shown that the curcumin derivative [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] or BDMC33 exhibited improved anti-inflammatory activity by inhibiting nitric oxide synthesis in activated macrophage cells. In this study, we further investigated the anti-inflammatory properties of BDMC33 on PGE(2 )synthesis and cyclooxygenase (COX) expression in IFN-γ/LPS-stimulated macrophages. We found that BDMC33 significantly inhibited PGE(2) synthesis in a concentration-dependent manner albeit at a low inhibition level with an IC(50) value of 47.33 ± 1.00 µM. Interestingly, the PGE(2) inhibitory activity of BDMC33 is not attributed to inhibition of the COX enzyme activities, but rather BDMC33 selectively down-regulated the expression of COX-2. In addition, BDMC33 modulates the COX expression by sustaining the constitutively COX-1 expression in IFN-γ/LPS-treated macrophage cells. Collectively, the experimental data suggest an immunodulatory action of BDMC33 on PGE(2) synthesis and COX expression, making it a possible treatment for inflammatory disorders with minimal gastrointestinal-related side effects.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  20. Utar Z, Majid MI, Adenan MI, Jamil MF, Lan TM
    J Ethnopharmacol, 2011 Jun 14;136(1):75-82.
    PMID: 21513785 DOI: 10.1016/j.jep.2011.04.011
    ETHNOPHARMACOLOGICAL RELEVANCE: [corrected] Mitragyna speciosa Korth (Rubiaceae) is one of the medicinal plants used traditionally to treat various types of diseases especially in Thailand and Malaysia. Its anti-inflammatory and analgesic properties in its crude form are well documented. In this study, the cellular mechanism involved in the anti-inflammatory effects of mitragynine, the major bioactive constituent, was investigated.

    MATERIALS AND METHODS: The effects of mitragynine on the mRNA and protein expression of COX-1 and COX-2 and the production of prostaglandin E(2) (PGE(2)) were investigated in LPS-treated RAW264.7 macrophage cells. Quantitative RT-PCR was used to assess the mRNA expression of COX-1 and COX-2. Protein expression of COX-1 and COX-2 were assessed using Western blot analysis and the level of PGE(2) production was quantified using Parameter™ PGE(2) Assay (R&D Systems).

    RESULTS: Mitragynine produced a significant inhibition on the mRNA expression of COX-2 induced by LPS, in a dose dependent manner and this was followed by the reduction of PGE(2) production. On the other hand, the effects of mitragynine on COX-1 mRNA expression were found to be insignificant as compared to the control cells. However, the effect of mitragynine on COX-1 protein expression is dependent on concentration, with higher concentration of mitragynine producing a further reduction of COX-1 expression in LPS-treated cells.

    CONCLUSIONS: These findings suggest that mitragynine suppressed PGE(2) production by inhibiting COX-2 expression in LPS-stimulated RAW264.7 macrophage cells. Mitragynine may be useful for the treatment of inflammatory conditions.

    Matched MeSH terms: Cyclooxygenase 2/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links