Displaying publications 1 - 20 of 59 in total

Abstract:
Sort:
  1. Zakaria Z, Umi SH, Mokhtar SS, Mokhtar U, Zaiharina MZ, Aziz AT, et al.
    Genet. Mol. Res., 2013;12(1):302-11.
    PMID: 23408417 DOI: 10.4238/2013.February.4.4
    We developed an alternative method to extract DNA and RNA from clotted blood for genomic and molecular investigations. A combination of the TRIzol method and the QIAamp spin column were used to extract RNA from frozen clotted blood. Clotted blood was sonicated and then the QIAamp DNA Blood Mini Kit was used for DNA extraction. Extracted DNA and RNA were adequate for gene expression analysis and copy number variation (CNV) genotyping, respectively. The purity of the extracted RNA and DNA was in the range of 1.8-2.0, determined by absorbance ratios of A(260):A(280). Good DNA and RNA integrity were confirmed using gel electrophoresis and automated electrophoresis. The extracted DNA was suitable for qPCR and microarrays for CNV genotyping, while the extracted RNA was adequate for gene analysis using RT-qPCR.
    Matched MeSH terms: DNA Copy Number Variations
  2. Zain SM, Mohamed R, Cooper DN, Razali R, Rampal S, Mahadeva S, et al.
    PLoS One, 2014;9(4):e95604.
    PMID: 24743702 DOI: 10.1371/journal.pone.0095604
    Between 10 and 25% of individuals with non-alcoholic fatty liver disease (NAFLD) develop hepatic fibrosis leading to cirrhosis and hepatocellular carcinoma (HCC). To investigate the molecular basis of disease progression, we performed a genome-wide analysis of copy number variation (CNV) in a total of 49 patients with NAFLD [10 simple steatosis and 39 non-alcoholic steatohepatitis (NASH)] and 49 matched controls using high-density comparative genomic hybridization (CGH) microarrays. A total of 11 CNVs were found to be unique to individuals with simple steatosis, whilst 22 were common between simple steatosis and NASH, and 224 were unique to NASH. We postulated that these CNVs could be involved in the pathogenesis of NAFLD progression. After stringent filtering, we identified four rare and/or novel CNVs that may influence the pathogenesis of NASH. Two of these CNVs, located at 13q12.11 and 12q13.2 respectively, harbour the exportin 4 (XPO4) and phosphodiesterase 1B (PDE1B) genes which are already known to be involved in the etiology of liver cirrhosis and HCC. Cross-comparison of the genes located at these four CNV loci with genes already known to be associated with NAFLD yielded a set of genes associated with shared biological processes including cell death, the key process involved in 'second hit' hepatic injury. To our knowledge, this pilot study is the first to provide CNV information of potential relevance to the NAFLD spectrum. These data could prove invaluable in predicting patients at risk of developing NAFLD and more importantly, those who will subsequently progress to NASH.
    Matched MeSH terms: DNA Copy Number Variations/genetics*
  3. Zain SM, Mohamed Z, Pirmohamed M, Tan HL, Alshawsh MA, Mahadeva S, et al.
    Sci Rep, 2015 Aug 21;5:13306.
    PMID: 26293807 DOI: 10.1038/srep13306
    A recent genome-wide copy number (CNV) scan identified a 13q12.11 duplication in the exportin-4 (XPO4) gene to be associated with non-alcoholic steatohepatitis (NASH). We sought to confirm the finding in a larger cohort and to assess the serum XPO4 pattern in a broad spectrum of non-alcoholic fatty liver disease (NAFLD) cases. We analysed 249 NAFLD patients and 232 matched controls using TaqMan assay and serum XPO4 was measured. Copy number distribution was as follows: copy number neutral (NAFLD: 53.8%, controls: 68.6%), copy number losses (NAFLD: 13.3%, controls: 12.9%), copy number gains (NAFLD: 32.9%, controls: 18.5%). CNV gain was significantly associated with a greater risk of NAFLD (adjusted OR 2.22, 95% CI 1.42-3.46, P = 0.0004) and NASH (adjusted OR 2.33, 95% CI 1.47-3.68, P = 0.0003). Interestingly, subjects carrying extra copy number showed significantly higher serum ALT and triglyceride (P 
    Matched MeSH terms: DNA Copy Number Variations/genetics*
  4. Yong ZW, Zaini ZM, Kallarakkal TG, Karen-Ng LP, Rahman ZA, Ismail SM, et al.
    Sci Rep, 2014;4:6073.
    PMID: 25123227 DOI: 10.1038/srep06073
    The clinical relevance of DNA copy number alterations in chromosome 8 were investigated in oral cancers. The copy numbers of 30 selected genes in 33 OSCC patients were detected using the multiplex ligation-dependent probe amplification (MLPA) technique. Amplifications of the EIF3E gene were found in 27.3% of the patients, MYC in 18.2%, RECQL4 in 15.2% and MYBL1 in 12.1% of patients. The most frequent gene losses found were the GATA4 gene (24.2%), FGFR1 gene (24.2%), MSRA (21.2) and CSGALNACT1 (12.1%). The co-amplification of EIF3E and RECQL4 was found in 9% of patients and showed significant association with alcohol drinkers. There was a significant association between the amplification of EIF3E gene with non-betel quid chewers and the negative lymph node status. EIF3E amplifications did not show prognostic significance on survival. Our results suggest that EIF3E may have a role in the carcinogenesis of OSCC in non-betel quid chewers.
    Matched MeSH terms: DNA Copy Number Variations/genetics*
  5. Yong RY, Mustaffa SB, Wasan PS, Sheng L, Marshall CR, Scherer SW, et al.
    Hum Mutat, 2016 Jul;37(7):669-78.
    PMID: 27068483 DOI: 10.1002/humu.22996
    The human amylase gene locus at chromosome 1p21.1 is structurally complex. This region contains two pancreatic amylase genes, AMY2B, AMY2A, and a salivary gene AMY1. The AMY1 gene harbors extensive copy number variation (CNV), and recent studies have implicated this variation in adaptation to starch-rich diets and in association to obesity for European and Asian populations. In this study, we showed that by combining quantitative PCR and digital PCR, coupled with careful experimental design and calibration, we can improve the resolution of genotyping CNV with high copy numbers (CNs). In two East Asian populations of Chinese and Malay ethnicity studied, we observed a unique non-normal distribution of AMY1 diploid CN genotypes with even:odd CNs ratio of 4.5 (3.3-4.7), and an association between the common AMY2A CN = 2 genotype and odd CNs of AMY1, that could be explained by the underlying haplotypic structure. In two further case-control cohorts (n = 932 and 145, for Chinese and Malays, respectively), we did not observe the previously reported association between AMY1 and obesity or body mass index. Improved methods for accurately genotyping multiallelic CNV loci and understanding the haplotype complexity at the AMY1 locus are necessary for population genetics and association studies.
    Matched MeSH terms: DNA Copy Number Variations*
  6. Yan Q, Li X, Ma B, Zou Y, Wang Y, Liao X, et al.
    Front Microbiol, 2018;9:3129.
    PMID: 30619199 DOI: 10.3389/fmicb.2018.03129
    Antibiotic residues that enter the soil through swine manure could disturb the number, community structure and functions of microbiota which could also degrade antibiotics in soil. Five different concentrations of doxycycline (DOX) incorporated into swine manure were added to soil to explore the effects of DOX on microbiota in soil and degradation itself. The results showed that the soil microbiome evolved an adaptation to the soil containing DOX by generating resistance genes. Moreover, some of the organisms within the soil microbiome played crucial roles in the degradation of DOX. The average degradation half-life of DOX in non-sterile groups was 13.85 ± 0.45 days, which was significantly shorter than the 29.26 ± 0.98 days in the group with sterilized soil (P < 0.01), indicating that the soil microbiome promoted DOX degradation. DOX addition affected the number of tetracycline resistance genes, depending on the type of gene and the DOX concentration. Among these genes, tetA, tetM, tetW, and tetX had significantly higher copy numbers when the concentration of DOX was higher. In contrast, a lower concentration of DOX had an inhibitory effect on tetG. At the same time, the microbial compositions were affected by the initial concentration of DOX and the different experimental periods. The soil chemical indicators also affected the microbial diversity changes, mainly because some microorganisms could survive in adversity and become dominant bacterial groups, such as the genera Vagococcus and Enterococcus (which were associated with electrical conductivity) and Caldicoprobacter spp. (which were positively correlated with pH). Our study mainly revealed soil microbiota and DOX degradation answered differently under variable concentrations of DOX mixed with swine manure in soil.
    Matched MeSH terms: DNA Copy Number Variations
  7. Yam YY, Hoh BP, Othman NH, Hassan S, Yahya MM, Zakaria Z, et al.
    Genet. Mol. Res., 2013;12(1):319-27.
    PMID: 23420356 DOI: 10.4238/2013.February.7.1
    Colorectal cancer is one of the most common cancers in many countries, including Malaysia. The accumulation of genomic alterations is an important feature of colorectal carcinogenesis. A better understanding of the molecular events underlying the stages of colorectal carcinogenesis might be helpful in the detection and management of the disease. We used a commercially available single-nucleotide polymorphism genotyping array to detect both copy number abnormalities (CNAs) and copy-neutral loss of heterozygosity (LOH) in sporadic colorectal carcinomas. Matched tumor and normal tissues of 13 colorectal carcinomas (Dukes' stages A-D) were analyzed using a 250K single nucleotide polymorphism array. An additional assay was performed to determine the microsatellite instability status by using the National Cancer Institute-recommended BAT-26 panel. In general, copy number gain (92.3%) was most common, followed by copy number loss (53.8%) and copy-neutral LOH (46.2%). Frequent CNAs of gains and losses were observed on chromosomes 7p, 8, 13q, 17p, 18q, and 20q, and copy-neutral LOH was observed on chromosomes 2, 6, 12, 13q, 14q, 17, 20p, 19q, and 22q. Even though genomic alterations are associated with colorectal cancer progression, our results showed that DNA CNAs and copy-neutral LOH do not reflect disease progression in at least 50% tumors. Copy-neutral LOH was observed in both early and advanced tumors, which favors the involvement of these genomic alterations in the early stages of tumor development.
    Matched MeSH terms: DNA Copy Number Variations*
  8. Wen WX, Soo JS, Kwan PY, Hong E, Khang TF, Mariapun S, et al.
    Breast Cancer Res, 2016 05 27;18(1):56.
    PMID: 27233495 DOI: 10.1186/s13058-016-0717-1
    BACKGROUND: APOBEC3B is a cytosine deaminase implicated in immune response to viral infection, cancer predisposition and carcinogenesis. Germline APOBEC3B deletion is more common in East Asian women and confers a modest risk to breast cancer in both East Asian and Caucasian women. Analysis of tumour samples from women of European descent has shown that germline APOBEC3B deletion is associated with an increased propensity to develop somatic mutations and with an enrichment for immune response-related gene sets. However, this has not been examined in Asian tumour samples, where population differences in genetic and dietary factors may have an impact on the immune system.

    METHODS: In this study, we determined the prevalence of germline APOBEC3B deletion and its association with breast cancer risk in a cross-sectional hospital-based Asian multi-ethnic cohort of 1451 cases and 1442 controls from Malaysia. We compared gene expression profiles of breast cancers arising from APOBEC3B deletion carriers and non-carriers using microarray analyses. Finally, we characterised the overall abundance of tumour-infiltrating immune cells in breast cancers from TCGA and METABRIC using ESTIMATE and relative frequency of 22 immune cell subsets in breast cancers from METABRIC using CIBERSORT.

    RESULTS: The minor allelic frequency of APOBEC3B deletion was estimated to be 0.35, 0.42 and 0.16 in female populations of Chinese, Malay and Indian descent, respectively, and that germline APOBEC3B deletion was associated with breast cancer risk with odds ratios of 1.23 (95 % CI: [1.05, 1.44]) for one-copy deletion and 1.38 (95 % CI: [1.10, 1.74]) for two-copy deletion compared to women with no deletion. Germline APOBEC3B deletion was not associated with any clinicopathologic features or the expression of any APOBEC family members but was associated with immune response-related gene sets (FDR q values 

    Matched MeSH terms: DNA Copy Number Variations
  9. Vincent-Chong VK, Ismail SM, Rahman ZA, Sharifah NA, Anwar A, Pradeep PJ, et al.
    Oral Dis, 2012 Jul;18(5):469-76.
    PMID: 22251088 DOI: 10.1111/j.1601-0825.2011.01894.x
    Multistep pathways and mechanisms are involved in the development of oral cancer. Chromosomal alterations are one of such key mechanisms implicated oral carcinogenesis. Therefore, this study aims to determine the genomic copy number alterations (CNAs) in oral squamous cell carcinoma (OSCC) using array comparative genomic hybridization (aCGH) and in addition attempt to correlate CNAs with modified gene expression.
    Matched MeSH terms: DNA Copy Number Variations
  10. Vincent-Chong VK, Anwar A, Karen-Ng LP, Cheong SC, Yang YH, Pradeep PJ, et al.
    PLoS One, 2013;8(2):e54705.
    PMID: 23405089 DOI: 10.1371/journal.pone.0054705
    Despite the advances in diagnosis and treatment of oral squamous cell carcinoma (OSCC), mortality and morbidity rates have not improved over the past decade. A major drawback in diagnosis and treatment of OSCC is the lack of knowledge relating to how genetic instability in oral cancer genomes affects oral carcinogenesis. Hence, the key aim of this study was to identify copy number alterations (CNAs) that may be cancer associated in OSCC using high-resolution array comparative genomic hybridization (aCGH). To our knowledge this is the first study to use ultra-high density aCGH microarrays to profile a large number of OSCC genomes (n = 46). The most frequently amplified CNAs were located on chromosome 11q11(52%), 2p22.3(52%), 1q21.3-q22(54%), 6p21.32(59%), 20p13(61%), 7q34(52% and 72%),8p11.23-p11.22(80%), 8q11.1-q24.4(54%), 9q13-q34.3(54%), 11q23.3-q25(57%); 14q21.3-q31.1(54%); 14q31.3-q32.33(57%), 20p13-p12.3(54%) and 20q11.21-q13.33(52%). The most frequently deleted chromosome region was located on 3q26.1 (54%). In order to verify the CNAs from aCGH using quantitative polymerase chain reaction (qPCR), the three top most amplified regions and their associated genes, namely ADAM5P (8p11.23-p11.22), MGAM (7q34) and SIRPB1 (20p13.1), were selected in this study. The ADAM5P locus was found to be amplified in 39 samples and deleted in one; MGAM (24 amplifications and 3 deletions); and SIRPB1 (12 amplifications, others undetermined). On the basis of putative cancer-related annotations, two genes, namely ADAM metallopeptidase domain 9 (ADAM9) and maltase-glucoamylase alpha-glucosidase (MGAM), that mapped to CNA regions were selected for further evaluation of their mRNA expression using reverse transcriptase qPCR. The over-expression of MGAM was confirmed with a 6.6 fold increase in expression at the mRNA level whereas the fold change in ADAM9 demonstrated a 1.6 fold increase. This study has identified significant regions in the OSCC genome that were amplified and resulted in consequent over-expression of the MGAM and ADAM9 genes that may be utilized as biological markers for OSCC.
    Matched MeSH terms: DNA Copy Number Variations*
  11. Vincent-Chong VK, Salahshourifar I, Razali R, Anwar A, Zain RB
    Head Neck, 2016 04;38 Suppl 1:E783-97.
    PMID: 25914319 DOI: 10.1002/hed.24102
    BACKGROUND: This purpose of this meta-analysis study was to identify the most frequent and potentially significant copy number alteration (CNA) in oral carcinogenesis.

    METHODS: Seven oral squamous cell carcinoma (OSCC)-related publications, corresponding to 312 samples, were identified for this meta-analysis. The data were analyzed in a 4-step process that included the genome assembly coordination of multiple platforms, assignment of chromosomal position anchors, calling gains and losses, and functional annotation analysis.

    RESULTS: Gains were more frequent than losses in the entire dataset. High-frequency gains were identified in chromosomes 5p, 14q, 11q, 7p, 17q, 20q, 8q, and 3q, whereas high-frequency losses were identified in chromosomes 3p, 8p, 6p, 18q, and 4q. Ingenuity pathway analysis showed that the top biological function was associated with immortalization of the epithelial cells (p = 1.93E-04).

    CONCLUSION: This study has identified multiple recurrent CNAs that are involved in various biological annotations associated with oral carcinogenesis. © 2015 Wiley Periodicals, Inc. Head Neck 38: E783-E797, 2016.

    Matched MeSH terms: DNA Copy Number Variations*
  12. Vincent-Chong VK, Salahshourifar I, Woo KM, Anwar A, Razali R, Gudimella R, et al.
    PLoS One, 2017;12(4):e0174865.
    PMID: 28384287 DOI: 10.1371/journal.pone.0174865
    BACKGROUND: Cancers of the oral cavity are primarily oral squamous cell carcinomas (OSCCs). Many of the OSCCs present at late stages with an exceptionally poor prognosis. A probable limitation in management of patients with OSCC lies in the insufficient knowledge pertaining to the linkage between copy number alterations in OSCC and oral tumourigenesis thereby resulting in an inability to deliver targeted therapy.

    OBJECTIVES: The current study aimed to identify copy number alterations (CNAs) in OSCC using array comparative genomic hybridization (array CGH) and to correlate the CNAs with clinico-pathologic parameters and clinical outcomes.

    MATERIALS AND METHODS: Using array CGH, genome-wide profiling was performed on 75 OSCCs. Selected genes that were harboured in the frequently amplified and deleted regions were validated using quantitative polymerase chain reaction (qPCR). Thereafter, pathway and network functional analysis were carried out using Ingenuity Pathway Analysis (IPA) software.

    RESULTS: Multiple chromosomal regions including 3q, 5p, 7p, 8q, 9p, 10p, 11q were frequently amplified, while 3p and 8p chromosomal regions were frequently deleted. These findings were in confirmation with our previous study using ultra-dense array CGH. In addition, amplification of 8q, 11q, 7p and 9p and deletion of 8p chromosomal regions showed a significant correlation with clinico-pathologic parameters such as the size of the tumour, metastatic lymph nodes and pathological staging. Co-amplification of 7p, 8q, 9p and 11q regions that harbored amplified genes namely CCND1, EGFR, TPM2 and LRP12 respectively, when combined, continues to be an independent prognostic factor in OSCC.

    CONCLUSION: Amplification of 3q, 5p, 7p, 8q, 9p, 10p, 11q and deletion of 3p and 8p chromosomal regions were recurrent among OSCC patients. Co-alteration of 7p, 8q, 9p and 11q was found to be associated with clinico-pathologic parameters and poor survival. These regions contain genes that play critical roles in tumourigenesis pathways.

    Matched MeSH terms: DNA Copy Number Variations
  13. Tsuchida N, Nakashima M, Kato M, Heyman E, Inui T, Haginoya K, et al.
    Clin Genet, 2018 03;93(3):577-587.
    PMID: 28940419 DOI: 10.1111/cge.13144
    Epilepsies are common neurological disorders and genetic factors contribute to their pathogenesis. Copy number variations (CNVs) are increasingly recognized as an important etiology of many human diseases including epilepsy. Whole-exome sequencing (WES) is becoming a standard tool for detecting pathogenic mutations and has recently been applied to detecting CNVs. Here, we analyzed 294 families with epilepsy using WES, and focused on 168 families with no causative single nucleotide variants in known epilepsy-associated genes to further validate CNVs using 2 different CNV detection tools using WES data. We confirmed 18 pathogenic CNVs, and 2 deletions and 2 duplications at chr15q11.2 of clinically unknown significance. Of note, we were able to identify small CNVs less than 10 kb in size, which might be difficult to detect by conventional microarray. We revealed 2 cases with pathogenic CNVs that one of the 2 CNV detection tools failed to find, suggesting that using different CNV tools is recommended to increase diagnostic yield. Considering a relatively high discovery rate of CNVs (18 out of 168 families, 10.7%) and successful detection of CNV with <10 kb in size, CNV detection by WES may be able to surrogate, or at least complement, conventional microarray analysis.
    Matched MeSH terms: DNA Copy Number Variations*
  14. Tao S, Kichula KM, Harrison GF, Farias TDJ, Palmer WH, Leaton LA, et al.
    Immunology, 2021 Apr;162(4):389-404.
    PMID: 33283280 DOI: 10.1111/imm.13289
    Killer cell immunoglobulin-like receptors (KIRs) interact with polymorphic human leucocyte antigen (HLA) class I molecules, modulating natural killer (NK) cell functions and affecting both the susceptibility and outcome of immune-mediated diseases. The KIR locus is highly diverse in gene content, copy number and allelic polymorphism within individuals and across geographical populations. To analyse currently under-represented Asian and Pacific populations, we investigated the combinatorial diversity of KIR and HLA class I in 92 unrelated Malay and 75 Malaysian Chinese individuals from the Malay Peninsula. We identified substantial allelic and structural diversity of the KIR locus in both populations and characterized novel variations at each analysis level. The Malay population is more diverse than Malay Chinese, likely representing a unique history including admixture with immigrating populations spanning several thousand years. Characterizing the Malay population are KIR haplotypes with large structural variants present in 10% individuals, and KIR and HLA alleles previously identified in Austronesian populations. Despite the differences in ancestries, the proportion of HLA allotypes that serve as KIR ligands is similar in each population. The exception is a significantly reduced frequency of interactions of KIR2DL1 with C2+ HLA-C in the Malaysian Chinese group, caused by the low frequency of C2+ HLA. One likely implication is a greater protection from preeclampsia, a pregnancy disorder associated with KIR2DL1, which shows higher incidence in the Malay than in the Malaysian Chinese. This first complete, high-resolution, characterization of combinatorial diversity of KIR and HLA in Malaysians will form a valuable reference for future clinical and population studies.
    Matched MeSH terms: DNA Copy Number Variations
  15. Tan NH, Palmer R, Wang R
    J Obstet Gynaecol Res, 2010 Feb;36(1):19-26.
    PMID: 20178523 DOI: 10.1111/j.1447-0756.2009.01110.x
    Array-based comparative genomic hybridization (array CGH) is a new molecular technique that has the potential to revolutionize cytogenetics. However, use of high resolution array CGH in the clinical setting is plagued by the problem of widespread copy number variations (CNV) in the human genome. Constitutional microarray, containing only clones that interrogate regions of known constitutional syndromes, may circumvent the dilemma of detecting CNV of unknown clinical significance.
    Matched MeSH terms: DNA Copy Number Variations
  16. Siti Radziah Shaik Alaudeen, Aszrin Abdullah, Azarisman Shah Mohd Shah, Norlelawati Abdul Talib
    MyJurnal
    Copy number variation (CNV) caused by changes in DNA sequences of 1000
    or more bases is implicated with susceptibility to common diseases. A study on CNV
    esv27061 among hypertensive Australian adults reported association with high blood
    pressure (BP). In Malaysia, no study on CNV among hypertensive young adults is
    available. Thus, this investigation aimed to assess the CNV esv27061 of young Malaysian
    adults with high blood pressure using optimized ddPCR. (Copied from article).
    Matched MeSH terms: DNA Copy Number Variations
  17. Siddig A, Tengku Din TADA, Mohd Nafi SN, Yahya MM, Sulong S, Wan Abdul Rahman WF
    Genes (Basel), 2021 03 05;12(3).
    PMID: 33807872 DOI: 10.3390/genes12030372
    Breast cancer commonly affects women of older age; however, in developing countries, up to 20% of breast cancer cases present in young women (younger than 40 years as defined by oncology literature). Breast cancer in young women is often defined to be aggressive in nature, usually of high histological grade at the time of diagnosis and negative for endocrine receptors with poor overall survival rate. Several researchers have attributed this aggressive nature to a hidden unique biology. However, findings in this aspect remain controversial. Thus, in this article, we aimed to review published work addressing somatic mutations, chromosome copy number variants, single nucleotide polymorphisms, differential gene expression, microRNAs and gene methylation profile of early-onset breast cancer, as well as its altered pathways resulting from those aberrations. Distinct biology behind early-onset of breast cancer was clear among estrogen receptor-positive and sporadic cases. However, further research is needed to determine and validate specific novel markers, which may help in customizing therapy for this group of patients.
    Matched MeSH terms: DNA Copy Number Variations
  18. Shi W, Massaia A, Louzada S, Banerjee R, Hallast P, Chen Y, et al.
    Hum Genet, 2018 Jan;137(1):73-83.
    PMID: 29209947 DOI: 10.1007/s00439-017-1857-9
    We describe the variation in copy number of a ~ 10 kb region overlapping the long intergenic noncoding RNA (lincRNA) gene, TTTY22, within the IR3 inverted repeat on the short arm of the human Y chromosome, leading to individuals with 0-3 copies of this region in the general population. Variation of this CNV is common, with 266 individuals having 0 copies, 943 (including the reference sequence) having 1, 23 having 2 copies, and two having 3 copies, and was validated by breakpoint PCR, fibre-FISH, and 10× Genomics Chromium linked-read sequencing in subsets of 1234 individuals from the 1000 Genomes Project. Mapping the changes in copy number to the phylogeny of these Y chromosomes previously established by the Project identified at least 20 mutational events, and investigation of flanking paralogous sequence variants showed that the mutations involved flanking sequences in 18 of these, and could extend over > 30 kb of DNA. While either gene conversion or double crossover between misaligned sister chromatids could formally explain the 0-2 copy events, gene conversion is the more likely mechanism, and these events include the longest non-allelic gene conversion reported thus far. Chromosomes with three copies of this CNV have arisen just once in our data set via another mechanism: duplication of 420 kb that places the third copy 230 kb proximal to the existing proximal copy. Our results establish gene conversion as a previously under-appreciated mechanism of generating copy number changes in humans and reveal the exceptionally large size of the conversion events that can occur.
    Matched MeSH terms: DNA Copy Number Variations*
  19. Shi W, Louzada S, Grigorova M, Massaia A, Arciero E, Kibena L, et al.
    Hum Mol Genet, 2019 Aug 15;28(16):2785-2798.
    PMID: 31108506 DOI: 10.1093/hmg/ddz101
    Human RBMY1 genes are located in four variable-sized clusters on the Y chromosome, expressed in male germ cells and possibly associated with sperm motility. We have re-investigated the mutational background and evolutionary history of the RBMY1 copy number distribution in worldwide samples and its relevance to sperm parameters in an Estonian cohort of idiopathic male factor infertility subjects. We estimated approximate RBMY1 copy numbers in 1218 1000 Genomes Project phase 3 males from sequencing read-depth, then chose 14 for valid ation by multicolour fibre-FISH. These fibre-FISH samples provided accurate calibration standards for the entire panel and led to detailed insights into population variation and mutational mechanisms. RBMY1 copy number worldwide ranged from 3 to 13 with a mode of 8. The two larger proximal clusters were the most variable, and additional duplications, deletions and inversions were detected. Placing the copy number estimates onto the published Y-SNP-based phylogeny of the same samples suggested a minimum of 562 mutational changes, translating to a mutation rate of 2.20 × 10-3 (95% CI 1.94 × 10-3 to 2.48 × 10-3) per father-to-son Y-transmission, higher than many short tandem repeat (Y-STRs), and showed no evidence for selection for increased or decreased copy number, but possible copy number stabilizing selection. An analysis of RBMY1 copy numbers among 376 infertility subjects failed to replicate a previously reported association with sperm motility and showed no significant effect on sperm count and concentration, serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone levels or testicular and semen volume. These results provide the first in-depth insights into the structural rearrangements underlying RBMY1 copy number variation across diverse human lineages.
    Matched MeSH terms: DNA Copy Number Variations*
  20. Shaik Alaudeen SR, Mohd Shah AS, Abdul Talib N, Abdullah A
    MyJurnal
    Introduction: Hypertension related morbidities and mortalities around the world show a gradual increase and early detection and prevention are advocated. The Database of Genomic Variants (DGV) has associated variation in DNA sequences called copy number variation (CNV) with susceptibility to common diseases. However, little is known about CNV role in essential hypertension. Thus, this study aimed to characterize the CNV esv27061 among prehypertensive and hypertensive young adults in Malaysia. Materials and method: In this comparative cross-sectional study, 104 subjects living in Kuantan who gave voluntary consent to participate are recruited and divided into three groups; control (43 subjects), prehypertensive (38 subjects) and mild hypertensive (23 subjects). An optimized droplet digital polymerase chain reaction (ddPCR) was used in the determination of CNV esv27061 in this study. Results: All subjects in the control (n=38; 88.4% gain), prehypertensive (n=33; 86.8% gain) and mild hypertensive (n=21; 91.3% gain) groups had CNV gain (copy number > 2) while 11.6% of control, 13.2% of prehypertensive and 8.7% of mild hypertensive subjects exhibited normal copies (copy number = 2). Conclusion: The present preliminary finding was consistent with the Database of Genomic Variants (DGV) which stated that CNV esv27061 showed more gain than loss.
    Matched MeSH terms: DNA Copy Number Variations
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links