Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Terauchi R
    Jpn. J. Genet., 1994 Oct;69(5):567-76.
    PMID: 7999373
    Di-nucleotide microsatellites were isolated from a genomic library of a tropical tree species, Dryobalanops lanceolata, in Sarawak, for the purpose of using them as hypervariable genetic markers to study the pollen-mediated gene flow. Among 1600 recombinant clones, in total 20 clones gave positive signals when hybridized with oligonucleotides with the three different repeat motifs, GT, CA and CT. Estimations of abundance of (GT)n/(CA)n and (GA)n/(CT)n dinucleotide repeats in D. lanceolata genome revealed to be one in every 84 kb and 80 kb, respectively. Among six sequenced microsatellite loci, one was selected to synthesize PCR primers to amplify the microsatellite. PCR product size of the locus was variable among different individuals, which is attributed to the different number of di-nucleotide repeats. The same microsatellite genotype was detected in the trunk and canopy of a single large tree, indicating the utility of trunk tissue as the source of DNA for the population genetic study of tropical tree species, the canopy of which is usually difficult to approach.
    Matched MeSH terms: DNA, Plant/genetics; DNA, Plant/isolation & purification
  2. Harada K, Kinoshita A, Shukor NA, Tachida H, Yamazaki T
    Jpn. J. Genet., 1994 Dec;69(6):713-8.
    PMID: 7857675
    Three species of Shorea (S. leprosula, S. acuminata and S. cursitii) were collected from a natural forest reserve of Malaysia and analyzed for genetic variation using the technique of random amplification of polymorphic DNA (RAPD) by the polymerase chain reaction (PCR). The average number of nucleotide substitutions was estimated. The nucleotide diversities within species were very similar and larger than those found in Drosophila melanogaster. The nucleotide divergences between these species are about 1.5 times the nucleotide diversities within the species, indicating that these species diverged from a common ancestor relatively recently.
    Matched MeSH terms: DNA, Plant/genetics*
  3. Wagner B, Krebitz M, Buck D, Niggemann B, Yeang HY, Han KH, et al.
    J Allergy Clin Immunol, 1999 Nov;104(5):1084-92.
    PMID: 10550757
    BACKGROUND: Two natural rubber latex proteins, Hev b 1 and Hev b 3, have been described in spina bifida (SB)-associated latex allergy.

    OBJECTIVE: The aim of this study was to clone and express Hev b 3 and to obtain the immunologic active and soluble recombinant allergen for diagnosis of SB-associated latex allergy.

    METHODS: A complementary DNA (cDNA) coding for Hev b 3 was amplified from RNA of fresh latex collected from Malaysian rubber trees (Hevea brasiliensis). PCR primers were designed according to sequences of internal peptide fragments of natural (n) Hev b 3. The 5'-end sequence was obtained by specific amplification of cDNA ends. The recombinant (r) Hev b 3 was produced in Escherichia coli as a 6xHis tagged protein. Immunoblotting and inhibition assays were performed to characterize the recombinant allergen.

    RESULTS: An Hev b 3 cDNA clone of 922 bp encoding a protein of 204 amino acid residues corresponding to a molecular weight of 22.3 kd was obtained. In immunoblots 29/35, latex-allergic patients with SB revealed IgE binding to rHev b 3, as did 4 of 15 of the latex-sensitized group. The presence of all IgE epitopes on rHev b 3 was shown by its ability to abolish all IgE binding to nHev b 3. Hev b 3 is related to Hev b 1 by a sequence identity of 47%. Cross-reactivity between these 2 latex allergens was illustrated by the large extent of inhibition of IgE binding to nHev b 1 by rHev b 3.

    CONCLUSION: rHev b 3 constitutes a suitable in vitro reagent for the diagnosis of latex allergy in patients with SB. The determination of the full sequence of Hev b 3 and the production of the recombinant allergen will allow the epitope mapping and improve diagnostic reagents for latex allergy.

    Matched MeSH terms: DNA, Plant
  4. Chiang TY, Chiang YC, Chen YJ, Chou CH, Havanond S, Hong TN, et al.
    Mol Ecol, 2001 Nov;10(11):2697-710.
    PMID: 11883883
    Vivipary with precocious seedlings in mangrove plants was thought to be a hindrance to long-range dispersal. To examine the extent of seedling dispersal across oceans, we investigated the phylogeny and genetic structure among East Asiatic populations of Kandelia candel based on organelle DNAs. In total, three, 28 and seven haplotypes of the chloroplast DNA (cpDNA) atpB-rbcL spacer, cpDNA trnL-trnF spacer, and mitochondrial DNA (mtDNA) internal transcribed spacer (ITS) were identified, respectively, from 202 individuals. Three data sets suggested consistent phylogenies recovering two differentiated lineages corresponding to geographical regions, i.e. northern South-China-Sea + East-China-Sea region and southern South-China-Sea region (Sarawak). Phylogenetically, the Sarawak population was closely related to the Ranong population of western Peninsula Malaysia instead of other South-China-Sea populations, indicating its possible origin from the Indian Ocean Rim. No geographical subdivision was detected within the northern geographical region. An analysis of molecular variance (AMOVA) revealed low levels of genetic differentiation between and within mainland and island populations (phiCT = 0.015, phiSC = 0.037), indicating conspicuous long-distance seedling dispersal across oceans. Significant linkage disequilibrium excluded the possibility of recurrent homoplasious mutations as the major force causing phylogenetic discrepancy between mtDNA and the trnL-trnF spacer within the northern region. Instead, relative ages of alleles contributed to non-random chlorotype-mitotype associations and tree inconsistency. Widespread distribution and random associations (chi2 = 0.822, P = 0.189) of eight hypothetical ancestral cytotypes indicated the panmixis of populations of the northern geographical region as a whole. In contrast, rare and recently evolved alleles were restricted to marginal populations, revealing some preferential directional migration.
    Matched MeSH terms: DNA, Plant/genetics*
  5. Teo CH, Tan SH, Othman YR, Schwarzacher T
    J. Biochem. Mol. Biol. Biophys., 2002 Jun;6(3):193-201.
    PMID: 12186754
    Ty1-copia-like retrotransposons have been identified and investigated in several plant species. Here, the internal region of the reverse transcriptase (RT) gene of Ty1-copia-like retrotransposons was amplified by PCR from total genomic DNA of 10 varieties of banana. Two to four clones from each variety were sequenced. Extreme heterogeneity in the sequences of Ty1-copia-like retrotransposons from all the varieties was revealed following sequence analysis of the reverse transcriptase (RT) fragments. The size of the individual RT gene fragments varied between 213 and 309 bp. Southern blots of genomic DNA digested from Musa acuminata and other banana varieties probed with W8 clone from M. acuminata and A4 clone from Pisang Abu Nipah showed similar strong, multiple restriction fragments together with other faint hybridization band patterns with variable intensities indicating the presence of many copies of the Ty1-copia-like retrotransposons in the genomes. There was no correlation between retroelement sequence and the banana species (with A or B genomes) from which it arose, suggesting that the probes are not useful for tracking genomes through breeding populations.
    Matched MeSH terms: DNA, Plant
  6. Cannon CH, Manos PS
    Syst Biol, 2002 7 16;50(6):860-80.
    PMID: 12116637
    Fruit type in the genus Lithocarpus (Fagaceae) includes both classic oak acorns and novel modifications. Bornean taxa with modified fruits can be separated into two sections (Synaedrys and Lithocarpus) based on subtle shape differences. By following strict criteria for homology and representation, this variation in shape can be captured and the sections distinguished by using elliptic Fourier or eigenshape analysis. Phenograms of fruit shape, constructed by using restricted maximum likelihood techniques and these morphometric descriptors, were incorporated into combined and comparative analyses with molecular sequence data from the internal transcribed spacer (ITS) region of the nuclear rDNA, using branch-weighted matrix representation. The combined analysis strongly suggested independent derivation of the novel fruit type in the two sections from different acornlike ancestors, while the comparative analysis indicated frequent decoupling between the molecular and morphological changes as inferred at well-supported nodes. The acorn fruit type has undergone little modification between ingroup and outgroup, despite large molecular distance. Greater morphological than molecular change was inferred at critical transitions between acorn and novel fruit types, particularly for section Lithocarpus. The combination of these two different types of data improved our understanding of the macroevolution of fruit type in this difficult group, and the comparative analysis highlighted the significant incongruities in evolutionary pattern between the two datasets.
    Matched MeSH terms: DNA, Plant/genetics
  7. Takeuchi Y, Ichikawa S, Konuma A, Tomaru N, Niiyama K, Lee SL, et al.
    Heredity (Edinb), 2004 Apr;92(4):323-8.
    PMID: 14735142
    We investigated the fine-scale genetic structure of three tropical-rainforest trees, Hopea dryobalanoides, Shorea parvifolia and S. acuminata (Dipterocarpaceae), in Peninsular Malaysia, all of which cooccurred within a 6-ha plot in Pasoh Forest Reserve. A significant genetic structure was found in H. dryobalanoides, weaker (but still significant) genetic structure in S. parvifolia and nonsignificant structure in S. acuminata. Seeds of all three species are wind dispersed, and their flowers are thought to be insect pollinated. The most obvious difference among these species is their height: S. parvifolia and S. acuminata are canopy species, whereas H. dryobalanoides is a subcanopy species. Clear differences were also found among these species in their range of seed dispersal, which depends on the height of the release point; so taller trees disperse their seed more extensively. The estimates of seed dispersal area were consistent with the degree of genetic structure found in the three species. Therefore, tree height probably had a strong influence on the fine-scale genetic structure of the three species.
    Matched MeSH terms: DNA, Plant/chemistry*
  8. Kenta T, Isagi Y, Nakagawa M, Yamashita M, Nakashizuka T
    Mol Ecol, 2004 Nov;13(11):3575-84.
    PMID: 15488013
    We examined differences in pollen dispersal efficiency between 2 years in terms of both spatial dispersal range and genetic relatedness of pollen in a tropical emergent tree, Dipterocarpus tempehes. The species was pollinated by the giant honeybee (Apis dorsata) in a year of intensive community-level mass-flowering or general flowering (1996), but by several species of moths in a year of less-intensive general flowering (1998). We carried out paternity analysis based on six DNA microsatellite markers on a total of 277 mature trees forming four spatially distinct subpopulations in a 70 ha area, and 147 and 188 2-year-old seedlings originating from seeds produced in 1996 and 1998 (cohorts 96 and 98, respectively). Outcrossing rates (0.93 and 0.96 for cohorts 96 and 98, respectively) did not differ between years. Mean dispersal distances (222 and 192 m) were not significantly different between the 2 years but marginally more biased to long distance in 1996. The mean relatedness among cross-pollinated seedlings sharing the same mothers in cohort 96 was lower than that in cohort 98. This can be attributed to the two facts that the proportion of intersubpopulations pollen flow among cross-pollination events was marginally higher in cohort 96 (44%) than in cohort 98 (33%), and that mature trees within the same subpopulations are genetically more related to each other than those between different subpopulations. We conclude that D. tempehes maintained effective pollen dispersal in terms of outcrossing rate and pollen dispersal distance in spite of the large difference in foraging characteristics between two types of pollinators. In terms of pollen relatedness, however, a slight difference was suggested between years in the level of biparental inbreeding.
    Matched MeSH terms: DNA, Plant/analysis
  9. Song BK, Nadarajah K, Romanov MN, Ratnam W
    Cell Mol Biol Lett, 2005;10(3):425-37.
    PMID: 16217554
    The construction of BAC-contig physical maps is an important step towards a partial or ultimate genome sequence analysis. Here, we describe our initial efforts to apply an overgo approach to screen a BAC library of the Malaysian wild rice species, Oryza rufipogon. Overgo design is based on repetitive element masking and sequence uniqueness, and uses short probes (approximately 40 bp), making this method highly efficient and specific. Pairs of 24-bp oligos that contain an 8-bp overlap were developed from the publicly available genomic sequences of the cultivated rice, O. sativa, to generate 20 overgo probes for a 1-Mb region that encompasses a yield enhancement QTL yld1.1 in O. rufipogon. The advantages of a high similarity in melting temperature, hybridization kinetics and specific activities of overgos further enabled a pooling strategy for library screening by filter hybridization. Two pools of ten overgos each were hybridized to high-density filters representing the O. rufipogon genomic BAC library. These screening tests succeeded in providing 69 PCR-verified positive hits from a total of 23,040 BAC clones of the entire O. rufipogon library. A minimal tilling path of clones was generated to contribute to a fully covered BAC-contig map of the targeted 1-Mb region. The developed protocol for overgo design based on O. sativa sequences as a comparative genomic framework, and the pooled overgo hybridization screening technique are suitable means for high-resolution physical mapping and the identification of BAC candidates for sequencing.
    Matched MeSH terms: DNA, Plant*
  10. Song BK, Hein I, Druka A, Waugh R, Marshall D, Nadarajah K, et al.
    Funct Integr Genomics, 2009 Feb;9(1):97-108.
    PMID: 18633654 DOI: 10.1007/s10142-008-0091-x
    Common wild rice (Oryza rufipogon) plays an important role by contributing to modern rice breeding. In this paper, we report the sequence and analysis of a 172-kb genomic DNA region of wild rice around the RM5 locus, which is associated with the yield QTL yld1.1. Comparative sequence analysis between orthologous RM5 regions from Oryza sativa ssp. japonica, O. sativa ssp. indica and O. rufipogon revealed a high level of conserved synteny in the content, homology, structure, orientation, and physical distance of all 14 predicted genes. Twelve of the putative genes were supported by matches to proteins with known function, whereas two were predicted by homology to rice and other plant expressed sequence tags or complementary DNAs. The remarkably high level of conservation found in coding, intronic and intergenic regions may indicate high evolutionary selection on the RM5 region. Although our analysis has not defined which gene(s) determine the yld1.1 phenotype, allelic variation and the insertion of transposable elements, among other nucleotide changes, represent potential variation responsible for the yield QTL. However, as suggested previously, two putative receptor-like protein kinase genes remain the key suspects for yld1.1.
    Matched MeSH terms: DNA, Plant/genetics*
  11. Ng CH, Lee SL, Ng KK, Muhammad N, Ratnam W
    J Genet, 2009 Apr;88(1):25-31.
    PMID: 19417541
    The mating system and seed variation of Acacia hybrid (A. mangium x A. auriculiformis) were studied using allozymes and random amplified polymorphic DNA (RAPD) markers, respectively. Multi-locus outcrossing rate estimations indicated that the hybrid was predominantly outcrossed (mean+/- s.e. t(m) = 0.86+/-0.01). Seed variation was investigated using 35 polymorphic RAPD fragments. An analysis of molecular variance (AMOVA) revealed the highest genetic variation among seeds within a pod (66%-70%), followed by among pods within inflorescence (29%-37%), and the least variation among inflorescences within tree (1%). In addition, two to four RAPD profiles could be detected among seeds within pod. Therefore, the results suggest that a maximum of four seeds per pod could be sampled for the establishment of a mapping population for further studies.
    Matched MeSH terms: DNA, Plant/chemistry
  12. Singh R, Tan SG, Panandam JM, Rahman RA, Ooi LC, Low ET, et al.
    BMC Plant Biol, 2009;9:114.
    PMID: 19706196 DOI: 10.1186/1471-2229-9-114
    Marker Assisted Selection (MAS) is well suited to a perennial crop like oil palm, in which the economic products are not produced until several years after planting. The use of DNA markers for selection in such crops can greatly reduce the number of breeding cycles needed. With the use of DNA markers, informed decisions can be made at the nursery stage, regarding which individuals should be retained as breeding stock, which are satisfactory for agricultural production, and which should be culled. The trait associated with oil quality, measured in terms of its fatty acid composition, is an important agronomic trait that can eventually be tracked using molecular markers. This will speed up the production of new and improved oil palm planting materials.
    Matched MeSH terms: DNA, Plant/genetics
  13. Ting NC, Zaki NM, Rosli R, Low ET, Ithnin M, Cheah SC, et al.
    J Genet, 2010 Aug;89(2):135-45.
    PMID: 20861564
    This study reports on the detection of additional expressed sequence tags (EST) derived simple sequence repeat (SSR) markers for the oil palm. A large collection of 19243 Elaeis guineensis ESTs were assembled to give 10258 unique sequences, of which 629 ESTs were found to contain 722 SSRs with a variety of motifs. Dinucleotide repeats formed the largest group (45.6%) consisting of 66.9% AG/CT, 21.9% AT/AT, 10.9% AC/GT and 0.3% CG/CG motifs. This was followed by trinucleotide repeats, which is the second most abundant repeat types (34.5%) consisting of AAG/CTT (23.3%), AGG/CCT (13.7%), CCG/CGG (11.2%), AAT/ATT (10.8%), AGC/GCT (10.0%), ACT/AGT (8.8%), ACG/CGT (7.6%), ACC/GGT (7.2%), AAC/GTT (3.6%) and AGT/ACT (3.6%) motifs. Primer pairs were designed for 405 unique EST-SSRs and 15 of these were used to genotype 105 E. guineensis and 30 E. oleifera accessions. Fourteen SSRs were polymorphic in at least one germplasm revealing a total of 101 alleles. The high percentage (78.0%) of alleles found to be specific for either E. guineensis or E. oleifera has increased the power for discriminating the two species. The estimates of genetic differentiation detected by EST-SSRs were compared to those reported previously. The transferability across palm taxa to two Cocos nucifera and six exotic palms is also presented. The polymerase chain reaction (PCR) products of three primer-pairs detected in E. guineensis, E. oleifera, C. nucifera and Jessinia bataua were cloned and sequenced. Sequence alignments showed mutations within the SSR site and the flanking regions. Phenetic analysis based on the sequence data revealed that C. nucifera is closer to oil palm compared to J. bataua; consistent with the taxanomic classification.
    Matched MeSH terms: DNA, Plant/genetics*
  14. Abdullah N, Rafii Yusop M, Ithnin M, Saleh G, Latif MA
    C. R. Biol., 2011 Apr;334(4):290-9.
    PMID: 21513898 DOI: 10.1016/j.crvi.2011.01.004
    Studies were conducted to assess the genetic relationships between the parental palms (dura and pisifera) and performance of their progenies based on nine microsatellite markers and 29 quantitative traits. Correlation analyses between genetic distances and hybrids performance were estimated. The coefficients of correlation values of genetic distances with hybrid performance were non-significant, except for mean nut weight and leaf number. However, the correlation coefficient of genetic distances with these characters was low to be used as predicted value. These results indicated that genetic distances based on the microsatellite markers may not be useful for predicting hybrid performance. The genetic distance analysis using UPGMA clustering system generated 5 genetic clusters with coefficient of 1.26 based on quantitative traits of progenies. The genotypes, DP16, DP14, DP4, DP13, DP12, DP15, DP8, DP1 and DP2 belonging to distant clusters and greater genetic distances could be selected for further breeding programs.
    Matched MeSH terms: DNA, Plant/genetics; DNA, Plant/isolation & purification
  15. Ang CC, Lee SL, Lee CT, Tnah LH, Zakaria RM, Ng CC
    Am J Bot, 2011 May;98(5):e117-9.
    PMID: 21613176 DOI: 10.3732/ajb.1000494
    Microsatellite markers were developed for Johannesteijsmannia lanceolata to assess the genetic diversity and mating system of this alarmingly endangered species.
    Matched MeSH terms: DNA, Plant/genetics*
  16. Tnah LH, Lee CT, Lee SL, Ng KK, Ng CH, Hwang SS
    Am J Bot, 2011 May;98(5):e130-2.
    PMID: 21613180 DOI: 10.3732/ajb.1000469
    Microsatellite markers of an important medicinal plant, Eurycoma longifolia (Simaroubaceae), were developed for DNA profiling and genetic diversity studies.
    Matched MeSH terms: DNA, Plant/genetics*
  17. Masura SS, Parveez GK, Ti LL
    Plant Physiol Biochem, 2011 Jul;49(7):701-8.
    PMID: 21549610 DOI: 10.1016/j.plaphy.2011.04.003
    We have characterized an oil palm (Elaeis guineensis Jacq.) constitutive promoter that is derived from a translationally control tumor protein (TCTP) gene. The TCTP promoter was fused transcriptionally with the gusA reporter gene and transferred to monocot and dicot systems in order to study its regulatory role in a transient expression study. It was found that the 5' region of TCTP was capable of driving the gusA expression in all the oil palm tissues tested, including immature embryo, embryogenic callus, embryoid, young leaflet from mature palm, green leaf, mesocarp and stem. It could also be used in dicot systems as it was also capable of driving gusA expression in tobacco leaves. The results indicate that the TCTP promoter could be used for the production of recombinant proteins that require constitutive expression in the plant system.
    Matched MeSH terms: DNA, Plant/genetics; DNA, Plant/chemistry
  18. Mohd-Hairul AR, Sade AB, Yiap BC, Raha AR
    Genet. Mol. Res., 2011;10(4):2757-64.
    PMID: 22095601 DOI: 10.4238/2011.November.8.1
    DNA extraction was carried out on 32 medicinal plant samples available in Malaysia using the TriOmic(TM) extraction kit. Amounts of 0.1 g flowers or young leaves were ground with liquid nitrogen, lysed at 65°C in RY1(plus) buffer and followed by RNAse treatment. Then, RY2 buffer was added to the samples and mixed completely by vortexing before removal of cell debris by centrifugation. Supernatants were transferred to fresh microcentrifuge tubes and 0.1 volume RY3 buffer was added to each of the transferred supernatant. The mixtures were applied to spin columns followed by a centrifugation step to remove buffers and other residues. Washing step was carried out twice by applying 70% ethanol to the spin columns. Genomic DNA of the samples was recovered by applying 50 μL TE buffer to the membrane of each spin column, followed by a centrifugation step at room temperature. A modification of the TriOmic(TM) extraction procedure was carried out by adding chloroform:isoamyl alcohol (24:1) steps in the extraction procedure. The genomic DNA extracted from most of the 32 samples showed an increase of total yield when chloroform:isoamyl alcohol (24:1) steps were applied in the TriOmicTM extraction procedure. This preliminary study is very important for molecular studies of medicinal plants available in Malaysia since the DNA extraction can be completed in a shorter period of time (within 1 h) compared to manual extraction, which entails applying phenol, chloroform and ethanol precipitation, and requires 1-2 days to complete.
    Matched MeSH terms: DNA, Plant/isolation & purification*; DNA, Plant/chemistry
  19. Khatir NM, Banihashemian SM, Periasamy V, Majid WH, Rahman SA, Shahhosseini F
    Sensors (Basel), 2011;11(7):6719-27.
    PMID: 22163981 DOI: 10.3390/s110706719
    A new patterning method using Deoxyribose Nucleic Acid (DNA) strands capable of producing nanogaps of less than 100 nm is proposed and investigated in this work. DNA strands from Bosenbergia rotunda were used as the fundamental element in patterning DNA on thin films of aluminium (Al) metal without the need for any lithographic techniques. The DNA strands were applied in buffer solutions onto thin films of Al on silicon (Si) and the chemical interactions between the DNA strands and Al creates nanometer scale arbitrary patterning by direct transfer of the DNA strands onto the substrate. This simple and cost-effective method can be utilized in the fabrication of various components in electronic chips for microelectronics and Nano Electronic Mechanical System (NEMS) applications in general.
    Matched MeSH terms: DNA, Plant/chemistry*
  20. Bunawan H, Choong CY, Md-Zain BM, Baharum SN, Noor NM
    Int J Mol Sci, 2011;12(11):7626-34.
    PMID: 22174621 DOI: 10.3390/ijms12117626
    Plastid trnL-trnF and nuclear ribosomal ITS sequences were obtained from selected wild-type individuals of Polygonum minus Huds. in Peninsular Malaysia. The 380 bp trnL-trnF sequences of the Polygonum minus accessions were identical. Therefore, the trnL-trnF failed to distinguish between the Polygonum minus accessions. However, the divergence of ITS sequences (650 bp) among the Polygonum minus accessions was 1%, indicating that these accessions could be distinguished by the ITS sequences. A phylogenetic relationship based on the ITS sequences was inferred using neighbor-joining, maximum parsimony and Bayesian inference. All of the tree topologies indicated that Polygonum minus from Peninsular Malaysia is unique and different from the synonymous Persicaria minor (Huds.) Opiz and Polygonum kawagoeanum Makino.
    Matched MeSH terms: DNA, Plant/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links