Displaying publications 1 - 20 of 121 in total

Abstract:
Sort:
  1. Feng M, Tan K, Zhang H, Duan X, Li S, Ma H, et al.
    Fish Shellfish Immunol, 2023 Oct;141:109059.
    PMID: 37678479 DOI: 10.1016/j.fsi.2023.109059
    High stocking density has been regarded as an adverse factor in bivalve aquaculture. However, its subsequent molecular response to pathogenic bacteria has been little studied. In order to study the question, a novel MyD88 was first cloned using adult noble scallops Chlamys nobilis (CnMyD88), and its tissue distribution was investigated. Then, 1860 juvenile scallops were divided into two groups with two initial densities of high density (200 individuals/layer, HD) and normal density (110 individuals/layer, ND) and in-situ cultured for three months, in which their growth, survival, and the differential expression of CnMyD88 were examined, respectively. Finally, scallops were injected with the Vibrio parahaemolyticus to assess the temporal expression of CnMyD88. As the results show, CnMyD88 cDNA has a full length of 2241 bp and contains an 1107 bp ORF that encodes a 368-derived protein. It was widely expressed in examined tissues with a significantly higher level in hemolymph, intestine, mantle, and gonad than others. Besides, the HD group showed lower growth (0.39 ± 0.05 mm/day) and survival (37.00 ± 8.49%) than the ND group (0.55 ± 0.02 mm/day and 76.82 ± 5.78%). More importantly, the HD group exhibited significantly lower expression levels of CnMyD88 in their examined tissues than the ND group. After V. parahaemolyticus challenging, CnMyD88 had significantly lower expression levels in the scallops from the HD group than that of the scallops from the ND group at 6th, 24th, and 36th. The present results indicated that high stocking density not only made adverse impacts on growth and survival but also may induce immunosuppression in the noble scallop. Therefore, appropriate low stocking density may be worth considering to adopt in scallop aquaculture.
    Matched MeSH terms: DNA, Complementary/genetics
  2. Futra D, Tan LL, Lee SY, Lertanantawong B, Heng LY
    Biosensors (Basel), 2023 Jun 04;13(6).
    PMID: 37366981 DOI: 10.3390/bios13060616
    In view of the presence of pathogenic Vibrio cholerae (V. cholerae) bacteria in environmental waters, including drinking water, which may pose a potential health risk to humans, an ultrasensitive electrochemical DNA biosensor for rapid detection of V. cholerae DNA in the environmental sample was developed. Silica nanospheres were functionalized with 3-aminopropyltriethoxysilane (APTS) for effective immobilization of the capture probe, and gold nanoparticles were used for acceleration of electron transfer to the electrode surface. The aminated capture probe was immobilized onto the Si-Au nanocomposite-modified carbon screen printed electrode (Si-Au-SPE) via an imine covalent bond with glutaraldehyde (GA), which served as the bifunctional cross-linking agent. The targeted DNA sequence of V. cholerae was monitored via a sandwich DNA hybridization strategy with a pair of DNA probes, which included the capture probe and reporter probe that flanked the complementary DNA (cDNA), and evaluated by differential pulse voltammetry (DPV) in the presence of an anthraquninone redox label. Under optimum sandwich hybridization conditions, the voltammetric genosensor could detect the targeted V. cholerae gene from 1.0 × 10-17-1.0 × 10-7 M cDNA with a limit of detection (LOD) of 1.25 × 10-18 M (i.e., 1.1513 × 10-13 µg/µL) and long-term stability of the DNA biosensor up to 55 days. The electrochemical DNA biosensor was capable of giving a reproducible DPV signal with a relative standard deviation (RSD) of <5.0% (n = 5). Satisfactory recoveries of V. cholerae cDNA concentration from different bacterial strains, river water, and cabbage samples were obtained between 96.5% and 101.6% with the proposed DNA sandwich biosensing procedure. The V. cholerae DNA concentrations determined by the sandwich-type electrochemical genosensor in the environmental samples were correlated to the number of bacterial colonies obtained from standard microbiological procedures (bacterial colony count reference method).
    Matched MeSH terms: DNA, Complementary
  3. Lim FH, Rasid OA, Idris AS, As'wad AWM, Vadamalai G, Parveez GKA, et al.
    Mol Biol Rep, 2023 Mar;50(3):2367-2379.
    PMID: 36580194 DOI: 10.1007/s11033-022-08131-4
    BACKGROUND: The basidiomycete fungus, Ganoderma boninense is the main contributor to oil palm Basal Stem Rot (BSR) in Malaysia and Indonesia. Lanosterol 14α-Demethylase (ERG11) is a key enzyme involved in biosynthesis of ergosterol, which is an important component in the fungal cell membrane. The Azole group fungicides are effective against pathogenic fungi including G. boninense by inhibiting the ERG11 activity. However, the work on molecular characterization of G. boninense ERG11 is still unavailable today.

    METHODS AND RESULTS: This study aimed to isolate and characterize the full-length cDNA encoding ERG11 from G. boninense. The G. boninense ERG11 gene expression during interaction with oil palm was also studied. A full-length 1860 bp cDNA encoding ERG11 was successfully isolated from G. boninense. The G. boninense ERG11 shared 91% similarity to ERG11 from other basidiomycete fungi. The protein structure homology modeling of GbERG11 was analyzed using the SWISS-MODEL workspace. Southern blot and genome data analyses showed that there is only a single copy of ERG11 gene in the G. boninense genome. Based on the in-vitro inoculation study, the ERG11 gene expression in G. boninense has shown almost 2-fold upregulation with the presence of oil palm.

    CONCLUSION: This study provided molecular information and characterization study on the G. boninense ERG11 and this knowledge could be used to design effective control measures to tackle the BSR disease of oil palm.

    Matched MeSH terms: DNA, Complementary/genetics; DNA, Complementary/metabolism
  4. Zangeneh FZ, Bagheri M, Shoushtari MS, Naghizadeh MM
    J Recept Signal Transduct Res, 2021 Jun;41(3):263-272.
    PMID: 32878560 DOI: 10.1080/10799893.2020.1806320
    OBJECTIVE: Alpha and beta-adrenoceptors (ADR-α1, 2, and β2) play a regulatory role in the folliculogenesis and steroidogenesis in the ovarian follicles. This study aimed to measure these adrenoceptors mRNA and its protein levels in cumulus cells (CCs) culture of poor ovarian reserve (POR) and polycystic ovarian syndrome (PCOS) infertile women (IVF candidate) and the effect of clonidine treatment at CCs culture.

    METHODS: This case/control study was conducted in 2017 includes a control (donation oocytes) and two studies (PCO and POR) groups. The ovulation induction drugs were prescribed in all groups. After the oocyte puncture, the follicular fluid was collected and CCs were isolated were cultured. RNA was extracted and cDNA was synthesized and designed the primer for the ADR-α1, 2 and ADR-β2 gene expression. The protein levels were investigated by Western Blot.

    RESULTS: The results showed a high level of three adrenergic expressions in PCO women compared to the control group (p-value

    Matched MeSH terms: DNA, Complementary
  5. Murulitharan K, Yusoff K, Omar AR, Peeters BPH, Molouki A
    Curr Microbiol, 2021 Apr;78(4):1458-1465.
    PMID: 33660046 DOI: 10.1007/s00284-021-02421-z
    Rescue of (-)ssRNA viruses involves the sequential assembly and cloning of the full-length cDNA, which is often a challenging and time-consuming process. The objective of this study was to develop a novel method to rapidly clone the full-length cDNA of a very virulent NDV by only one assembly step. A completely synthetic 15 kb cDNA of a Malaysian genotype VIII NDV known as strain AF2240-I with additional flanking BsmBI sites was synthesised. However, to completely follow the rule-of-six, the additional G residues that are traditionally added after the T7 promoter transcription initiation site were not synthesised. The synthetic fragment was then cloned into low-copy number transcription vector pOLTV5-phiX between the T7 promoter and HDV Rz sequences through digestion with BbsI. The construct was co-transfected with helper plasmids into BSRT7/5 cells. A recombinant NDV called rAF was successfully rescued using transfection supernatant harvested as early as 16 h post-transfection. Virus from each passage showed an intracerebral pathogenicity index (ICPI) and a mean death time (MDT) similar to the parent strain AF2240-I. Moreover, rAF possessed an introduced mutation which was maintained for several passages. The entire rescue using the one-step assembly procedure was completed within a few weeks, which is extremely fast compared to previously used methods.
    Matched MeSH terms: DNA, Complementary/genetics
  6. Teo MYM, Ng JJC, Fong JY, Hwang JS, Song AA, Lim RLH, et al.
    PeerJ, 2021;9:e11063.
    PMID: 33959410 DOI: 10.7717/peerj.11063
    Background: KRAS oncogenes harboring codon G12 and G13 substitutions are considered gatekeeper mutations which drive oncogenesis in many cancers. To date, there are still no target-specific vaccines or drugs available against this genotype, thus reinforcing the need towards the development of targeted therapies such as immunotoxins.

    Methods: This study aims to develop a recombinant anti-mKRAS scFv-fused mutant Hydra actinoporin-like-toxin-1 (mHALT-1) immunotoxin that is capable of recognizing and eradicating codon-12 mutated k-ras antigen abnormal cells. One G13D peptide mimotope (164-D) and one G12V peptide mimotope (68-V) were designed to elicit antigen specific IgG titres against mutated K-ras antigens in immunised Balb/c mice. The RNA was extracted from splenocytes following ELISA confirmation on post-immunized mice sera and was reverse transcribed into cDNA. The scFv combinatorial library was constructed from cDNA repertoire of variable regions of heavy chain (VH) and light chain (VL) fusions connected by a flexible glycine-serine linker, using splicing by overlap extension PCR (SOE-PCR). Anti-mKRAS G12V and G13D scFvs were cloned in pCANTAB5E phagemid and superinfected with helper phage. After few rounds of bio-panning, a specific mKRAS G12V and G13D scFv antibody against G12V and G13D control mimotope was identified and confirmed using ELISA without any cross-reactivity with other mimotopes or controls. Subsequently, the anti-mKRAS scFv was fused to mHALT-1 using SOE-PCR and cloned in pET22b vector. Expressed recombinant immunotoxins were analyzed for their effects on cell proliferation by the MTT assay and targeted specificity by cell-based ELISA on KRAS-positive and KRAS-negative cancer cells.

    Results: The VH and VL genes from spleen RNA of mice immunized with 164-D and 68-V were amplified and randomly linked together, using SOE-PCR producing band sizes about 750 bp. Anti-mKRAS G12V and G13D scFvs were constructed in phagemid pCANTAB5E vectors with a library containing 3.4 × 106 and 2.9 × 106 individual clones, respectively. After three rounds of bio-panning, the anti-mKRAS G12V-34 scFv antibody against G12V control mimotope was identified and confirmed without any cross-reactivity with other controls using ELISA. Anti-mKRAS G12V-34 scFv fragment was fused to mHALT-1 toxin and cloned in pET22b vector with expression as inclusion bodies in E. coli BL21(DE3) (molecular weight of ~46.8 kDa). After successful solubilization and refolding, the mHALT-1-scFv immunotoxin exhibited cytotoxic effects on SW-480 colorectal cancer cells with IC50 of 25.39 μg/mL, with minimal cytotoxicity effect on NHDF cells.

    Discussion: These results suggested that the development of such immunotoxins is potentially useful as an immunotherapeutic application against KRAS-positive malignancies.

    Matched MeSH terms: DNA, Complementary
  7. Chan PL, Rose RJ, Abdul Murad AM, Zainal Z, Ong PW, Ooi LC, et al.
    Plant Cell Rep, 2020 Nov;39(11):1395-1413.
    PMID: 32734510 DOI: 10.1007/s00299-020-02571-7
    KEY MESSAGE: Transcript profiling during the early induction phase of oil palm tissue culture and RNAi studies in a model somatic embryogenesis system showed that EgENOD93 expression is essential for somatic embryogenesis. Micropropagation of oil palm through tissue culture is vital for the generation of superior and uniform elite planting materials. Studies were carried out to identify genes to distinguish between leaf explants with the potential to develop into embryogenic or non-embryogenic callus. Oil palm cDNA microarrays were co-hybridized with cDNA probes of reference tissue, separately with embryo forming (media T527) and non-embryo (media T694) forming leaf explants sampled at Day 7, Day 14 and Day 21. Analysis of the normalized datasets has identified 77, 115 and 127 significantly differentially expressed genes at Day 7, Day 14, and Day 21, respectively. An early nodulin 93 protein gene (ENOD93), was highly expressed at Day 7, Day 14, and Day 21 and in callus (media T527), as assessed by RT-qPCR. Validation of EgENOD93 across tissue culture lines of different genetic background and media composition showed the potential of this gene as an embryogenic marker. In situ RNA hybridization and functional characterization in Medicago truncatula provided additional evidence that ENOD93 is essential for somatic embryogenesis. This study supports the suitability of EgENOD93 as a marker to predict the potential of leaf explants to produce embryogenic callus. Crosstalk among stresses, auxin, and Nod-factor like signalling molecules likely induces the expression of EgENOD93 for embryogenic callus formation.
    Matched MeSH terms: DNA, Complementary
  8. Khairul-Anuar MA, Mazumdar P, Lau SE, Tan TT, Harikrishna JA
    3 Biotech, 2019 Oct;9(10):371.
    PMID: 31588395 DOI: 10.1007/s13205-019-1898-y
    Isolation of high-quality RNA from Dendrobium flowers is challenging because of the high levels of pigment, polysaccharides, and polyphenols. In the present study, an efficient CTAB method for RNA extraction from the pigment-rich flowers of Dendrobium was optimised. The optimised method yielded high quantities of RNA (10.1-12.9 µg/g). Spectrophotometric values of A260/280 in the range of 2.2 to 2.4 and A260/230 values of 2.0 suggested that the isolated RNA was free of polyphenols, polysaccharides, and protein contaminants. RNA integrity numbers determined by microfluidics were in the range of 7.9-8.9 indicative of intact RNA. In the improved method, the addition of 3 M NaCl and 3% PVP-10 in the extraction buffer, followed by an incubation period of 45 min at 65 °C, eliminated most of the polysaccharides, polyphenolic compounds, and denatured protein. Extraction with phenol:chloroform:isoamyl alcohol (125:24:1) effectively removed pigments from the aqueous phase, while the precipitation of RNA with lithium chloride minimised the co-precipitation of protein, DNA, and polysaccharide and resulted in the extraction of high quality of RNA. The suitability of the RNA for downstream processing was confirmed via RT-PCR amplification of Chalcone synthase gene from cDNA prepared from RNA isolated from different developmental stages of the flower of a Dendrobium hybrid. The present method will be highly useful for the isolation of RNA from pigment, polyphenol, and polysaccharide-rich plant tissues.
    Matched MeSH terms: DNA, Complementary
  9. Wang LM, Bu HY, Song FB, Zhu WB, Fu JJ, Dong ZJ
    PMID: 31310814 DOI: 10.1016/j.cbpa.2019.110529
    Red tilapia has become more popular for aquaculture production in China in recent years. However, the pigmentation differentiation that has resulted from the process of genetic breeding and skin color variation during the overwintering period are the main problems limiting the development of commercial culture. The genetic basis of skin color differentiation is still not understood. Solute carrier family 7 member 11 (slc7a11) has been identified to be a critical genetic regulator of pheomelanin synthesis in the skin of mammals. However, little information is available about its molecular characteristics, expression, location and function in skin color differentiation of fish. In this study, three complete cDNA sequences (2159 bp, 2190 bp and 2249 bp) of slc7a11 were successfully isolated from Malaysian red tilapia, encoding polypeptides of 492, 525 and 492 amino acids respectively. Quantitative real-time PCR demonstrated that slc7a11 mRNA expression is high in the ventral skin of PR (pink with scattered red spots) fish. Immunofluorescence analysis revealed that xCT (the protein encoded by slc7a11) was concentrated mainly in the cytoplasm and nucleus of both the dorsal and ventral skin cells of fish. After RNA interference of slc7a11, slc7a11 and cbs mRNA expressions decreased, but the tyr mRNA expression increased in the skin of fish. Results suggest that slc7a11 plays an important role in skin color formation and differentiation of red tilapia through the melanogenesis pathway.
    Matched MeSH terms: DNA, Complementary/genetics
  10. Hassanudin SA, Ponnampalam SN, Amini MN
    Oncol Lett, 2019 Feb;17(2):1675-1687.
    PMID: 30675227 DOI: 10.3892/ol.2018.9811
    The aim of the present study was to determine the genetic aberrations and novel transcripts, particularly the fusion transcripts, involved in the pathogenesis of low-grade and anaplastic oligodendroglioma. In the present study, tissue samples were obtained from patients with oligodendroglioma and additionally from archived tissue samples from the Brain Tumor Tissue Bank of the Brain Tumor Foundation of Canada. Six samples were obtained, three of which were low-grade oligodendroglioma and the other three anaplastic oligodendroglioma. DNA and RNA were extracted from each tissue sample. The resulting genomic DNA was then hybridized using the Agilent CytoSure 4×180K oligonucleotide array. Human reference DNA and samples were labeled using Cy3 cytidine 5'-triphosphate (CTP) and Cy5 CTP, respectively, while human Cot-1 DNA was used to reduce non-specific binding. Microarray-based comparative genomic hybridization data was then analyzed for genetic aberrations using the Agilent Cytosure Interpret software v3.4.2. The total RNA isolated from each sample was mixed with oligo dT magnetic beads to enrich for poly(A) mRNA. cDNAs were then synthesized and subjected to end-repair, poly(A) addition and connected using sequencing adapters using the Illumina TruSeq RNA Sample Preparation kit. The fragments were then purified and selected as templates for polymerase chain reaction amplification. The final library was constructed with fragments between 350-450 base pairs and sequenced using deep transcriptome sequencing on an Illumina HiSeq 2500 sequencer. The array comparative genomic hybridization revealed numerous amplifications and deletions on several chromosomes in all samples. However, the most interesting result was from the next generation sequencing, where one anaplastic oligodendroglioma sample was demonstrated to have five novel fusion genes that may potentially serve a critical role in tumor pathogenesis and progression.
    Matched MeSH terms: DNA, Complementary
  11. Takenaka S, Weschke W, Brückner B, Murata M, Endo TR
    Front Plant Sci, 2019;10:548.
    PMID: 31114602 DOI: 10.3389/fpls.2019.00548
    Three transgenic HOSUT lines of winter wheat, HOSUT12, HOSUT20, and HOSUT24, each harbor a single copy of the cDNA for the barley sucrose transporter gene HvSUT1 (SUT), which was fused to the barley endosperm-specific Hordein B1 promoter (HO; the HOSUT transgene). Previously, flow cytometry combined with PCR analysis demonstrated that the HOSUT transgene had been integrated into different wheat chromosomes: 7A, 5D, and 4A in HOSUT12, HOSUT20, and HOSUT24, respectively. In order to confirm the chromosomal location of the HOSUT transgene by a cytological approach using wheat aneuploid stocks, we crossed corresponding nullisomic-tetrasomic lines with the three HOSUT lines, namely nullisomic 7A-tetrasomic 7B with HOSUT12, nullisomic 5D-tetrasomic 5B with HOSUT20, and nullisomic 4A-tetrasomic 4B with HOSUT24. We examined the resulting chromosomal constitutions and the presence of the HOSUT transgene in the F2 progeny by means of chromosome banding and PCR. The chromosome banding patterns of the critical chromosomes in the original HOSUT lines showed no difference from those of the corresponding wild type chromosomes. The presence or absence of the critical chromosomes completely corresponded to the presence or absence of the HOSUT transgene in the F2 plants. Investigating telocentric chromosomes occurred in the F2 progeny, which were derived from the respective critical HOSUT chromosomes, we found that the HOSUT transgene was individually integrated on the long arms of chromosomes 4A, 7A, and 5D in the three HOSUT lines. Thus, in this study we verified the chromosomal locations of the transgene, which had previously been determined by flow cytometry, and moreover revealed the chromosome-arm locations of the HOSUT transgene in the HOSUT lines.
    Matched MeSH terms: DNA, Complementary
  12. Do TD, Thi Mai N, Duy Khoa TN, Abol-Munafi AB, Liew HJ, Kim CB, et al.
    Evol Bioinform Online, 2019;15:1176934319853580.
    PMID: 31236006 DOI: 10.1177/1176934319853580
    Temperature is an abiotic factor that affects various biological and physiological processes in fish. Temperature stress is known to increase the production of reactive oxygen species (ROS) that subsequently cause oxidative stress. Fish is known to evolve a system of antioxidant enzymes to reduce ROS toxicology. Glutathione peroxidase (GPx) family consists of key enzymes that protect fish from oxidative stress. In this study, full-length GPx1 cDNA (GenBank accession no. KY984468) of Tor tambroides was cloned and characterized by rapid amplification of cDNA ends (RACE). The 899-base-pair (bp) GPx1 cDNA includes a 576-bp open reading frame encoding for 191 amino acids, plus 28 bp of 5'-untranslated region (UTR) and 295 bp of 3'-UTR. Homology analysis revealed that GPx1 of T tambroides (Tor-GPx1) shared high similarity with GPx1 sequences of other fish species. The phylogenetic construction based on the amino acid sequence showed that Tor-GPx1 formed a clade with GPx1 sequences of various fish species. Real-time polymerase chain reaction (PCR) was performed to assess the levels of GPx1 gene expression in the liver and muscle of T tambroides under thermal stress. The results indicated that GPx1 gene expression was down-regulated under decreased temperature. However, there was no significant difference between GPx1 gene expression in fish exposed to high temperature and control. Our study provides the first data regarding GPx gene expression in T tambroides under thermal stress.
    Matched MeSH terms: DNA, Complementary
  13. Samad AFA, Sajad M, Jani J, Murad AMA, Ismail I
    Data Brief, 2018 Oct;20:555-557.
    PMID: 30197911 DOI: 10.1016/j.dib.2018.08.034
    Degradome sequencing referred as parallel analysis of RNA ends (PARE) by modifying 5'-rapid amplification of cDNA ends (RACE) with deep sequencing method. Deep sequencing of 5' products allow the determination of cleavage sites through the mapping of degradome fragments against small RNAs (miRNA or siRNA) on a large scale. Here, we carried out degradome sequencing in medicinal plant, Persicaria minor, to identify cleavage sites in small RNA libraries in control (mock-inoculated) and Fusarium oxysporum treated plants. The degradome library consisted of both control and treated samples which were pooled together during library preparation and named as D4. The D4 dataset have been deposited at GenBank under accession number SRX3921398, https://www.ncbi.nlm.nih.gov/sra/SRX3921398.
    Matched MeSH terms: DNA, Complementary
  14. Dong AN, Pan Y, Palanisamy UD, Yiap BC, Ahemad N, Ong CE
    Appl Biochem Biotechnol, 2018 Sep;186(1):132-144.
    PMID: 29524040 DOI: 10.1007/s12010-018-2728-0
    Genetic polymorphism of the cytochrome P450 (CYP) genes particularly affects CYP2D6 and CYP2C19 to a functionally relevant extent, and it is therefore crucial to elucidate the enzyme kinetic and molecular basis for altered catalytic activity of these allelic variants. This study explored the expression and function of the reported alleles CYP2D6*2, CYP2D6*10, CYP2D6*17, CYP2C19*23, CYP2C19*24, and CYP2C19*25 with respect to gene polymorphisms. Site-directed mutagenesis (SDM) was carried out to generate these six alleles. After DNA sequencing, the CYP2D6 and CYP2C19 wild types alongside with their alleles were each independently co-expressed with NADPH-CYP oxidoreductase (OxR) in Escherichia coli. The expressed proteins were analyzed using Western blotting, reduced carbon monoxide (CO) difference spectral scanning, and cytochrome c reductase assay. Results from Western blot revealed the presence of all CYP wild-type and allelic proteins in E. coli membrane fractions. The reduced CO difference spectra scanning presented the distinct peak of absorbance at 450 nm, and the cytochrome c reductase assay has confirmed that spectrally active OxR was expressed in each protein preparation. As a conclusion, the results obtained from this study have proven the CYP variants to be immunoreactive and spectrally active and are suitable for use to examine biotransformation and interaction mechanism of the enzymes.
    Matched MeSH terms: DNA, Complementary/genetics
  15. Arifin N, Yunus MH, Nolan TJ, Lok JB, Noordin R
    Am J Trop Med Hyg, 2018 04;98(4):1165-1170.
    PMID: 29436335 DOI: 10.4269/ajtmh.17-0697
    Strongyloides stercoralis is a human parasite that can cause a long-term infection. In immunosuppressed patients, strongyloidiasis may be fatal when there is overwhelming autoinfection resulting in the migration of large numbers of larvae through many organs. Definitive diagnosis is still a challenge, and a combination of symptoms, microscopic identification, and serology test results are often used to arrive at a clinical decision. However, intermittent larval excretion, low parasite burden, and occult infections are challenges with parasitological diagnosis of infection with S. stercoralis. Meanwhile, serologic tests using immunoglobulin G and parasite antigen extract have problems of cross-reactivity with other helminthic infections. Recombinant antigen-based serodiagnosis is a good alternative to overcome the laboratory diagnostic issues. Herein, we report on the isolation of cDNA clone encoding an antigen of potential diagnostic value identified from immunoscreening of a S. stercoralis cDNA library. The translated protein had highest similarity to Strongyloides ratti immunoglobulin-binding protein 1. The recombinant antigen produced, rSs1a, was assessed using western blot and enzyme-linked immunosorbent assay. The latter showed 96% diagnostic sensitivity and 93% specificity; thus, rSs1a has good potential for use in serodiagnosis of human strongyloidiasis.
    Matched MeSH terms: DNA, Complementary
  16. Izwan Bharudin, Radziah Zolkefli, Shazilah Kamaruddin, Farah Diba Abu Bakar, Abdul Munir Abdul Murad, Mohd Faizal Abu Bakar, et al.
    Sains Malaysiana, 2018;47:1675-1684.
    Mekanisme pengambilan dan penghasilan asid amino bagi mikroorganisma psikrofil yang bermandiri dan berpoliferasi
    pada persekitaran sejuk melampau masih belum difahami sepenuhnya. Objektif kajian ini ialah untuk mengenal pasti
    gen yang terlibat dalam penjanaan asid amino bagi yis psikrofil, Glaciozyma antarctica serta menentukan pengekspresan
    gen tersebut semasa kehadiran dan kekurangan asid amino dalam medium pertumbuhan. Pengenalpastian gen telah
    dilakukan melalui penjanaan penanda jujukan terekspres (ESTs) daripada dua perpustakaan cDNA yang dibina daripada
    sel yang dikultur dalam medium pertumbuhan kompleks dan medium pertumbuhan minimum tanpa asid amino. Sebanyak
    3552 klon cDNA daripada setiap perpustakaan dipilih secara rawak untuk dijujuk menghasilkan 1492 transkrip unik
    (medium kompleks) dan 1928 transkrip unik (medium minimum). Analisis pemadanan telah mengenl pasti gen mengekod
    protein yang terlibat di dalam pengambilan asid amino bebas, biosintesis asid amino serta gen yang terlibat dengan
    kitar semula asid amino berdasarkan tapak jalan yang digunakan oleh yis model, Saccharomyces cerevisiae. Analisis
    pengekspresan gen menggunakan kaedah RT-qPCR menunjukkan pengekspresan gen mengekod protein yang terlibat di
    dalam pengambilan asid amino bebas iaitu permease adalah tinggi pada medium kompleks manakala pengekspresan
    kebanyakan gen mengekod protein yang terlibat dalam kitar semula dan biosintesis asid amino adalah tinggi di dalam
    medium minimum. Kesimpulannya, gen yang terlibat dalam penjanaan dan pengambilan asid amino bagi mikroorganisma
    psikrofil adalah terpulihara seperti mikroorganisma mesofil dan pengekspresan gen-gen ini adalah diaruh oleh kehadiran
    atau ketiadaan asid amino bebas pada persekitaran.
    Matched MeSH terms: DNA, Complementary
  17. Noor Syamila Othman, Wan Ishlah Leman, Kahairi Abdullah, Siti Aesah @ Naznin Muhammad, Mohd Arifin Kaderi
    MyJurnal
    The aim of this study was to investigate the level of miR-744 expression in nasopharyngeal carcinoma (NPC) tumour tissue and to provide initial clue on its potential as biomarkers for early detection of NPC in a preliminary analysis. Total miRNAs was extracted from NPC tissue as well as normal nasopharynx tissue taken from Hospital Tengku Ampuan Afzan (HTAA), Kuantan and converted into cDNA. The level of miR-744 expression in the cDNA was quantified using quantitative reverse transcription polymserase chain reaction (RT-qPCR) technique. The expression level of SNORD48 was measured simultaneously for each sample, which served as endogenous control. The difference in the expression of miR-744 in NPC and normal nasopharynx tissue were analysed using relative quantification, 2-ΔΔCT. In this preliminary analysis, this study found that miR-744 was upregulated in NPC as compared to normal nasopharynx tissue by 2.5 fold changes, respectively suggesting it may involve in progression of tumour. However, the finding is not significant and may not accurately reflect the overall population, due to small sample size involved in the study. Findings from the current study suggest the potential of miR-744 to serve as useful diagnostic and prognostic biomarker in NPC.
    Matched MeSH terms: DNA, Complementary
  18. Ude Chinedu Cletus, Azizi Miskon, Ruszymah Idrus
    Sains Malaysiana, 2018;47(11):2757-2767.
    Despite remarkable mechanical durability and strength, hyaline cartilage has very limited capacity for self-repair when injured and over time, may degenerate to osteoarthritis. We evaluated the most significant mile stones attained, in the pursuit of cure for cartilage defects and osteoarthritis. The basic treatment options include: Natural or physical therapy, medications, nutritional supplements, nutriceuticals and chondroprotective agents. Next are repairs and replacements, which include surgical procedures: Debridement/chondroplasty, microfracturing, mosaicplasty, periosteum transplantation, osteochondral autografting and allografting, high tibial osteotomy and total knee arthroplasty. But, current trend has shifted from repair, replacement, to most recently regeneration. Regenerations include the cell and gene therapies. While cell therapy involves the use of cells isolated from different tissues to cause regeneration of cartilage; gene therapy involves the selection of appropriate gene and optimal vector to incorporate cDNA. There has been much positivity reported with big animal models, which has led to several ongoing clinical trials. Translations of these findings hold high promises, though not without inherent regulatory hurdles. Considering the initial success rates, there are increasing hopes of realizing these treatments from bench to bedsides. Significant improvements in the treatment of cartilage degenerations and osteoarthritis have been made so far, but no gold standard delineated.
    Matched MeSH terms: DNA, Complementary
  19. Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R
    AMB Express, 2017 Dec;7(1):41.
    PMID: 28205102 DOI: 10.1186/s13568-017-0339-8
    An earlier electrochemical mechanism of DNA detection was adapted and specified for the detection of Vibrio parahaemolyticus in real samples. The reader, based on a screen printed carbon electrode, was modified with polylactide-stabilized gold nanoparticles and methylene blue was employed as the redox indicator. Detection was assessed using a microprocessor to measure current response under controlled potential. The fabricated sensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0 × 10(-8)-2.0 × 10(-13) M with a detection limit of 2.16 pM. The relative standard deviation for 6 replications of differential pulse voltammetry (DPV) measurement of 0.2 µM complementary DNA was 4.33%. Additionally, cross-reactivity studies against various other food-borne pathogens showed a reliably sensitive detection of the target pathogen. Successful identification of Vibrio parahaemolyticus (spiked and unspiked) in fresh cockles, combined with its simplicity and portability demonstrate the potential of the device as a practical screening tool.
    Matched MeSH terms: DNA, Complementary
  20. Loganathan K, Moriya S, Sivalingam M, Ng KW, Parhar IS
    J. Chem. Neuroanat., 2017 Dec;86:92-99.
    PMID: 29074372 DOI: 10.1016/j.jchemneu.2017.10.004
    kcnk10a has been predicted in zebrafish to be a member of the two-pore domain potassium ion (K+) channel-related K+ (TREK) channel family known as a thermoreceptor. Since reproduction is affected by temperature, Kcnk10a could be involved in the regulation of reproduction. However, expression of kcnk10a in the zebrafish brain and association with reproduction has not been identified. In this study, the full length sequence and localization of kcnk10a in the brain was investigated and gene expressions of the TREK channel family were examined to investigate association with reproduction. We initially identified the full length cDNA sequence of kcnk10a using Rapid Amplification of cDNA Ends and localization in the zebrafish brain using in situ hybridization. Furthermore, we examined the gene expression differences of kcnk2b, kcnk10a and kcnk10b mRNA between genders as well as developmental stages by real-time PCR. The deduced amino acid sequence of the identified kcnk10a mRNA contains highly conserved two pore domains and four transmembrane regions and was higher similarity to zebrafish Kcnk10b than zebrafish Kcnk2a and 2b. kcnk10a mRNA was widely distributed in the brain such as the preoptic area, hypothalamus and the midbrain. kcnk10a mRNA expression exhibited significant difference between mature male and female, and increase during puberty. Kcnk10a could be involved in the regulation of reproductive function.
    Matched MeSH terms: DNA, Complementary/biosynthesis; DNA, Complementary/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links