Displaying publications 1 - 20 of 3426 in total

Abstract:
Sort:
  1. Stegger M, Wirth T, Andersen PS, Skov RL, De Grassi A, Simões PM, et al.
    mBio, 2014 Aug 26;5(5):e01044-14.
    PMID: 25161186 DOI: 10.1128/mBio.01044-14
    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and worldwide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid. CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa, the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are extremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases of cross-continent imports likely driven by human migrations.

    IMPORTANCE: With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection of strains of the S. aureus CC80 lineage. Our study determined that a single descendant of a PVL-positive methicillin-sensitive ancestor circulating in sub-Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East, and North Africa. In the transition from a methicillin-susceptible lineage to a successful CA-MRSA clone, it simultaneously became resistant to fusidic acid, a widely used antibiotic for skin and soft tissue infections, thus demonstrating the importance of antibiotic selection in the success of this clone. This finding furthermore highlights the significance of horizontal gene acquisitions and underscores the combined importance of these factors for the success of CA-MRSA.

    Matched MeSH terms: DNA, Bacterial/genetics; Sequence Analysis, DNA
  2. Forde BM, Phan MD, Gawthorne JA, Ashcroft MM, Stanton-Cook M, Sarkar S, et al.
    mBio, 2015 Nov 17;6(6):e01602-15.
    PMID: 26578678 DOI: 10.1128/mBio.01602-15
    Escherichia coli sequence type 131 (ST131) is a clone of uropathogenic E. coli that has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome of E. coli EC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered three (m6)A methylation motifs that have not been described previously. Subsequent SMRT sequencing of isogenic knockout mutants identified the two type I methyltransferases (MTases) and one type IIG MTase responsible for (m6)A methylation of novel recognition sites. Although both type I sites were rare, the type IIG sites accounted for more than 12% of all methylated adenines in EC958. Analysis of the distribution of MTase genes across 95 ST131 genomes revealed their prevalence is highly conserved within the ST131 lineage, with most variation due to the presence or absence of mobile genetic elements on which individual MTase genes are located.

    IMPORTANCE: DNA modification plays a crucial role in bacterial regulation. Despite several examples demonstrating the role of methyltransferase (MTase) enzymes in bacterial virulence, investigation of this phenomenon on a whole-genome scale has remained elusive until now. Here we used single-molecule real-time (SMRT) sequencing to determine the first complete methylome of a strain from the multidrug-resistant E. coli sequence type 131 (ST131) lineage. By interrogating the methylome computationally and with further SMRT sequencing of isogenic mutants representing previously uncharacterized MTase genes, we defined the target sequences of three novel ST131-specific MTases and determined the genomic distribution of all MTase target sequences. Using a large collection of 95 previously sequenced ST131 genomes, we identified mobile genetic elements as a major factor driving diversity in DNA methylation patterns. Overall, our analysis highlights the potential for DNA methylation to dramatically influence gene regulation at the transcriptional level within a well-defined E. coli clone.

    Matched MeSH terms: DNA, Bacterial/metabolism*; DNA Methylation*
  3. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al.
    mBio, 2017 06 27;8(3).
    PMID: 28655818 DOI: 10.1128/mBio.00543-17
    The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3 The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia colimcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ΔTnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3IMPORTANCE The emergence of the plasmid-mediated colistin resistance gene mcr-1 has attracted substantial attention worldwide. Here, we examined a colistin-resistant Escherichia coli isolate that was negative for both mcr-1 and mcr-2 and discovered a novel mobile colistin resistance gene, mcr-3 The amino acid sequence of MCR-3 aligned closely with phosphoethanolamine transferases from Enterobacteriaceae and Aeromonas species originating from both clinical infections and environmental samples collected in 12 countries on four continents. Due to the ubiquitous profile of aeromonads in the environment and the potential transfer of mcr-3 between Enterobacteriaceae and Aeromonas species, the wide spread of mcr-3 may be largely underestimated. As colistin has been and still is widely used in veterinary medicine and used at increasing frequencies in human medicine, the continuous monitoring of mobile colistin resistance determinants in colistin-resistant Gram-negative bacteria is imperative for understanding and tackling the dissemination of mcr genes in both the agricultural and health care sectors.
    Matched MeSH terms: Sequence Analysis, DNA
  4. Goh KGK, Phan MD, Forde BM, Chong TM, Yin WF, Chan KG, et al.
    mBio, 2017 10 24;8(5).
    PMID: 29066548 DOI: 10.1128/mBio.01558-17
    Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract and bloodstream infections and possesses an array of virulence factors for colonization, survival, and persistence. One such factor is the polysaccharide K capsule. Among the different K capsule types, the K1 serotype is strongly associated with UPEC infection. In this study, we completely sequenced the K1 UPEC urosepsis strain PA45B and employed a novel combination of a lytic K1 capsule-specific phage, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing (TraDIS) to identify the complement of genes required for capsule production. Our analysis identified known genes involved in capsule biosynthesis, as well as two additional regulatory genes (mprA and lrhA) that we characterized at the molecular level. Mutation of mprA resulted in protection against K1 phage-mediated killing, a phenotype restored by complementation. We also identified a significantly increased unidirectional Tn5 insertion frequency upstream of the lrhA gene and showed that strong expression of LrhA induced by a constitutive Pcl promoter led to loss of capsule production. Further analysis revealed loss of MprA or overexpression of LrhA affected the transcription of capsule biosynthesis genes in PA45B and increased sensitivity to killing in whole blood. Similar phenotypes were also observed in UPEC strains UTI89 (K1) and CFT073 (K2), demonstrating that the effects were neither strain nor capsule type specific. Overall, this study defined the genome of a UPEC urosepsis isolate and identified and characterized two new regulatory factors that affect UPEC capsule production.IMPORTANCE Urinary tract infections (UTIs) are among the most common bacterial infections in humans and are primarily caused by uropathogenic Escherichia coli (UPEC). Many UPEC strains express a polysaccharide K capsule that provides protection against host innate immune factors and contributes to survival and persistence during infection. The K1 serotype is one example of a polysaccharide capsule type and is strongly associated with UPEC strains that cause UTIs, bloodstream infections, and meningitis. The number of UTIs caused by antibiotic-resistant UPEC is steadily increasing, highlighting the need to better understand factors (e.g., the capsule) that contribute to UPEC pathogenesis. This study describes the original and novel application of lytic capsule-specific phage killing, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing to define the entire complement of genes required for capsule production in UPEC. Our comprehensive approach uncovered new genes involved in the regulation of this key virulence determinant.
    Matched MeSH terms: DNA Transposable Elements
  5. Bittleston LS, Wolock CJ, Yahya BE, Chan XY, Chan KG, Pierce NE, et al.
    Elife, 2018 08 28;7.
    PMID: 30152327 DOI: 10.7554/eLife.36741
    The 'pitchers' of carnivorous pitcher plants are exquisite examples of convergent evolution. An open question is whether the living communities housed in pitchers also converge in structure or function. Using samples from more than 330 field-collected pitchers of eight species of Southeast Asian Nepenthes and six species of North American Sarracenia, we demonstrate that the pitcher microcosms, or miniature ecosystems with complex communities, are strikingly similar. Compared to communities from surrounding habitats, pitcher communities house fewer species. While communities associated with the two genera contain different microbial organisms and arthropods, the species are predominantly from the same phylogenetic clades. Microbiomes from both genera are enriched in degradation pathways and have high abundances of key degradation enzymes. Moreover, in a manipulative field experiment, Nepenthes pitchers placed in a North American bog assembled Sarracenia-like communities. An understanding of the convergent interactions in pitcher microcosms facilitates identification of selective pressures shaping the communities.
    Matched MeSH terms: DNA, Plant/genetics
  6. D'Aeth JC, van der Linden MP, McGee L, de Lencastre H, Turner P, Song JH, et al.
    Elife, 2021 Jul 14;10.
    PMID: 34259624 DOI: 10.7554/eLife.67113
    Multidrug-resistant Streptococcus pneumoniae emerge through the modification of core genome loci by interspecies homologous recombinations, and acquisition of gene cassettes. Both occurred in the otherwise contrasting histories of the antibiotic-resistant S. pneumoniae lineages PMEN3 and PMEN9. A single PMEN3 clade spread globally, evading vaccine-induced immunity through frequent serotype switching, whereas locally circulating PMEN9 clades independently gained resistance. Both lineages repeatedly integrated Tn916-type and Tn1207.1-type elements, conferring tetracycline and macrolide resistance, respectively, through homologous recombination importing sequences originating in other species. A species-wide dataset found over 100 instances of such interspecific acquisitions of resistance cassettes and flanking homologous arms. Phylodynamic analysis of the most commonly sampled Tn1207.1-type insertion in PMEN9, originating from a commensal and disrupting a competence gene, suggested its expansion across Germany was driven by a high ratio of macrolide-to-β-lactam consumption. Hence, selection from antibiotic consumption was sufficient for these atypically large recombinations to overcome species boundaries across the pneumococcal chromosome.
    Matched MeSH terms: DNA Transposable Elements
  7. Skowron MA, Munisamy B, Hamid SB, Węgrzyn G
    Zootaxa, 2015;4032(4):426-34.
    PMID: 26624378 DOI: 10.11646/zootaxa.4032.4.7
    A new species of Sesiidae, tribe Osminiini from Peninsular Malaysia, Heterosphecia pahangensis Skowron, displaying numerous bee-mimicking features, is described. DNA barcodes showed significant differences with related taxa. However, the paucity of Sesiidae barcodes from Southeast Asia prevents meaningful taxonomic comparisons. The closest match out of published data on Sesiidae barcodes is Heterosphecia bantanakai, Arita & Gorbunov (2000a) from the tribe Osminiini, which has 9.98% sequence divergence from Heterosphecia pahangensis. Photographs of the moth in its natural habitat are shown. Behavioural aspects, such as mud-puddling and mode of flight, are described and presented in a video.
    Matched MeSH terms: DNA; DNA Barcoding, Taxonomic
  8. Matsui M, Belabut DM, Ahmad N
    Zootaxa, 2014;3881(1):75-93.
    PMID: 25543621 DOI: 10.11646/zootaxa.3881.1.6
    Taxonomic status of fanged frogs from the Peninsular Malaysia, previously assigned to Limnonectes kuhlii, is assessed using genetic and morphological approaches. Phylogenetic relationships inferred from sequences of the mitochondrial and nuclear genes revealed that the fanged frogs from the Peninsula form a monophyletic group and are clearly divergent from other species previously, or even now, assigned to L. kuhlii from Mainland Southeast Asia. In both mtDNA and nuDNA phylogeny, the Malay Peninsula clade diverges into two lineages, one from north (Larut Hill, Perak, and Hulu Terengganu, Terengganu) and another from south (Genting Highlands, Pahang, and Gombak, Selangor). These lineages are separated by large genetic distances, comparable with those observed between some other species of L. kuhlii-like frogs. Although the two lineages are very similar morphologically, they are distinguishable in several morphological traits and are considered heterospecific. We therefore describe them as L. utara sp. nov. and L. selatan sp. nov. These new species differ from all other species of kuhlii-like frogs from Mainland Southeast Asia by the surface of tibia, which is densely covered by large warts. 
    Matched MeSH terms: DNA, Mitochondrial
  9. Grismer LL, Wood PL, Mohamed M, Chan KO, Heinz HM, Sumarli AS, et al.
    Zootaxa, 2013;3746:463-72.
    PMID: 25113489 DOI: 10.11646/zootaxa.3746.3.5
    A new species of karst-adapted gekkonid lizard of the genus Cnemaspis Strauch is described from Gua Gunting and Gua Goyang in a karst region of Merapoh, Pahang, Peninsular Malaysia whose unique limestone formations are in immediate danger of being quarried. The new species differs from all other species of Cnemaspis based on its unique suite of morphological and color pattern characters. Its discovery underscores the unique biodiversity endemic to karst regions and adds to a growing list of karst-adapted reptiles from Peninsular Malaysia. We posit that new karst-adapted species endemic to limestone forests will continue to be discovered and these regions will harbor a significant percentage of Peninsular Malaysia's biodiversity and thusly should be conserved rather than quarried.
    Matched MeSH terms: Sequence Analysis, DNA
  10. Csorba G, Görföl T, Wiantoro S, Kingston T, Bates PJ, Huang JC
    Zootaxa, 2015 Jun 29;3980(2):267-78.
    PMID: 26249952 DOI: 10.11646/zootaxa.3980.2.7
    To date, three species of the genus Glischropus are recognized from the Indomalayan zoogeographic region-G. bucephalus from the Indochinese subregion, G. tylopus from the Sundaic subregion (Peninsular Thailand and Malaysia, Borneo, Sumatra, Moluccas) and G. javanus, restricted to Java. The investigation of the holotype and three topotype specimens of G. batjanus supported the view that the name was previously correctly regarded as the junior subjective synonym of G. tylopus. During review of material recently collected in southwestern Sumatra, Indonesia, one specimen of a yet undescribed species of Thick-thumbed bat was identified. G. aquilus n. sp. markedly differs from its congeners by its dark brown pelage, nearly black ear and tragus, and in skull proportions. The phylogenetic analysis based on cytb sequences also supports the specific distinctness of G. aquilus n. sp. Its discovery brings the count to 88 species of bats known from Sumatra.
    Matched MeSH terms: DNA/genetics
  11. Grismer LL, Wood PL, Syafiq MF, Badli-Sham BH, Rizal SA, Ahmad AB, et al.
    Zootaxa, 2016 Aug 02;4147(1):59-66.
    PMID: 27515603 DOI: 10.11646/zootaxa.4147.1.3
    An integrative taxonomic analysis based on additional specimens and color photographs of Lipinia sekayuensis and additional color photographs of L. surda from Pulau Tioman and the Gunung Panti Forest Reserve, Peninsular Malaysia confirm the previous hypotheses that L. sekayuensis is a valid species and is the sister species of L. surda. The two species share a 12.8% sequence divergence between them.
    Matched MeSH terms: Sequence Analysis, DNA
  12. Gibbs S, Hundt PJ, Nelson A, Egan JP, Tongnunui P, Simons AM
    Zootaxa, 2018 Jan 03;4369(2):270-280.
    PMID: 29689891 DOI: 10.11646/zootaxa.4369.2.7
    The combtooth blenny (Blenniidae) genus Omobranchus contains small, cryptobenthic fishes common to nearshore habitats throughout the Indo-West Pacific. Recent molecular systematic studies have resolved Omobranchus as monophyletic but little research has been done to resolve species-level relationships. Herein, phylogenetic analyses of one mitochondrial (CO1) and four nuclear (ENC1, myh6, sreb2, and tbr1) genes provide evidence for the monophyly of Omobranchus and support for the elongatus and banditus species group. Sampling of multiple individuals from widespread species (O. ferox, O. punctatus, and O. elongatus) suggested that the Thai-Malay Peninsula is a phylogeographic break that may be a historic barrier to gene flow. Additionally, common meristics and other morphological characters are used to describe an early life history stage of O. ferox and O. punctatus.
    Matched MeSH terms: DNA, Mitochondrial; Sequence Analysis, DNA
  13. Abramov AV, Bannikova AA, Lebedev VS, Rozhnov VV
    Zootaxa, 2017 Feb 15;4232(2):zootaxa.4232.2.5.
    PMID: 28264392 DOI: 10.11646/zootaxa.4232.2.5
    We analyzed the complete mitochondrial cytochrome b (cytb) gene and fragments of four nuclear loci: ApoB, RAG2, IRBP1 and BRCA1. These data allowed us to provide new insights into the diversity of the Asiatic water shrews of Indochina. A new, highly divergent genetic lineage of Chimarrogale was found in southern Vietnam, and this lineage included specimens from the provinces of Kon Tum, Dak Lak, and Lam Dong. Such finding represents the newest and southernmost records of Chimarrogale in Indochina. Morphological analysis classified the specimens from southern Vietnam as C. varennei proper, which is restricted to that region, whereas the polymorphic C. himalayica, which contained at least four cytochrome b haplogroups, occurred in central and northern Vietnam and southern China. This distinct C. varennei lineage closely related to the C. platycephalus + C. leander clade suggests the existence of an unknown glacial refuge in Tay Nguyen Plateau, southern Vietnam. Because the Bornean C. phaeura (i) was sister-group of the rest of Chimarrogale sensu lato and (ii) had a high genetic divergence (~15% for cytochrome b) and geographical isolation, we suggest that C. phaeura be placed into a separate genus, Crossogale Thomas, 1921. This genus should also include C. sumatrana (Sumatra) and C. hantu (Peninsular Malaysia). On those grounds, we propose a new classification system for Asiatic water shrews.
    Matched MeSH terms: DNA, Mitochondrial; Sequence Analysis, DNA*
  14. Sumarli A, Grismer LL, Wood PL, Ahmad AB, Rizal S, Ismail LH, et al.
    Zootaxa, 2016 Oct 02;4173(1):29-44.
    PMID: 27701201 DOI: 10.11646/zootaxa.4173.1.3
    Recently discovered populations of skinks of the genus Sphenomorphus from central Peninsular Malaysia represent a new species, S. sungaicolus sp. nov., and the first riparian skink known from Peninsular Malaysia. Morphological analyses of an earlier specimen reported as S. tersus from the Forest Research Institute of Malaysia (FRIM), Selangor indicate that it too is the new riparian species S. sungaicolus sp. nov. Additionally, two specimens from the Tembat Forest Reserve, Hulu Terengganu, Kelantan and another from Ulu Gombak, Selangor have been diagnosed as new the species. The latter specimen remained unidentified in the Bernice Pauahi Bishop Museum, Honolulu, Hawaii since its collection in June 1962. Morphological and molecular analyses demonstrate that S. sungaicolus sp. nov. forms a clade with the Indochinese species S. maculatus, S. indicus, and S. tersus and is the sister species of the latter. Sphenomorphus sungaicolus sp. nov. can be differentiated from all other members of this clade by having a smaller SVL (66.5-89.6 mm); 39-44 midbody scale rows; 72-81 paravertebral scales; 74-86 ventral scales; a primitive plantar scale arrangement; and 20-22 scale rows around the tail at the position of the 10th subcaudal.
    Matched MeSH terms: Sequence Analysis, DNA
  15. Rheindt FE, Christidis L, Norman JA, Eaton JA, Sadanandan KR, Schodde R
    Zootaxa, 2017 Apr 07;4250(5):401-433.
    PMID: 28609999 DOI: 10.11646/zootaxa.4250.5.1
    White-bellied swiftlets of the Collocalia esculenta complex constitute a radiation of colony-breeding swifts distributed throughout the tropical Indo-Pacific region. Resolution of their taxonomy is challenging due to their morphological uniformity. To analyze the evolutionary history of this complex, we combine new biometric measurements and results from plumage assessment of museum specimens with novel as well as previously published molecular data. Together, this body of information constitutes the largest systematic dataset for white-bellied swiftlets yet compiled, drawn from 809 individuals belonging to 32 taxa for which new molecular, biometric, and/or plumage data are presented. We propose changing the classification of white-bellied swiftlets, for which two species are currently recognized, to elevate eight regional forms to species level, and we also describe two new subspecies. The ten taxa we recommend recognizing at the species level are: Collocalia linchi (Java to Lombok, Sumatran hills), C. dodgei (montane Borneo), C. natalis (Christmas Island), C. affinis (Greater Sundas, including the Thai-Malay Peninsula and Andaman-Nicobar Islands), C. marginata (Philippines), C. isonota (Philippines), C. sumbawae (west Lesser Sundas), C. neglecta (east Lesser Sundas), C. esculenta (Sulawesi, Moluccas, New Guinea, Bismarck Archipelago, Solomon Islands), and C. uropygialis (Vanuatu, New Caledonia). Future molecular and morphological work is needed to resolve questions of speciation and population affinities in the Philippines, Christmas Island, Wallacea and central Melanesia, and to shed light on historic diversification and patterns of gene flow in the complex.
    Matched MeSH terms: DNA, Mitochondrial
  16. Kurniawan N, Islam MM, Djong TH, Igawa T, Daicus MB, Yong HS, et al.
    Zoolog Sci, 2010 Mar;27(3):222-33.
    PMID: 20192690 DOI: 10.2108/zsj.27.222
    To elucidate genetic divergence and evolutionary relationship in Fejervarya cancrivora from Indonesia and other Asian countries, allozyme and molecular analyses were carried out using 131 frogs collected from 24 populations in Indonesia, Thailand, Bangladesh, Malaysia, and the Philippines. In the allozymic survey, seventeen enzymatic loci were examined for 92 frogs from eight representative localities. The results showed that F. cancrivora is subdivided into two main groups, the mangrove type and the large- plus Pelabuhan ratu types. The average Nel's genetic distance between the two groups was 0.535. Molecular phylogenetic trees based on nucleotide sequences of the 16S rRNA and Cyt b genes and constructed with the ML, MP, NJ, and BI methods also showed that the individuals of F. cancrivora analyzed comprised two clades, the mangrove type and the large plus Pelabuhan ratu / Sulawesi types, the latter further split into two subclades, the large type and the Pelabuhan ratu / Sulawesi type. The geographical distribution of individuals of the three F. cancrivora types was examined. Ten Individuals from Bangladesh, Thailand, and the Philippines represented the mangrove type; 34 Individuals from Malaysia and Indonesia represented the large type; and 11 individuals from Indonesia represented the Pelabuhan ratu / Sulawesi type. Average sequence divergences among the three types were 5.78-10.22% for the 16S and 12.88-16.38% for Cyt b. Our results suggest that each of the three types can be regarded as a distinct species.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  17. Matsui M, Mohamed M, Shimada T, Sudin A
    Zoolog Sci, 2007 Jan;24(1):101-6.
    PMID: 17409723
    Two forms of Staurois that are differentiated by body size occur parapatrically in the Crocker Range, Sabah, Borneo. Analyses of a total of 1,499 bp of the mitochondrial cytochrome b, 12S rRNA, and 16S rRNA genes revealed that the two forms could be completely split genetically. The two forms could be also clearly differentiated morphologically, not only by snout-vent length but also by the relative sizes of snout, eye, and finger disk. Comparisons of the two forms with all known species of the genus revealed the large and small forms to be S. tuberilinguis and S. parvus, respectively. The latter species has long been synonymized with the former, but we here consider them to represent different species.
    Matched MeSH terms: DNA, Mitochondrial/genetics; Sequence Analysis, DNA; DNA Primers
  18. Ryan JR, Esa YB
    Zoolog Sci, 2006 Oct;23(10):893-901.
    PMID: 17116992
    This study examined 396 base pairs of the mitochondrial cytochrome b gene from 110 individuals belonging to the genus Hampala, a group of freshwater cyprinids that inhabit Southeast Asia. The samples were taken from various locations throughout Sarawak, Sabah, and peninsular Malaysia. The nucleotide sequences were subjected to phylogenetic analyses by using the neighbor-joining, maximum parsimony, and maximum likelihood methods. All three methods revealed the reciprocally monophyletic relationship of Hampala macrolepidota to the other Hampala forms, thus strongly supporting its status as a distinct species. Phylogenetic analysis also discovered the existence of two H. bimaculata lineages endemic to Borneo: (1) a newly identified species from the southern and central part of Sarawak assigned as H. bimaculata Type A and (2) the previously described H. bimaculata from northern Sarawak and the west coast of Sabah assigned as H. bimaculata Type B. However, the status of H. sabana and an intermediate form were not elucidated. The results suggest that the intermediate form from the Tawau population is actually a subpopulation of H. sabana, while the highly divergent intermediate form from Kalabakan could represent a cryptic species. The sharing of H. macrolepidota haplotypes in the southern peninsular Malaysia and southern and central Sarawak samples (Hm1 and Hm2) reflected the recent disconnection of the two regions, during the late Pleistocene. Overall, the partial sequence of the mitochondrial cytochrome b gene was useful for resolving the phylogenetic relationships among Hampala fishes in Malaysia.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  19. Shimada T, Matsui M, Nishikawa K, Eto K
    Zoolog Sci, 2015 Oct;32(5):474-84.
    PMID: 26428726 DOI: 10.2108/zs140289
    A cryptic Bornean torrent frog of the genus Meristogenys, which is divergent genetically and morphologically from all known congeners, is described from mountain streams of western Sarawak, East Malaysia (Borneo). The species occurs sympatrically with the type species of the genus, M. jerboa, but apparently differs from it in adult coloration and larval morphology, such as keratodont formulae and glands in tail fins. Females of the new species possess much larger and fewer eggs than in sympatric M. jerboa, suggesting significantly different reproductive traits between these species. A key to larvae of known species of the genus is provided.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  20. Matsui M, Nishikawa K, Eto K, Hossman MY
    Zoolog Sci, 2020 Feb;37(1):91-101.
    PMID: 32068378 DOI: 10.2108/zs190078
    Two lineages of stream toads in the genus Ansonia from Malaysian Borneo have long been suspected to be specifically distinct on the basis of molecular data. We assessed the taxonomic status of these lineages using morphological and additional genetic data. In mtDNA phylogeny, each lineage-one from Bario, Kelabit Highlands of Sarawak, the other from Mt. Mulu of Sarawak and the Crocker Range of Sabah-is separated from other congeners by large genetic distances, comparable with those observed between heterospecific species in the genus. These lineages are also morphologically distinguishable from other species, and are considered to represent valid, independently evolving species. We therefore describe them as A. kelabitensis sp. nov. and A. kanak sp. nov.
    Matched MeSH terms: DNA, Mitochondrial/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links