Displaying publications 1 - 20 of 123 in total

Abstract:
Sort:
  1. Latif B, Kannan Kutty M, Muslim A, Hussaini J, Omar E, Heo CC, et al.
    Trop Biomed, 2015 Sep;32(3):444-52.
    PMID: 26695204 MyJurnal
    One thousand and forty-five tissue samples of skeletal muscles, tongue, heart, diaphragm and esophagus were collected from 209 animals (43 sheep, 89 goats and 77 cattle) from an abattoir in Selangor between February and October, 2013. Each sample was divided into three pieces with each piece measuring 2-3 mm3. Each piece was then squeezed between two glass slides and examined microscopically at x 10 magnification for the presence of sarcocystosis. Three positive samples from each animal species were then fixed in 10% formalin for histological processing. Seven positive samples collected from each animal species were preserved at -80°C or 90% ethanol for gene expression studies. Microsarcocysts were detected in 114 (54.5%) animals by light microscopy (LM). The infection rates in sheep, goat and cattle were 86, 61.8 and 28.6% respectively. The highest rate of infection was in the skeletal muscles of sheep (64.9%) and goats (63.6%) and in the heart of cattle (63.6%). The cysts were spindle to oval in shape and two stages were recognized, the peripheral metrocytes and centrally located banana-shaped bradyzoites. 18S rRNA gene expression studies confirmed the isolates from the sheep as S. ovicanis, goats as S. capracanis and cattle as S. bovicanis. This, to the best of our knowledge, is the first molecular identification of an isolate of S. ovicanis and S. capracanis in Malaysia. Further studies with electron microscopy (EM) are required in the future to compare the features of different types of Sarcocysts spp.
    Matched MeSH terms: DNA, Ribosomal/genetics
  2. Asma I, Sim BL, Brent RD, Johari S, Yvonne Lim AL
    Trop Biomed, 2015 Jun;32(2):310-22.
    PMID: 26691260 MyJurnal
    Cryptosporidiosis is a particular concern in immunocompromised individuals where symptoms may be severe. The aim of this study was to examine the epidemiological and molecular characteristics of Cryptosporidium infections in HIV/AIDS patients in Malaysia in order to identify risk factors and facilitate control measures. A modified Ziehl-Neelsen acid fast staining method was used to test for the presence of Cryptosporidium oocysts in the stools of 346 HIV/AIDS patients in Malaysia. Standard coproscopical methods were used to identify infections with other protozoan or helminths parasites. To identify the species of Cryptosporidium, DNA was extracted and nested-PCR was used to amplify a portion of the SSU rRNA gene. A total of 43 (12.4%) HIV-infected patients were found to be infected with Cryptosporidium spp. Of the 43 Cryptosporidium-positive HIV patients, 10 (23.3%) also harboured other protozoa, and 15 (34.9%) had both protozoa and helminths. The highest rates of cryptosporidiosis were found in adult males of Malay background, intravenous drug users, and those with low CD4 T cell counts (i.e., < 200 cells/mm3). Most were asymptomatic and had concurrent opportunistic infections mainly with Mycobacterium tuberculosis. DNA sequence analysis of 32 Cryptosporidium isolates identified C. parvum (84.3%), C. hominis (6.3%), C. meleagridis (6.3%), and C. felis (3.1%). The results of the present study revealed a high prevalence of Cryptosporidium infection in hospitalized HIV/AIDS patients. The results also confirmed the potential significance of zoonotic transmission of C. parvum in HIV infected patients, as it was the predominant species found in this study. However, these patients were found to be susceptible to a wide range of Cryptosporidium species. Epidemiological and molecular characterization of Cryptosporidium isolates provides clinicians and researchers with further information regarding the origin of the infection, and may enhance treatment and control strategies.
    Matched MeSH terms: DNA, Ribosomal/genetics
  3. Khaw YS, Khong NMH, Shaharuddin NA, Yusoff FM
    J Microbiol Methods, 2020 05;172:105890.
    PMID: 32179080 DOI: 10.1016/j.mimet.2020.105890
    Any forms of valorization of microorganisms would require accurate identity recognition to ensure repeatability, reproducibility and quality assurance. This study aimed to evaluate the effectiveness of different primers for identifying cultured eukaryotic microalgae using a simple 18S rDNA approach. A total of 34 isolated microalgae and one culture collection were utilized in the search for an effective molecular identification method for microalgae. Ammonium formate was applied to marine microalgae prior to DNA extraction. The microalgal DNA was extracted using a commercial kit and subjected directly to PCR amplification using four different published 18S rDNA primers. The DNA sequences were analysed using Basic Local Alignment Search Tool (BLAST) and phylogenetic trees to determine the microalgae identity. The identity was further validated with conventional morphological taxonomic identification, and the relationship of microalgal morphology and genetic materials was also determined. The microalgal DNA was successfully amplified, including marine species without prior cleaning. In addition, the ss5 + ss3 primer pair was found to be an ideal primer set among the tested primers for identifying microalgae. Overall, molecular identification showed relative matching with morphological identification (82.86%). This study is important because it serves as a platform to develop a standardized eukaryotic microalgae identification method. In addition, this method could help to ease the eukaryotic microalgae identification process and enrich the current reference databases such as GenBank.
    Matched MeSH terms: DNA, Ribosomal/genetics*
  4. Voglmayr H, Yule CM
    Mycol. Res., 2006 Oct;110(Pt 10):1242-52.
    PMID: 17018253
    During an investigation of submerged leaves and twigs sampled from tropical peat swamp forests located in Peninsular Malaysia, an anamorphic fungus not attributable to a described genus was detected and isolated in pure culture. Conidial ontogeny was thoroughly studied and illustrated using both light and SEM, which revealed a unique conidial morphology. Analysis of partial nuLSU rDNA and ITS data revealed a phylogenetic position within the Xylariales (Ascomycota), but family affiliation remained unclear.
    Matched MeSH terms: DNA, Ribosomal/genetics
  5. Cao Z, Liang JB, Liao XD, Wright AD, Wu YB, Yu B
    Animal, 2016 Oct;10(10):1666-76.
    PMID: 27052363 DOI: 10.1017/S1751731116000525
    The primary objective of this study was to investigate the effect of dietary fiber on methanogenic diversity and community composition in the hindgut of indigenous Chinese Lantang gilts to explain the unexpected findings reported earlier that Lantang gilts fed low-fiber diet (LFD) produced more methane than those fed high-fiber diet (HFD). In total, 12 Lantang gilts (58.7±0.37 kg) were randomly divided into two dietary groups (six replicates (pigs) per group) and fed either LFD (NDF=201.46 g/kg) or HFD (NDF=329.70 g/kg). Wheat bran was the main source of fiber for the LFD, whereas ground rice hull (mixture of rice hull and rice bran) was used for the HFD. Results showed that the methanogens in the hindgut of Lantang gilts belonged to four known species (Methanobrevibacter ruminantium, Methanobrevibacter wolinii, Methanosphaera stadtmanae and Methanobrevibacter smithii), with about 89% of the methanogens belonging to the genus Methanobrevibacter. The 16S ribosomal RNA (rRNA) gene copies of Methanobrevibacter were more than three times higher (P0.05) was observed in 16S rRNA gene copies of Fibrobacter succinogenes between the two dietary groups, and 18S rRNA gene copies of anaerobic fungi in gilts fed LFD were lower than (P<0.05) those fed HFD. To better explain the effect of different fiber source on the methanogen community, a follow-up in vitro fermentation using a factorial design comprised of two inocula (prepared from hindgut content of gilts fed two diets differing in their dietary fiber)×four substrates (LFD, HFD, wheat bran, ground rice hull) was conducted. Results of the in vitro fermentation confirmed that the predominant methanogens belonged to the genus of Methanobrevibacter, and about 23% methanogens was found to be distantly related (90%) to Thermogymnomonas acidicola. In vitro fermentation also seems to suggest that fiber source did change the methanogens community. Although the density of Methanobrevibacter species was positively correlated with CH4 production in both in vivo (P<0.01, r=0.737) and in vitro trials (P<0.05, r=0.854), which could partly explain the higher methane production from gilts fed LFD compared with those in the HFD group. Further investigation is needed to explain how the rice hull affected the methanogens and inhibited CH4 emission from gilts fed HFD.
    Matched MeSH terms: DNA, Ribosomal/genetics
  6. Lim PE, Tan J, Suana IW, Eamsobhana P, Yong HS
    PLoS One, 2012;7(5):e37276.
    PMID: 22615962 DOI: 10.1371/journal.pone.0037276
    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies.
    Matched MeSH terms: DNA, Ribosomal/genetics*
  7. Eamsobhana P, Lim PE, Yong HS
    J Helminthol, 2015 May;89(3):317-25.
    PMID: 24622302 DOI: 10.1017/S0022149X14000108
    The Angiostrongylus lungworms are of public health and veterinary concern in many countries. At the family level, the Angiostrongylus lungworms have been included in the family Angiostrongylidae or the family Metastrongylidae. The present study was undertaken to determine the usefulness and suitability of the nuclear 18S (small subunit, SSU) rDNA sequences for differentiating various taxa of the genus Angiostrongylus, as well as to determine the systematics and phylogenetic relationship of Angiostrongylus species and other metastrongyloid taxa. This study revealed six 18S (SSU) haplotypes in A. cantonensis, indicating considerable genetic diversity. The uncorrected pairwise 'p' distances among A. cantonensis ranged from 0 to 0.86%. The 18S (SSU) rDNA sequences unequivocally distinguished the five Angiostrongylus species, confirmed the close relationship of A. cantonensis and A. malaysiensis and that of A. costaricensis and A. dujardini, and were consistent with the family status of Angiostrongylidae and Metastrongylidae. In all cases, the congeneric metastrongyloid species clustered together. There was no supporting evidence to include the genus Skrjabingylus as a member of Metastrongylidae. The genera Aelurostrongylus and Didelphostrongylus were not recovered with Angiostrongylus, indicating polyphyly of the Angiostrongylidae. Of the currently recognized families of Metastrongyloidea, only Crenosomatidae appeared to be monophyletic. In view of the unsettled questions regarding the phylogenetic relationships of various taxa of the metastrongyloid worms, further analyses using more markers and more taxa are warranted.
    Matched MeSH terms: DNA, Ribosomal/genetics
  8. Ng BL, Omarzuki M, Lau GS, Pannell CM, Yeo TC
    Mol Biotechnol, 2014 Jul;56(7):671-9.
    PMID: 24623047 DOI: 10.1007/s12033-014-9746-0
    Members of the genus Aglaia have been reported to contain bioactive phytochemicals. The genus, belonging to the Meliaceae family, is represented by at least 120 known species of woody trees or shrubs in the tropical rain forest. As some of these species are very similar in their morphology, taxonomic identification can be difficult. A reliable and definitive molecular method which can identify Aglaia to the level of the species will hence be useful in comparing the content of specific bioactive compounds between the species of this genus. Here, we report the analysis of DNA sequences in the internal transcribed spacer (ITS) of the nuclear ribosomal DNA and the observation of a unique nucleotide signature in the ITS that can be used for the identification of Aglaia stellatopilosa. The nucleotide signature consists of nine bases over the length of the ITS sequence (654 bp). This uniqueness was validated in 37 samples identified as Aglaia stellatopilosa by an expert taxonomist, whereas the nucleotide signature was lacking in a selection of other Aglaia species and non-Aglaia genera. This finding suggests that molecular typing could be utilized in the identification of Aglaia stellatopilosa.
    Matched MeSH terms: DNA, Ribosomal/genetics*
  9. Divis PC, Shokoples SE, Singh B, Yanow SK
    Malar J, 2010 Nov 30;9:344.
    PMID: 21114872 DOI: 10.1186/1475-2875-9-344
    BACKGROUND: The misdiagnosis of Plasmodium knowlesi by microscopy has prompted a re-evaluation of the geographic distribution, prevalence and pathogenesis of this species using molecular diagnostic tools. In this report, a specific probe for P. knowlesi, that can be used in a previously described TaqMan real-time PCR assay for detection of Plasmodium spp., and Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale, was designed and validated against clinical samples.

    METHODS: A hydrolysis probe for a real-time PCR assay was designed to recognize a specific DNA sequence within the P. knowlesi small subunit ribosomal RNA gene. The sensitivity, linearity and specificity of the assay were determined using plasmids containing P. knowlesi DNA and genomic DNA of P. falciparum, P. knowlesi, P. malariae, P. ovale and P. vivax isolated from clinical samples. DNA samples of the simian malaria parasites Plasmodium cynomolgi and Plasmodium inui that can infect humans under experimental conditions were also examined together with human DNA samples.

    RESULTS: Analytical sensitivity of the P. knowlesi-specific assay was 10 copies/μL and quantitation was linear over a range of 10-106 copies. The sensitivity of the assay is equivalent to nested PCR and P. knowlesi DNA was detected from all 40 clinical P. knowlesi specimens, including one from a patient with a parasitaemia of three parasites/μL of blood. No cross-reactivity was observed with 67 Plasmodium DNA samples (31 P. falciparum, 23 P. vivax, six P. ovale, three P. malariae, one P. malariae/P. ovale, one P. falciparum/P. malariae, one P. inui and one P. cynomolgi) and four samples of human DNA.

    CONCLUSIONS: This test demonstrated excellent sensitivity and specificity, and adds P. knowlesi to the repertoire of Plasmodium targets for the clinical diagnosis of malaria by real-time PCR assays. Furthermore, quantitation of DNA copy number provides a useful advantage over other molecular assays to investigate the correlation between levels of infection and the spectrum of disease.

    Matched MeSH terms: DNA, Ribosomal/genetics
  10. Liu Y, Yu Q, Shu YL, Zhao JH, Fang JY, Wu HL
    J Helminthol, 2019 Jul 12;94:e59.
    PMID: 31296272 DOI: 10.1017/S0022149X19000518
    We identified and characterized a new cosmocercid nematode species, Cosmocercoides wuyiensis n. sp., through microscopic examination and sequencing of the partial small ribosomal RNA gene (18S rDNA), internal transcribed spacer (ITS) and mitochondrial cytochrome c oxidase subunit 1 (COI) genes. The new species was isolated from the intestine of the Asiatic frog Amolops wuyiensis Liu and Hu, 1975 captured from four localities of the Anhui province in south-east China. Among the 25 recorded species of the Cosmocercoides genus, the morphology of C. wuyiensis n. sp. is closest to that of C. kiliwai and C. malayensis, which were isolated from various Mexican frog and Malaysian lizard species, respectively. However, C. wuyiensis n. sp. displayed several distinguishing features, such as small size of the male body, two spicules of unequal lengths in the male, small gubernaculum, pre-, ad- and post-cloacal caudal rosette papillae in the ratio of 18-24:2:6 and simple papillae in the ratio of 14:multiple:4, circle and number of punctation in each rosette at 1:11-16, sharply conical tail-end and the presence of lateral alae and somatic papillae in both sexes. BLAST and the phylogenetic analyses of the 18S rDNA and ITS sequences indicated that C. wuyiensis n. sp. belonged to the genus Cosmocercoides, while that of the COI gene sequence of C. wuyiensis n. sp. showed 16.36% nucleotide divergence with C. pulcher and 47.99% nucleotide divergence with C. qingtianensis. The morphological and molecular characterization of C. wuyiensis n. sp. provides new taxonomic data for this genus.
    Matched MeSH terms: DNA, Ribosomal/genetics
  11. Schroers HJ, Geldenhuis MM, Wingfield MJ, Schoeman MH, Yen YF, Shen WC, et al.
    Mycologia, 2005 Mar-Apr;97(2):375-95.
    PMID: 16396346
    Psidium guajava wilt is known from South Africa, Malaysia and Taiwan. The fungus causing this disease, Myxosporium psidii, forms dry chains of conidia on surfaces of pseudoparenchymatous sporodochia, which develop in blisters on bark. Similar sporodochia are characteristic of Nalanthamala madreeya, the type species of Nalanthamala. Nalanthamala, therefore, is the appropriate anamorph genus for Myxosporium psidii, while Myxosporium is a nomen nudum (based on M. croceum). For M. psidii the combination Nalanthamala psidii is proposed. Nalanthamala psidii, the palm pathogen Gliocladium (Penicillium) vermoesenii, another undescribed anamorphic species from palm, two species of Rubrinectria and the persimmon pathogen Acremonium diospyri are monophyletic and belong to the Nectriaceae (Hypocreales) based on partial nuclear large subunit ribosomal DNA (LSU rDNA) analyses. Rubrinectria, therefore, is the teleomorph of Nalanthamala, in which the anamorphs are classified as N. vermoesenii, N. diospyri or Nalanthamala sp. Nalanthamala squamicola, the only other Nalanthamala species, has affinities with the Bionectriaceae and is excluded from this group. Rubrinectria/Nalanthamala species form dimorphic conidiophores and conidia in culture. Fusiform, cylindrical, or allantoid conidia arise in colorless liquid heads on acremonium-like conidiophores; ovoidal conidia with somewhat truncated ends arise in long, persistent, dry chains on penicillate conidiophores. No penicillate but irregularly branched conidiophores were observed in N. diospyri. Conidia of N. psidii that are held in chains are shorter than those of N. madreeya, of which no living material is available. Nalanthamala psidii and N. diospyri are pathogenic specifically to their hosts. They form pale yellow to pale orange or brownish orange colonies, respectively, and more or less white conidial masses. Most strains of Rubrinectria sp., Nalanthamala sp. and N. vermoesenii originate from palm hosts, form mostly greenish or olive-brown colonies and white-to-salmon conidial masses. They form a monophyletic clade to which Nalanthamala psidii and N. diospyri are related based on analyses of the internal transcribed spacer regions and 5.8S rDNA (ITS rDNA), LSU rDNA, and partial beta-tubulin gene. Few polymorphic sites in the ITS rDNA and beta-tubulin gene indicate that Nalanthamala psidii comprises two lineages, one of which has been detected only in South Africa.
    Matched MeSH terms: DNA, Ribosomal/genetics
  12. Björkroth KJ, Schillinger U, Geisen R, Weiss N, Hoste B, Holzapfel WH, et al.
    Int J Syst Evol Microbiol, 2002 Jan;52(Pt 1):141-148.
    PMID: 11837296 DOI: 10.1099/00207713-52-1-141
    A taxonomic study was conducted to clarify the relationships of two bacterial populations belonging to the genus Weissella. A total of 39 strains originating mainly from Malaysian foods (22 strains) and clinical samples from humans (9 strains) and animals (6 strains) were analysed using a polyphasic taxonomic approach. The methods included classical phenotyping, whole-cell protein electrophoresis, 16S and 23S rDNA RFLP (ribotyping), determination of 16S rDNA sequence homologies and DNA-DNA reassociation levels. Based on the results, the strains were considered to represent two different species, Weissella confusa and a novel Weissella species, for which the name Weissella cibaria sp. nov. is proposed. Weisella confusa possessed the highest 16S rDNA sequence similarity to Weisella cibaria, but the DNA-DNA reassociation experiment showed hybridization levels below 49% between the strains studied. The numerical analyses of Weisella confusa and Weisella cibaria strains did not reveal any specific clustering with respect to the origin of the strains. Based on whole-cell protein electrophoresis, and ClaI and HindIII ribotyping patterns, food and clinical isolates were randomly located in the two species-specific clusters obtained.
    Matched MeSH terms: DNA, Ribosomal/genetics
  13. Kong BH, Hanifah YA, Yusof MY, Thong KL
    Trop Biomed, 2011 Dec;28(3):563-8.
    PMID: 22433885 MyJurnal
    Acinetobacter baumannii, genomic species 3 and 13TU are being increasingly reported as the most important Acinetobacter species that cause infections in hospitalized patients. These Acinetobacter species are grouped in the Acinetobacter calcoaceticus- Acinetobacter baumannii (Acb) complex. Differentiation of the species in the Acb-complex is limited by phenotypic methods. Therefore, in this study, amplified ribosomal DNA restriction analysis (ARDRA) was applied to confirm the identity A. baumannii strains as well as to differentiate between the subspecies. One hundred and eighty-five strains from Intensive Care Unit, Universiti Malaya Medical Center (UMMC) were successfully identified as A. baumannii by ARDRA. Acinetobacter genomic species 13TU and 15TU were identified in 3 and 1 strains, respectively. ARDRA provides an accurate, rapid and definitive approach towards the identification of the species level in the genus Acinetobacter. This paper reports the first application ARDRA in genospecies identification of Acinetobacter in Malaysia.
    Matched MeSH terms: DNA, Ribosomal/genetics
  14. Suhaimi NSM, Goh SY, Ajam N, Othman RY, Chan KG, Thong KL
    World J Microbiol Biotechnol, 2017 Aug 21;33(9):168.
    PMID: 28828756 DOI: 10.1007/s11274-017-2336-0
    Banana is one of the most important fruits cultivated in Malaysia, and it provides many health benefits. However, bacterial wilt disease, which attacks bananas, inflicts major losses on the banana industry in Malaysia. To understand the complex interactions of the microbiota of bacterial wilt-diseased banana plants, we first determined the bacterial communities residing in the pseudostems of infected (symptomatic) and diseased-free (non-symptomatic) banana plants. We characterized the associated microorganisms using the targeted 16S rRNA metagenomics sequencing on the Illumina MiSeq platform. Taxonomic classifications revealed 17 and nine known bacterial phyla in the tissues of non-symptomatic and symptomatic plants, respectively. Cyanobacteria and Proteobacteria (accounted for more than 99% of the 16S rRNA gene fragments) were the two most abundant phyla in both plants. The five major genera found in both plant samples were Ralstonia, Sphingomonas, Methylobacterium, Flavobacterium, and Pseudomonas. Ralstonia was more abundant in symptomatic plant (59% out of the entire genera) as compared to those in the non-symptomatic plant (only 36%). Our data revealed that 102 bacterial genera were only assigned to the non-symptomatic plant. Overall, this study indicated that more diverse and abundant microbiota were associated with the non-symptomatic bacterial wilt-diseased banana plant as compared to the symptomatic plant. The higher diversity of endophytic microbiota in the non-symptomatic banana plant could be an indication of pathogen suppression which delayed or prevented the disease expression. This comparative study of the microbiota in the two plant conditions might provide caveats for potential biological control strategies.
    Matched MeSH terms: DNA, Ribosomal/genetics
  15. Ong CS, Ngeow YF, Yap SF, Tay ST
    J Med Microbiol, 2010 Nov;59(Pt 11):1311-1316.
    PMID: 20688949 DOI: 10.1099/jmm.0.021139-0
    In this study, PCR-RFLP analysis (PRA) targeting hsp65 and rpoB gene regions was evaluated for the identification of mycobacterial species isolated from Malaysian patients. Overall, the hsp65 PRA identified 92.2 % of 90 isolates compared to 85.6 % by the rpoB PRA. With 47 rapidly growing species, the hsp65 PRA identified fewer (89.4 %) species than the rpoB PRA (95.7 %), but with 23 slow-growing species the reverse was true (91.3 % identification by the hsp65 PRA but only 52.5 % by the rpoB PRA). There were 16 isolates with discordant PRA results, which were resolved by 16S rRNA and hsp65 gene sequence analysis. The findings in this study suggest that the hsp65 PRA is more useful than the rpoB PRA for the identification of Mycobacterium species, particularly with the slow-growing members of the genus. In addition, this study reports 5 and 12 novel restriction patterns for inclusion in the hsp65 and rpoB PRA algorithms, respectively.
    Matched MeSH terms: DNA, Ribosomal/genetics
  16. Lim SL, Tay ST
    Trop Biomed, 2011 Aug;28(2):438-43.
    PMID: 22041766
    The biodiversity and the killer activity of yeasts isolated from various types of fermented food in Malaysia were investigated in this study. Of 252 yeasts isolated from 48 fermented food samples in this study, 19 yeast species were identified based on sequence analysis of the ITS1-5.8S-ITS2 partial fragments of the yeasts. A total of 29 (11.5%) of the yeast isolates demonstrated killer activity to at least one Candida species tested in this study; including 22 isolates of Trichosporon asahii, 4 isolates of Pichia anomala, and one isolate each of Pichia norvegensis, Pichia fermentans and Issatchenkia orientalis, respectively. The presence of killer yeasts reflects antagonism that occurs during microbial interaction in the fermented food, whereby certain yeasts produce killer toxins and possibly other toxic substances in competition for limited nutrients and space. The anti-Candida activity demonstrated by killer yeasts in this study should be further explored for development of alternative therapy against candidiasis.
    Matched MeSH terms: DNA, Ribosomal/genetics
  17. Tan HW, Tay ST
    Trop Biomed, 2011 Apr;28(1):175-80.
    PMID: 21602784
    This study describes the killer phenotypes of tropical environmental yeasts and the inhibition effects of the culture filtrates on the biofilm of Candida albicans. A total of 26 (10.5%) of 258 yeast isolates obtained from an environmental sampling study demonstrated killer activity to Candida species. The killer yeasts were identified as species belonging to the genus Aureobasidium, Pseudozyma, Ustilago and Candida based on sequence analysis of the ITS1-5.8S-ITS2 region of the yeasts. Pseudozyma showed the broadest killing effects against sensitive strains of Candida. New species of Ustilago and Pseudozyma demonstrating killer phenotypes were identified in this study. Interestingly, more than 50% reduction in the metabolic activity of Candida albicans biofilm was noted after exposure to the culture filtrates of the nine killer yeasts. Purification and characterization of toxin and metabolites are essential for understanding the yeast killing effects.
    Matched MeSH terms: DNA, Ribosomal/genetics
  18. Latif B, Vellayan S, Heo CC, Kannan Kutty M, Omar E, Abdullah S, et al.
    Trop Biomed, 2013 Dec;30(4):699-705.
    PMID: 24522140 MyJurnal
    The prevalence of sarcocystosis in cattle and water buffaloes from peninsular Malaysia was investigated in abattoirs in Selangor state, February, 2011, to March, 2012. Fresh muscle samples were collected from the tongue, heart, oesophagus, diaphragm and skeletal muscles of 102 cattle and 18 water buffaloes. Each sample was initially screened by light microscopy and then fixed for further histopathological analysis. Out of 120 animals examined, 49 (40.8%) harboured the microscopic type of Sarcocystis spp. The positivity rate for cattle was 36.2% and for water buffaloes 66.7%. In cattle, the organs highly infected were the skeletal muscles and diaphragm (27% each), followed by tongue and esophagus (24.3% each), and the heart (8%). In water buffaloes, the heart was most often infected (66.7%), followed by the oesophagus (50%) and skeletal muscle (33.3%); no sarcocysts were detected in the tongue and diaphragm. The shape of the sarcocyst was fusiform to oval with a mean cyst size of 151.66 x 75.83 μm and wall thickness of 2.47 μm in cattle, and 114 x 50.81 μm cyst size and the wall thickness of 1.11 μm in water buffaloes, consistent with Sarcocystis cruzi and Sarcocystis levinei, respectively. Remaining tissue from cattle was subjected to parasite specific 18S rRNA gene PCR and Sarcocystis cruzi was confirmed, at least exemplarily. The peripheral metrocytes and the banana-shaped bradyzoites (15.23 x 2.2 μm in cattle and 11.49 x 2.45 μm in water buffalo hosts) were easily recognized. In conclusion, a high positivity rate was found in Malaysian meat-producing animals with possible implications for meat consumption and human health.
    Matched MeSH terms: DNA, Ribosomal/genetics
  19. Mizutani Y, Iehata S, Mori T, Oh R, Fukuzaki S, Tanaka R
    Microbiologyopen, 2019 10;8(10):e890.
    PMID: 31168933 DOI: 10.1002/mbo3.890
    Arcobacter have been frequently detected in and isolated from bivalves, but there is very little information on the genus Arcobacter in the abalone, an important fishery resource. This study aimed to investigate the genetic diversity and abundance of bacteria from the genus Arcobacter in the Japanese giant abalone, Haliotis gigantea, using molecular methods such as Arcobacter-specific clone libraries and fluorescence in situ hybridization (FISH). Furthermore, we attempted to isolate the Arcobacter species detected. Twelve genotypes of clones were obtained from Arcobacter-specific clone libraries. These sequences are not classified with any other known Arcobacter species including pathogenic Arcobacter spp., A. butzleri, A. skirrowii, and A. cryaerophilus, commonly isolated or detected from bivalves. From the FISH analysis, we observed that ARC94F-positive cells, presumed to be Arcobacter, accounted for 6.96 ± 0.72% of all EUB338-positive cells. In the culture method, three genotypes of Arcobacter were isolated from abalones. One genotype had a similarity of 99.2%-100.0% to the 16S rRNA gene of Arcobacter marinus, while the others showed only 93.3%-94.3% similarity to other Arcobacter species. These data indicate that abalones carry Arcobacter as a common bacterial genus which includes uncultured species.
    Matched MeSH terms: DNA, Ribosomal/genetics
  20. Goh YS, Tan IK
    Microbiol Res, 2012 Apr 20;167(4):211-9.
    PMID: 21945102 DOI: 10.1016/j.micres.2011.08.002
    Polyhydroxyalkanoate (PHA) is a family of biopolymers produced by some bacteria and is accumulated intracellularly as carbon and energy storage material. Fifteen PHA-producing bacterial strains were identified from bacteria isolated from Antarctic soils collected around Casey Station (66°17'S, 110°32'E) and Signy Island (60°45'S, 45°36'W). Screening for PHA production was carried out by incubating the isolates in PHA production medium supplemented with 0.5% (w/v) sodium octanoate or glucose. 16S rRNA gene sequence analysis revealed that the isolated PHA-producing strains were mainly Pseudomonas spp. and a few were Janthinobacterium spp. All the isolated Pseudomonas strains were able to produce medium-chain-length (mcl) PHA using fatty acids as carbon source, while some could also produce mcl-PHA by using glucose. The Janthinobacterium strains could only utilize glucose to produce polyhydroxybutyrate (PHB). A Pseudomonas isolate, UMAB-40, accumulated PHA up to 48% cell dry mass when utilizing fatty acids as carbon source. This high accumulation occurred at between 5°C and 20°C, then decreased with increasing temperatures. Highly unsaturated mcl-PHA was produced by UMAB-40 from glucose. Such characteristics may be associated with the ability of UMAB-40 to survive in the cold.
    Matched MeSH terms: DNA, Ribosomal/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links