Displaying publications 1 - 20 of 106 in total

Abstract:
Sort:
  1. Csorba G, Görföl T, Wiantoro S, Kingston T, Bates PJ, Huang JC
    Zootaxa, 2015 Jun 29;3980(2):267-78.
    PMID: 26249952 DOI: 10.11646/zootaxa.3980.2.7
    To date, three species of the genus Glischropus are recognized from the Indomalayan zoogeographic region-G. bucephalus from the Indochinese subregion, G. tylopus from the Sundaic subregion (Peninsular Thailand and Malaysia, Borneo, Sumatra, Moluccas) and G. javanus, restricted to Java. The investigation of the holotype and three topotype specimens of G. batjanus supported the view that the name was previously correctly regarded as the junior subjective synonym of G. tylopus. During review of material recently collected in southwestern Sumatra, Indonesia, one specimen of a yet undescribed species of Thick-thumbed bat was identified. G. aquilus n. sp. markedly differs from its congeners by its dark brown pelage, nearly black ear and tragus, and in skull proportions. The phylogenetic analysis based on cytb sequences also supports the specific distinctness of G. aquilus n. sp. Its discovery brings the count to 88 species of bats known from Sumatra.
    Matched MeSH terms: DNA/genetics
  2. Moeini H, Omar AR, Rahim RA, Yusoff K
    Virol J, 2011;8:119.
    PMID: 21401953 DOI: 10.1186/1743-422X-8-119
    Studies have shown that the VP22 gene of Marek's Disease Virus type-1 (MDV-1) has the property of movement between cells from the original cell of expression into the neighboring cells. The ability to facilitate the spreading of the linked proteins was used to improve the potency of the constructed DNA vaccines against chicken anemia virus (CAV).
    Matched MeSH terms: Vaccines, DNA/genetics
  3. Loke CF, Omar AR, Raha AR, Yusoff K
    Vet Immunol Immunopathol, 2005 Jul 15;106(3-4):259-67.
    PMID: 15963824
    Specific-pathogen free (SPF) chickens were inoculated with the plasmid constructs encoding the fusion (F) and haemagglutinin-neuraminidase (HN) glycoproteins of Newcastle disease virus (NDV), either individually or in combination and challenged with velogenic NDV. The antibody level against NDV was measured using commercial enzyme linked immunosorbent assay (ELISA). In the first immunization regimen, SPF chickens inoculated twice with NDV-F or NDV-HN constructs elicited antibody responses 1 week after the second injection. However, the levels of the antibody were low and did not confer significant protection from the lethal challenge. In addition, administration of the plasmid constructs with Freund's adjuvant did not improve the level of protection. In the second immunization regimen, chickens inoculated twice with the plasmid constructs emulsified with Freund's adjuvant induced significant antibody titers after the third injection. Three out of nine (33.3%) chickens vaccinated with pEGFP-HN, five of ten (50.0%) chickens vaccinated with pEGFP-F and nine of ten (90.0%) chickens vaccinated with combined pEGFP-F and pEGFP-HN were protected from the challenge. No significant differences in the levels of protection were observed when the chickens were vaccinated with linearized pEGFP-F. The results suggested that more than two injections with both F and HN encoding plasmid DNA were required to induce higher level of antibodies for protection against velogenic NDV in chickens.
    Matched MeSH terms: Vaccines, DNA/genetics
  4. Tan SH, Mohd Aris E, Kurahashi H, Mohamed Z
    Trop Biomed, 2010 Aug;27(2):287-93.
    PMID: 20962727
    Iranihindia martellata (Senior-White, 1924) is recorded from peninsular Malaysia for the first time. Male and female specimens in the recent collections of forensically important sarcophagid flies were examined and identified based on morphology and DNA sequencing analysis. Male genitalia offer unambiguous species identification characteristics in the traditional taxonomy of flesh flies but the female flies are very similar to one another in general morphology. Female of I. martellata was determined by DNA sequencing (COI and COII) and PCR-RFLP (COI) analysis. Identified females were carefully examined and compared with the morphologically similar species, Liopygia ruficornis (Fabricius, 1794). Female genitalia are re-described and illustrated in this paper.
    Matched MeSH terms: DNA/genetics*
  5. Caillaud A, de la Iglesia P, Campàs M, Elandaloussi L, Fernández M, Mohammad-Noor N, et al.
    Toxicon, 2010 Feb-Mar;55(2-3):633-7.
    PMID: 19631680 DOI: 10.1016/j.toxicon.2009.07.016
    Protein phosphatase inhibition assay (PPIA), Neuroblastoma cell-based assay (Neuro-2a CBA) and LC-MS/MS analysis revealed for the first time the production of okadaic acid (OA) by a Prorocentrum rhathymum strain. Low amounts of OA were detected by LC-MS/MS analysis. Inhibition of PP2A activity and a weak toxicity to the Neuro-2a CBA were also observed.
    Matched MeSH terms: DNA/genetics
  6. Rosli MK, Syed-Shabthar SM, Abdul-Patah P, Abdul-Samad Z, Abdul SN, Burhanuddin MN, et al.
    ScientificWorldJournal, 2014;2014:457350.
    PMID: 24715812 DOI: 10.1155/2014/457350
    Three species of otter can be found throughout Malay Peninsula: Aonyx cinereus, Lutra sumatrana, and Lutrogale perspicillata. In this study, we focused on the A. cinereus population that ranges from the southern and the east coast to the northern regions of Malay Peninsula up to southern Thailand to review the relationships between the populations based on the mitochondrial D-loop region. Forty-eight samples from six populations were recognized as Johor, Perak, Terengganu, Kelantan, Ranong, and Thale Noi. Among the 48 samples, 33 were identified as A. cinereus, seven as L. sumatrana, and eight as L. perspicillata. Phylogenetically, two subclades formed for A. cinereus. The first subclade grouped all Malay Peninsula samples except for samples from Kelantan, and the second subclade grouped Kelantan samples with Thai sample. Genetic distance analysis supported the close relationships between Thai and Kelantan samples compared to the samples from Terengganu and the other Malaysian states. A minimum-spanning network showed that Kelantan and Thailand formed a haplogroup distinct from the other populations. Our results show that Thai subspecies A. cinereus may have migrated to Kelantan from Thai mainland. We also suggest the classification of a new subspecies from Malay Peninsula, the small-clawed otter named A. cinereus kecilensis.
    Matched MeSH terms: DNA/genetics*
  7. Omar SZ, Qvist R, Khaing SL, Muniandy S, Bhalla S
    J Obstet Gynaecol Res, 2008 Apr;34(2):174-8.
    PMID: 18412778 DOI: 10.1111/j.1447-0756.2008.00755.x
    The aim of the present study was to determine the existence or prevalence of thrombophilic markers such as Factor V Leiden, prothrombin G20210A, protein S, protein C, activated protein C and anti-thrombin in pre-eclampsia and pregnancy-induced hypertensive patients.
    Matched MeSH terms: DNA/genetics
  8. Wee YC, Tan KL, Chow TW, Yap SF, Tan JA
    J Obstet Gynaecol Res, 2005 Dec;31(6):540-6.
    PMID: 16343256 DOI: 10.1111/j.1447-0756.2005.00333.x
    AIM: Interactions between different determinants of alpha-thalassemia raises considerable problems, particularly during pregnancies where antenatal diagnosis is necessary. This study aims to determine the different types of deletional alpha-thalassemia and Hemoglobin Constant Spring (HbCS), and their frequency in Malays, Chinese and Indians in Malaysia.
    METHODS: DNA from 650 pregnant women from the Antenatal Clinic of the University of Malaya Medical Center in Kuala Lumpur, Malaysia who showed mean cell volume < or =89 fL and/or mean cell hemoglobin < or =28 pg were analyzed for the double alpha-globin gene South-East Asian deletion (--SEA), the -alpha3.7 and -alpha4.2 single alpha-globin gene deletions and HbCS.
    RESULTS: One hundred and three (15.8%) of the pregnant women were confirmed as alpha-thalassemia carriers: 25 (3.8%) were alpha-thalassemia-1 carriers with the --SEA/alphaalpha genotype, 64 (9.8%) were heterozygous for the -alpha3.7 rightward deletion (-alpha3.7/alphaalpha), four (0.6%) were heterozygous for the -alpha4.2 leftward deletion (-alpha4.2/alphaalpha), nine (1.4%) were heterozygous for HbCS (alphaCSalpha/alphaalpha) and one (0.2%) was compound heterozygous with the -alpha3.7/alphaCSalpha genotype. The double alpha-globin gene --SEA deletion was significantly higher in the Chinese (15%) compared to the Malays (2.5%) and not detected in the Indians studied. The -alpha3.7 deletion was distributed equally in the three races. HbCS and -alpha4.2 was observed only in the Malays.
    CONCLUSION: The data obtained gives a better understanding of the interactions of the different alpha-thalassemia determinants in the different ethnic groups, thus enabling more rapid and specific confirmation of alpha-thalassemia in affected pregnancies where antenatal diagnosis is necessary.
    Study site: Antenatal clinic, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: DNA/genetics
  9. Noruddin NA, Saim AB, Chua KH, Idrus R
    Laryngoscope, 2007 Dec;117(12):2139-45.
    PMID: 17891046
    OBJECTIVE: To compare a co-culture system with a conventional dispase-dissociation method for obtaining functional human respiratory epithelial cells from the nasal turbinates for tissue engineering application.

    METHODS: Human respiratory epithelial cells were serially passaged using a co-culture system and a conventional dispase-dissociation technique. The growth kinetics and gene expression levels of the cultured respiratory epithelial cells were compared. Four genes were investigated, namely cytokeratin-18, a marker for ciliated and secretory epithelial cells; cytokeratin-14, a marker for basal epithelial cells; MKI67, a proliferation marker; and MUC5B, a marker for mucin secretion. Immunocytochemical analysis was performed using monoclonal antibodies against the high molecular-weight cytokeratin 34 beta E12, cytokeratin 18, and MUC5A to investigate the protein expression from cultured respiratory epithelial cells.

    RESULTS: Respiratory epithelial cells cultured using both methods maintained polygonal morphology throughout the passages. At passage 1, co-cultured respiratory epithelial showed a 2.6-times higher growth rate compared to conventional dispase dissociation technique, and 7.8 times higher at passage 2. Better basal gene expression was observed by co-cultured respiratory epithelial cells compared to dispase dissociated cells. Immunocytochemical analyses were positive for the respiratory epithelial cells cultured using both techniques.

    CONCLUSION: Co-culture system produced superior quality of cultured human respiratory epithelial cells from the nasal turbinates as compared to dispase dissociation technique.

    Matched MeSH terms: DNA/genetics
  10. Mahil SK, Twelves S, Farkas K, Setta-Kaffetzi N, Burden AD, Gach JE, et al.
    J Invest Dermatol, 2016 11;136(11):2251-2259.
    PMID: 27388993 DOI: 10.1016/j.jid.2016.06.618
    Prominent skin involvement is a defining characteristic of autoinflammatory disorders caused by abnormal IL-1 signaling. However, the pathways and cell types that drive cutaneous autoinflammatory features remain poorly understood. We sought to address this issue by investigating the pathogenesis of pustular psoriasis, a model of autoinflammatory disorders with predominant cutaneous manifestations. We specifically characterized the impact of mutations affecting AP1S3, a disease gene previously identified by our group and validated here in a newly ascertained patient resource. We first showed that AP1S3 expression is distinctively elevated in keratinocytes. Because AP1S3 encodes a protein implicated in autophagosome formation, we next investigated the effects of gene silencing on this pathway. We found that AP1S3 knockout disrupts keratinocyte autophagy, causing abnormal accumulation of p62, an adaptor protein mediating NF-κB activation. We showed that as a consequence, AP1S3-deficient cells up-regulate IL-1 signaling and overexpress IL-36α, a cytokine that is emerging as an important mediator of skin inflammation. These abnormal immune profiles were recapitulated by pharmacological inhibition of autophagy and verified in patient keratinocytes, where they were reversed by IL-36 blockade. These findings show that keratinocytes play a key role in skin autoinflammation and identify autophagy modulation of IL-36 signaling as a therapeutic target.
    Matched MeSH terms: DNA/genetics*
  11. Marimuthu C, Tang TH, Tominaga J, Tan SC, Gopinath SC
    Analyst, 2012 Mar 21;137(6):1307-15.
    PMID: 22314701 DOI: 10.1039/c2an15905h
    The discovery that synthetic short chain nucleic acids are capable of selective binding to biological targets has made them to be widely used as molecular recognition elements. These nucleic acids, called aptamers, are comprised of two types, DNA and RNA aptamers, where the DNA aptamer is preferred over the latter due to its stability, making it widely used in a number of applications. However, the success of the DNA selection process through Systematic Evolution of Ligands by Exponential Enrichment (SELEX) experiments is very much dependent on its most critical step, which is the conversion of the dsDNA to ssDNA. There is a plethora of methods available in generating ssDNA from the corresponding dsDNA. These include asymmetric PCR, biotin-streptavidin separation, lambda exonuclease digestion and size separation on denaturing-urea PAGE. Herein, different methods of ssDNA generation following the PCR amplification step in SELEX are reviewed.
    Matched MeSH terms: DNA/genetics
  12. George E, Wong HB, Jamaluddin M, Huisman TH
    Singapore Med J, 1993 Jun;34(3):241-4.
    PMID: 8266182
    Following complete DNA characterisation patients with Hb H disease were assigned into two groups: deletional (alpha +/alpha o) and non deletional (HbCS/alpha o). Earlier studies have indicated that the group with (HbCS/alpha o) has more severe clinical problems. The serum malonyldialdehyde (MDA) levels, a secondary product of lipid peroxidation were within the normal range, though significantly higher levels of MDA were seen in the non-deletional type of Hb H disease when compared with the deletional type. Markedly low vitamin E levels were also seen in the former group. There were no significant differences in clinical severity may be attributed to an interplay of the accelerated destruction of damaged mature red blood cells secondary to the oxidative denaturation of Hb H and inclusion precipitation; higher levels of Hb H and more inclusion precipitation were seen in the group with (HbCS/alpha o). Low levels of vitamin E in the (HbCS/alpha o) group being due to its consumption in the neutralisation of free radicals formed with the oxidation of globin chains.
    Matched MeSH terms: DNA/genetics
  13. Kho SL, Chua KH, George E, Tan JA
    Sensors (Basel), 2013;13(2):2506-14.
    PMID: 23429513 DOI: 10.3390/s130202506
    β-Thalassemia is a public health problem where 4.5% of Malaysians are β-thalassemia carriers. The genetic disorder is caused by defects in the β-globin gene complex which lead to reduced or complete absence of β-globin chain synthesis. Five TaqMan genotyping assays were designed and developed to detect the common β-thalassemia mutations in Malaysian Malays. The assays were evaluated with 219 "blinded" DNA samples and the results showed 100% sensitivity and specificity. The in-house designed TaqMan genotyping assays were found to be cost- and time-effective for characterization of β-thalassemia mutations in the Malaysian population. 
    Matched MeSH terms: DNA/genetics
  14. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Anbu P, Lakshmipriya T, et al.
    Sci Rep, 2019 11 19;9(1):17013.
    PMID: 31745155 DOI: 10.1038/s41598-019-53573-9
    Lung cancer is one of the most serious threats to human where 85% of lethal death caused by non-small cell lung cancer (NSCLC) induced by epidermal growth factor receptor (EGFR) mutation. The present research focuses in the development of efficient and effortless EGFR mutant detection strategy through high-performance and sensitive genosensor. The current amplified through 250 µm sized fingers between 100 µm aluminium electrodes indicates the voltammetry signal generated by means of the mutant DNA sequence hybridization. To enhance the DNA immobilization and hybridization, ∼25 nm sized aluminosilicate nanocomposite synthesized from the disposed joss fly ash was deposited on the gaps between aluminium electrodes. The probe, mutant (complementary), and wild (single-base pair mismatch) targets were designed precisely from the genomic sequences denote the detection of EGFR mutation. Fourier-transform Infrared Spectroscopy analysis was performed at every step of surface functionalization evidences the relevant chemical bonding of biomolecules on the genosensor as duplex DNA with peak response at 1150 cm-1 to 1650 cm-1. Genosensor depicts a sensitive EGFR mutation as it is able to detect apparently at 100 aM mutant against 1 µM DNA probe. The insignificant voltammetry signal generated with wild type strand emphasizes the specificity of genosensor in the detection of single base pair mismatch. The inefficiency of genosensor in detecting EGFR mutation in the absence of aluminosilicate nanocomposite implies the insensitivity of genosensing DNA hybridization and accentuates the significance of aluminosilicate. Based on the slope of the calibration curve, the attained sensitivity of aluminosilicate modified genosensor was 3.02E-4 A M-1. The detection limit of genosensor computed based on 3σ calculation, relative to the change of current proportional to the logarithm of mutant concentration is at 100 aM.
    Matched MeSH terms: DNA/genetics
  15. Periasamy V, Rizan N, Al-Ta'ii HM, Tan YS, Tajuddin HA, Iwamoto M
    Sci Rep, 2016 07 20;6:29879.
    PMID: 27435636 DOI: 10.1038/srep29879
    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.
    Matched MeSH terms: DNA/genetics
  16. Rizan N, Yew CY, Niknam MR, Krishnasamy J, Bhassu S, Hong GZ, et al.
    Sci Rep, 2018 01 17;8(1):896.
    PMID: 29343758 DOI: 10.1038/s41598-017-18825-6
    The exciting discovery of the semiconducting-like properties of deoxyribonucleic acid (DNA) and its potential applications in molecular genetics and diagnostics in recent times has resulted in a paradigm shift in biophysics research. Recent studies in our laboratory provide a platform towards detecting charge transfer mechanism and understanding the electronic properties of DNA based on the sequence-specific electronic response, which can be applied as an alternative to identify or detect DNA. In this study, we demonstrate a novel method for identification of DNA from different shrimp viruses and bacteria using electronic properties of DNA obtained from both negative and positive bias regions in current-voltage (I-V) profiles. Characteristic electronic properties were calculated and used for quantification and further understanding in the identification process. Aquaculture in shrimp industry is a fast-growing food sector throughout the world. However, shrimp culture in many Asian countries faced a huge economic loss due to disease outbreaks. Scientists have been using specific established methods for detecting shrimp infection, but those methods do have their significant drawbacks due to many inherent factors. As such, we believe that this simple, rapid, sensitive and cost-effective tool can be used for detection and identification of DNA from different shrimp viruses and bacteria.
    Matched MeSH terms: DNA/genetics*
  17. Lim L, Ab Majid AH
    Sci Rep, 2021 Apr 19;11(1):8465.
    PMID: 33875727 DOI: 10.1038/s41598-021-87946-w
    With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well-studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood-fed and starved tropical bed bugs were analysed and characterized by amplifying the v3-v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha-proteobacterium Wolbachia and gamma-proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood-fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood-fed bed bugs.
    Matched MeSH terms: DNA/genetics*
  18. De Ang JX, Yaman K, Kadir KA, Matusop A, Singh B
    Sci Rep, 2021 Apr 08;11(1):7739.
    PMID: 33833272 DOI: 10.1038/s41598-021-86107-3
    Plasmodium knowlesi is the main cause of malaria in Sarawak, where studies on vectors of P. knowlesi have been conducted in only two districts. Anopheles balabacensis and An. donaldi were incriminated as vectors in Lawas and An. latens in Kapit. We studied a third location in Sarawak, Betong, where of 2169 mosquitoes collected over 36 days using human-landing catches, 169 (7.8%) were Anopheles spp. PCR and phylogenetic analyses identified P. knowlesi and/or P. cynomolgi, P. fieldi, P. inui, P. coatneyi and possibly novel Plasmodium spp. in salivary glands of An. latens and An. introlatus from the Leucosphyrus Group and in An. collessi and An. roperi from the Umbrosus Group. Phylogenetic analyses of cytochrome oxidase subunit I sequences indicated three P. knowlesi-positive An. introlatus had been misidentified morphologically as An. latens, while An. collessi and An. roperi could not be delineated using the region sequenced. Almost all vectors from the Leucosphyrus Group were biting after 1800 h but those belonging to the Umbrosus Group were also biting between 0700 and 1100 h. Our study incriminated new vectors of knowlesi malaria in Sarawak and underscores the importance of including entomological studies during the daytime to obtain a comprehensive understanding of the transmission dynamics of malaria.
    Matched MeSH terms: DNA/genetics
  19. Zainal Abidin DH, Mohd Nor SA, Lavoué S, A Rahim M, Jamaludin NA, Mohammed Akib NA
    Sci Rep, 2021 Sep 07;11(1):17800.
    PMID: 34493747 DOI: 10.1038/s41598-021-97324-1
    The Merbok Estuary comprises one of the largest remaining mangrove forests in Peninsular Malaysia. Its value is significant as it provides important services to local and global communities. It also offers a unique opportunity to study the structure and functioning of mangrove ecosystems. However, its biodiversity is still partially inventoried, limiting its research value. A recent checklist based on morphological examination, reported 138 fish species residing, frequenting or subject to entering the Merbok Estuary. In this work, we reassessed the fish diversity of the Merbok Estuary by DNA barcoding 350 specimens assignable to 134 species initially identified based on morphology. Our results consistently revealed the presence of 139 Molecular Operational Taxonomic Units (MOTUs). 123 of them are congruent with morphology-based species delimitation (one species = one MOTU). In two cases, two morphological species share the same MOTU (two species = one MOTU), while we unveiled cryptic diversity (i.e. COI-based genetic variability > 2%) within seven other species (one species = two MOTUs), calling for further taxonomic investigations. This study provides a comprehensive core-list of fish taxa in Merbok Estuary, demonstrating the advantages of combining morphological and molecular evidence to describe diverse but still poorly studied tropical fish communities. It also delivers a large DNA reference collection for brackish fishes occurring in this region which will facilitate further biodiversity-oriented research studies and management activities.
    Matched MeSH terms: DNA/genetics
  20. Chan SK, Kuzuya A, Choong YS, Lim TS
    SLAS Discov, 2019 01;24(1):68-76.
    PMID: 30063871 DOI: 10.1177/2472555218791743
    The inherent ability of nucleic acids to recognize a complementary pair has gained wide popularity in DNA sensor applications. DNA molecules can be produced in bulk and easily incorporated with various nanomaterials for sensing applications. More complex designs and sophisticated DNA sensors have been reported over the years to allow DNA detection in a faster, cheaper, and more convenient manner. Here, we report a DNA sensor designed to function like a switch to turn "on" silver nanocluster (AgNC) generation in the presence of a specific DNA target. By defining the probe region sequence, we are able to tune the color of the AgNC generated in direct relation to the different targets. As a proof of concept, we used dengue RNA-dependent RNA polymerase conserved sequences from all four serotypes as targets. This method was able to distinguish each dengue serotype by generating the serotype-respective AgNCs. The DNA switch was also able to identify and amplify the correct target in a mixture of targets with good specificity. This strategy has a detection limit of between 1.5 and 2.0 µM depending on the sequence of AgNC. The DNA switch approach provides an attractive alternative for single-target or multiplex DNA detection.
    Matched MeSH terms: DNA/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links