Displaying publications 1 - 20 of 59 in total

Abstract:
Sort:
  1. Yong ZW, Zaini ZM, Kallarakkal TG, Karen-Ng LP, Rahman ZA, Ismail SM, et al.
    Sci Rep, 2014;4:6073.
    PMID: 25123227 DOI: 10.1038/srep06073
    The clinical relevance of DNA copy number alterations in chromosome 8 were investigated in oral cancers. The copy numbers of 30 selected genes in 33 OSCC patients were detected using the multiplex ligation-dependent probe amplification (MLPA) technique. Amplifications of the EIF3E gene were found in 27.3% of the patients, MYC in 18.2%, RECQL4 in 15.2% and MYBL1 in 12.1% of patients. The most frequent gene losses found were the GATA4 gene (24.2%), FGFR1 gene (24.2%), MSRA (21.2) and CSGALNACT1 (12.1%). The co-amplification of EIF3E and RECQL4 was found in 9% of patients and showed significant association with alcohol drinkers. There was a significant association between the amplification of EIF3E gene with non-betel quid chewers and the negative lymph node status. EIF3E amplifications did not show prognostic significance on survival. Our results suggest that EIF3E may have a role in the carcinogenesis of OSCC in non-betel quid chewers.
    Matched MeSH terms: DNA Copy Number Variations/genetics*
  2. Salahshourifar I, Vincent-Chong VK, Kallarakkal TG, Zain RB
    Oral Oncol, 2014 May;50(5):404-12.
    PMID: 24613650 DOI: 10.1016/j.oraloncology.2014.02.005
    Oral cancer is a multifactorial disease in which both environmental and genetic factors contribute to the aetiopathogenesis. Oral cancer is the sixth most common cancer worldwide with a higher incidence among Melanesian and South Asian countries. More than 90% of oral cancers are oral squamous cell carcinoma (OSCC). The present study aimed to determine common genomic copy number alterations (CNAs) and their frequency by including 12 studies that have been conducted on OSCCs using array comparative genomic hybridization (aCGH). In addition, we reviewed the literature dealing with CNAs that drive oral precursor lesions to the invasive tumors. Results showed a sequential accumulation of genetic changes from oral precursor lesions to invasive tumors. With the disease progression, accumulation of genetic changes increases in terms of frequency, type and size of the abnormalities, even on different regions of the same chromosome. Gains in 3q (36.5%), 5p (23%), 7p (21%), 8q (47%), 11q (45%), 20q (31%) and losses in 3p (37%), 8p (18%), 9p (10%) and 18q (11%) were the most common observations among those studies. However, losses are less frequent than gains but it appears that they might be the primary clonal events in causing oral cancer.
    Matched MeSH terms: DNA Copy Number Variations*
  3. Vincent-Chong VK, Ismail SM, Rahman ZA, Sharifah NA, Anwar A, Pradeep PJ, et al.
    Oral Dis, 2012 Jul;18(5):469-76.
    PMID: 22251088 DOI: 10.1111/j.1601-0825.2011.01894.x
    Multistep pathways and mechanisms are involved in the development of oral cancer. Chromosomal alterations are one of such key mechanisms implicated oral carcinogenesis. Therefore, this study aims to determine the genomic copy number alterations (CNAs) in oral squamous cell carcinoma (OSCC) using array comparative genomic hybridization (aCGH) and in addition attempt to correlate CNAs with modified gene expression.
    Matched MeSH terms: DNA Copy Number Variations
  4. Vincent-Chong VK, Anwar A, Karen-Ng LP, Cheong SC, Yang YH, Pradeep PJ, et al.
    PLoS One, 2013;8(2):e54705.
    PMID: 23405089 DOI: 10.1371/journal.pone.0054705
    Despite the advances in diagnosis and treatment of oral squamous cell carcinoma (OSCC), mortality and morbidity rates have not improved over the past decade. A major drawback in diagnosis and treatment of OSCC is the lack of knowledge relating to how genetic instability in oral cancer genomes affects oral carcinogenesis. Hence, the key aim of this study was to identify copy number alterations (CNAs) that may be cancer associated in OSCC using high-resolution array comparative genomic hybridization (aCGH). To our knowledge this is the first study to use ultra-high density aCGH microarrays to profile a large number of OSCC genomes (n = 46). The most frequently amplified CNAs were located on chromosome 11q11(52%), 2p22.3(52%), 1q21.3-q22(54%), 6p21.32(59%), 20p13(61%), 7q34(52% and 72%),8p11.23-p11.22(80%), 8q11.1-q24.4(54%), 9q13-q34.3(54%), 11q23.3-q25(57%); 14q21.3-q31.1(54%); 14q31.3-q32.33(57%), 20p13-p12.3(54%) and 20q11.21-q13.33(52%). The most frequently deleted chromosome region was located on 3q26.1 (54%). In order to verify the CNAs from aCGH using quantitative polymerase chain reaction (qPCR), the three top most amplified regions and their associated genes, namely ADAM5P (8p11.23-p11.22), MGAM (7q34) and SIRPB1 (20p13.1), were selected in this study. The ADAM5P locus was found to be amplified in 39 samples and deleted in one; MGAM (24 amplifications and 3 deletions); and SIRPB1 (12 amplifications, others undetermined). On the basis of putative cancer-related annotations, two genes, namely ADAM metallopeptidase domain 9 (ADAM9) and maltase-glucoamylase alpha-glucosidase (MGAM), that mapped to CNA regions were selected for further evaluation of their mRNA expression using reverse transcriptase qPCR. The over-expression of MGAM was confirmed with a 6.6 fold increase in expression at the mRNA level whereas the fold change in ADAM9 demonstrated a 1.6 fold increase. This study has identified significant regions in the OSCC genome that were amplified and resulted in consequent over-expression of the MGAM and ADAM9 genes that may be utilized as biological markers for OSCC.
    Matched MeSH terms: DNA Copy Number Variations*
  5. Vincent-Chong VK, Salahshourifar I, Razali R, Anwar A, Zain RB
    Head Neck, 2016 04;38 Suppl 1:E783-97.
    PMID: 25914319 DOI: 10.1002/hed.24102
    BACKGROUND: This purpose of this meta-analysis study was to identify the most frequent and potentially significant copy number alteration (CNA) in oral carcinogenesis.

    METHODS: Seven oral squamous cell carcinoma (OSCC)-related publications, corresponding to 312 samples, were identified for this meta-analysis. The data were analyzed in a 4-step process that included the genome assembly coordination of multiple platforms, assignment of chromosomal position anchors, calling gains and losses, and functional annotation analysis.

    RESULTS: Gains were more frequent than losses in the entire dataset. High-frequency gains were identified in chromosomes 5p, 14q, 11q, 7p, 17q, 20q, 8q, and 3q, whereas high-frequency losses were identified in chromosomes 3p, 8p, 6p, 18q, and 4q. Ingenuity pathway analysis showed that the top biological function was associated with immortalization of the epithelial cells (p = 1.93E-04).

    CONCLUSION: This study has identified multiple recurrent CNAs that are involved in various biological annotations associated with oral carcinogenesis. © 2015 Wiley Periodicals, Inc. Head Neck 38: E783-E797, 2016.

    Matched MeSH terms: DNA Copy Number Variations*
  6. Vincent-Chong VK, Salahshourifar I, Woo KM, Anwar A, Razali R, Gudimella R, et al.
    PLoS One, 2017;12(4):e0174865.
    PMID: 28384287 DOI: 10.1371/journal.pone.0174865
    BACKGROUND: Cancers of the oral cavity are primarily oral squamous cell carcinomas (OSCCs). Many of the OSCCs present at late stages with an exceptionally poor prognosis. A probable limitation in management of patients with OSCC lies in the insufficient knowledge pertaining to the linkage between copy number alterations in OSCC and oral tumourigenesis thereby resulting in an inability to deliver targeted therapy.

    OBJECTIVES: The current study aimed to identify copy number alterations (CNAs) in OSCC using array comparative genomic hybridization (array CGH) and to correlate the CNAs with clinico-pathologic parameters and clinical outcomes.

    MATERIALS AND METHODS: Using array CGH, genome-wide profiling was performed on 75 OSCCs. Selected genes that were harboured in the frequently amplified and deleted regions were validated using quantitative polymerase chain reaction (qPCR). Thereafter, pathway and network functional analysis were carried out using Ingenuity Pathway Analysis (IPA) software.

    RESULTS: Multiple chromosomal regions including 3q, 5p, 7p, 8q, 9p, 10p, 11q were frequently amplified, while 3p and 8p chromosomal regions were frequently deleted. These findings were in confirmation with our previous study using ultra-dense array CGH. In addition, amplification of 8q, 11q, 7p and 9p and deletion of 8p chromosomal regions showed a significant correlation with clinico-pathologic parameters such as the size of the tumour, metastatic lymph nodes and pathological staging. Co-amplification of 7p, 8q, 9p and 11q regions that harbored amplified genes namely CCND1, EGFR, TPM2 and LRP12 respectively, when combined, continues to be an independent prognostic factor in OSCC.

    CONCLUSION: Amplification of 3q, 5p, 7p, 8q, 9p, 10p, 11q and deletion of 3p and 8p chromosomal regions were recurrent among OSCC patients. Co-alteration of 7p, 8q, 9p and 11q was found to be associated with clinico-pathologic parameters and poor survival. These regions contain genes that play critical roles in tumourigenesis pathways.

    Matched MeSH terms: DNA Copy Number Variations
  7. Boon-Peng H, Mat Jusoh JA, Marshall CR, Majid F, Danuri N, Basir F, et al.
    PLoS One, 2016;11(3):e0148755.
    PMID: 26930585 DOI: 10.1371/journal.pone.0148755
    Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular morbidity and mortality, and a powerful predictor of adverse cardiovascular outcomes in the hypertensive patients. It has complex multifactorial and polygenic basis for its pathogenesis. We hypothesized that rare copy number variants (CNVs) contribute to the LVH pathogenesis in hypertensive patients. Copy number variants (CNV) were identified in 258 hypertensive patients, 95 of whom had LVH, after genotyping with a high resolution SNP array. Following stringent filtering criteria, we identified 208 rare, or private CNVs that were only present in our patients with hypertension related LVH. Preliminary findings from Gene Ontology and pathway analysis of this study confirmed the involvement of the genes known to be functionally involved in cardiac development and phenotypes, in line with previously reported transcriptomic studies. Network enrichment analyses suggested that the gene-set was, directly or indirectly, involved in the transcription factors regulating the "foetal cardiac gene programme" which triggered the hypertrophic cascade, confirming previous reports. These findings suggest that multiple, individually rare copy number variants altering genes may contribute to the pathogenesis of hypertension-related LVH. In summary, we have provided further supporting evidence that rare CNV could potentially impact this common and complex disease susceptibility with lower heritability.
    Matched MeSH terms: DNA Copy Number Variations*
  8. Chan WT, Espinosa M, Yeo CC
    Front Mol Biosci, 2016;3:9.
    PMID: 27047942 DOI: 10.3389/fmolb.2016.00009
    In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I-VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
    Matched MeSH terms: DNA Copy Number Variations
  9. Yong RY, Mustaffa SB, Wasan PS, Sheng L, Marshall CR, Scherer SW, et al.
    Hum Mutat, 2016 Jul;37(7):669-78.
    PMID: 27068483 DOI: 10.1002/humu.22996
    The human amylase gene locus at chromosome 1p21.1 is structurally complex. This region contains two pancreatic amylase genes, AMY2B, AMY2A, and a salivary gene AMY1. The AMY1 gene harbors extensive copy number variation (CNV), and recent studies have implicated this variation in adaptation to starch-rich diets and in association to obesity for European and Asian populations. In this study, we showed that by combining quantitative PCR and digital PCR, coupled with careful experimental design and calibration, we can improve the resolution of genotyping CNV with high copy numbers (CNs). In two East Asian populations of Chinese and Malay ethnicity studied, we observed a unique non-normal distribution of AMY1 diploid CN genotypes with even:odd CNs ratio of 4.5 (3.3-4.7), and an association between the common AMY2A CN = 2 genotype and odd CNs of AMY1, that could be explained by the underlying haplotypic structure. In two further case-control cohorts (n = 932 and 145, for Chinese and Malays, respectively), we did not observe the previously reported association between AMY1 and obesity or body mass index. Improved methods for accurately genotyping multiallelic CNV loci and understanding the haplotype complexity at the AMY1 locus are necessary for population genetics and association studies.
    Matched MeSH terms: DNA Copy Number Variations*
  10. Shi W, Massaia A, Louzada S, Banerjee R, Hallast P, Chen Y, et al.
    Hum Genet, 2018 Jan;137(1):73-83.
    PMID: 29209947 DOI: 10.1007/s00439-017-1857-9
    We describe the variation in copy number of a ~ 10 kb region overlapping the long intergenic noncoding RNA (lincRNA) gene, TTTY22, within the IR3 inverted repeat on the short arm of the human Y chromosome, leading to individuals with 0-3 copies of this region in the general population. Variation of this CNV is common, with 266 individuals having 0 copies, 943 (including the reference sequence) having 1, 23 having 2 copies, and two having 3 copies, and was validated by breakpoint PCR, fibre-FISH, and 10× Genomics Chromium linked-read sequencing in subsets of 1234 individuals from the 1000 Genomes Project. Mapping the changes in copy number to the phylogeny of these Y chromosomes previously established by the Project identified at least 20 mutational events, and investigation of flanking paralogous sequence variants showed that the mutations involved flanking sequences in 18 of these, and could extend over > 30 kb of DNA. While either gene conversion or double crossover between misaligned sister chromatids could formally explain the 0-2 copy events, gene conversion is the more likely mechanism, and these events include the longest non-allelic gene conversion reported thus far. Chromosomes with three copies of this CNV have arisen just once in our data set via another mechanism: duplication of 420 kb that places the third copy 230 kb proximal to the existing proximal copy. Our results establish gene conversion as a previously under-appreciated mechanism of generating copy number changes in humans and reveal the exceptionally large size of the conversion events that can occur.
    Matched MeSH terms: DNA Copy Number Variations*
  11. Shi W, Louzada S, Grigorova M, Massaia A, Arciero E, Kibena L, et al.
    Hum Mol Genet, 2019 08 15;28(16):2785-2798.
    PMID: 31108506 DOI: 10.1093/hmg/ddz101
    Human RBMY1 genes are located in four variable-sized clusters on the Y chromosome, expressed in male germ cells and possibly associated with sperm motility. We have re-investigated the mutational background and evolutionary history of the RBMY1 copy number distribution in worldwide samples and its relevance to sperm parameters in an Estonian cohort of idiopathic male factor infertility subjects. We estimated approximate RBMY1 copy numbers in 1218 1000 Genomes Project phase 3 males from sequencing read-depth, then chose 14 for valid ation by multicolour fibre-FISH. These fibre-FISH samples provided accurate calibration standards for the entire panel and led to detailed insights into population variation and mutational mechanisms. RBMY1 copy number worldwide ranged from 3 to 13 with a mode of 8. The two larger proximal clusters were the most variable, and additional duplications, deletions and inversions were detected. Placing the copy number estimates onto the published Y-SNP-based phylogeny of the same samples suggested a minimum of 562 mutational changes, translating to a mutation rate of 2.20 × 10-3 (95% CI 1.94 × 10-3 to 2.48 × 10-3) per father-to-son Y-transmission, higher than many short tandem repeat (Y-STRs), and showed no evidence for selection for increased or decreased copy number, but possible copy number stabilizing selection. An analysis of RBMY1 copy numbers among 376 infertility subjects failed to replicate a previously reported association with sperm motility and showed no significant effect on sperm count and concentration, serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone levels or testicular and semen volume. These results provide the first in-depth insights into the structural rearrangements underlying RBMY1 copy number variation across diverse human lineages.
    Matched MeSH terms: DNA Copy Number Variations*
  12. Lou H, Lu Y, Lu D, Fu R, Wang X, Feng Q, et al.
    Am J Hum Genet, 2015 Jul 02;97(1):54-66.
    PMID: 26073780 DOI: 10.1016/j.ajhg.2015.05.005
    Tibetan high-altitude adaptation (HAA) has been studied extensively, and many candidate genes have been reported. Subsequent efforts targeting HAA functional variants, however, have not been that successful (e.g., no functional variant has been suggested for the top candidate HAA gene, EPAS1). With WinXPCNVer, a method developed in this study, we detected in microarray data a Tibetan-enriched deletion (TED) carried by 90% of Tibetans; 50% were homozygous for the deletion, whereas only 3% carried the TED and 0% carried the homozygous deletion in 2,792 worldwide samples (p < 10(-15)). We employed long PCR and Sanger sequencing technologies to determine the exact copy number and breakpoints of the TED in 70 additional Tibetan and 182 diverse samples. The TED had identical boundaries (chr2: 46,694,276-46,697,683; hg19) and was 80 kb downstream of EPAS1. Notably, the TED was in strong linkage disequilibrium (LD; r(2) = 0.8) with EPAS1 variants associated with reduced blood concentrations of hemoglobin. It was also in complete LD with the 5-SNP motif, which was suspected to be introgressed from Denisovans, but the deletion itself was absent from the Denisovan sequence. Correspondingly, we detected that footprints of positive selection for the TED occurred 12,803 (95% confidence interval = 12,075-14,725) years ago. We further whole-genome deep sequenced (>60×) seven Tibetans and verified the TED but failed to identify any other copy-number variations with comparable patterns, giving this TED top priority for further study. We speculate that the specific patterns of the TED resulted from its own functionality in HAA of Tibetans or LD with a functional variant of EPAS1.
    Matched MeSH terms: DNA Copy Number Variations/genetics*
  13. Deng L, Lou H, Zhang X, Thiruvahindrapuram B, Lu D, Marshall CR, et al.
    BMC Genomics, 2019 Nov 12;20(1):842.
    PMID: 31718558 DOI: 10.1186/s12864-019-6226-8
    BACKGROUND: Recent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations. However, most efforts have focused on the major populations, yet trio genomes of indigenous populations from Southeast Asia have been under-investigated.

    RESULTS: We analyzed the whole-genome deep sequencing data (~ 30×) of five native trios from Peninsular Malaysia and North Borneo, and characterized the genomic variants, including single nucleotide variants (SNVs), small insertions and deletions (indels) and copy number variants (CNVs). We discovered approximately 6.9 million SNVs, 1.2 million indels, and 9000 CNVs in the 15 samples, of which 2.7% SNVs, 2.3% indels and 22% CNVs were novel, implying the insufficient coverage of population diversity in existing databases. We identified a higher proportion of novel variants in the Orang Asli (OA) samples, i.e., the indigenous people from Peninsular Malaysia, than that of the North Bornean (NB) samples, likely due to more complex demographic history and long-time isolation of the OA groups. We used the pedigree information to identify de novo variants and estimated the autosomal mutation rates to be 0.81 × 10- 8 - 1.33 × 10- 8, 1.0 × 10- 9 - 2.9 × 10- 9, and ~ 0.001 per site per generation for SNVs, indels, and CNVs, respectively. The trio-genomes also allowed for haplotype phasing with high accuracy, which serves as references to the future genomic studies of OA and NB populations. In addition, high-frequency inherited CNVs specific to OA or NB were identified. One example is a 50-kb duplication in DEFA1B detected only in the Negrito trios, implying plausible effects on host defense against the exposure of diverse microbial in tropical rainforest environment of these hunter-gatherers. The CNVs shared between OA and NB groups were much fewer than those specific to each group. Nevertheless, we identified a 142-kb duplication in AMY1A in all the 15 samples, and this gene is associated with the high-starch diet. Moreover, novel insertions shared with archaic hominids were identified in our samples.

    CONCLUSION: Our study presents a full catalogue of the genome variants of the native Malaysian populations, which is a complement of the genome diversity in Southeast Asians. It implies specific population history of the native inhabitants, and demonstrated the necessity of more genome sequencing efforts on the multi-ethnic native groups of Malaysia and Southeast Asia.

    Matched MeSH terms: DNA Copy Number Variations
  14. Fu R, Mokhtar SS, Phipps ME, Hoh BP, Xu S
    Eur J Hum Genet, 2018 06;26(6):886-897.
    PMID: 29476164 DOI: 10.1038/s41431-018-0120-8
    Copy number variations (CNVs) are genomic structural variations that result from the deletion or duplication of large genomic segments. The characterization of CNVs is largely underrepresented, particularly those of indigenous populations, such as the Orang Asli in Peninsular Malaysia. In the present study, we first characterized the genome-wide CNVs of four major native populations from Peninsular Malaysia, including the Malays and three Orang Asli populations; namely, Proto-Malay, Senoi, and Negrito (collectively called PM). We subsequently assessed the distribution of CNVs across the four populations. The resulting global CNV map revealed 3102 CNVs, with an average of more than 100 CNVs per individual. We identified genes harboring CNVs that are highly differentiated between PM and global populations, indicating that these genes are predominantly enriched in immune responses and defense functions, including APOBEC3A_B, beta-defensin genes, and CCL3L1, followed by other biological functions, such as drug and toxin metabolism and responses to radiation, suggesting some attributions between CNV variations and adaptations of the PM groups to the local environmental conditions of tropical rainforests.
    Matched MeSH terms: DNA Copy Number Variations
  15. Yan Q, Li X, Ma B, Zou Y, Wang Y, Liao X, et al.
    Front Microbiol, 2018;9:3129.
    PMID: 30619199 DOI: 10.3389/fmicb.2018.03129
    Antibiotic residues that enter the soil through swine manure could disturb the number, community structure and functions of microbiota which could also degrade antibiotics in soil. Five different concentrations of doxycycline (DOX) incorporated into swine manure were added to soil to explore the effects of DOX on microbiota in soil and degradation itself. The results showed that the soil microbiome evolved an adaptation to the soil containing DOX by generating resistance genes. Moreover, some of the organisms within the soil microbiome played crucial roles in the degradation of DOX. The average degradation half-life of DOX in non-sterile groups was 13.85 ± 0.45 days, which was significantly shorter than the 29.26 ± 0.98 days in the group with sterilized soil (P < 0.01), indicating that the soil microbiome promoted DOX degradation. DOX addition affected the number of tetracycline resistance genes, depending on the type of gene and the DOX concentration. Among these genes, tetA, tetM, tetW, and tetX had significantly higher copy numbers when the concentration of DOX was higher. In contrast, a lower concentration of DOX had an inhibitory effect on tetG. At the same time, the microbial compositions were affected by the initial concentration of DOX and the different experimental periods. The soil chemical indicators also affected the microbial diversity changes, mainly because some microorganisms could survive in adversity and become dominant bacterial groups, such as the genera Vagococcus and Enterococcus (which were associated with electrical conductivity) and Caldicoprobacter spp. (which were positively correlated with pH). Our study mainly revealed soil microbiota and DOX degradation answered differently under variable concentrations of DOX mixed with swine manure in soil.
    Matched MeSH terms: DNA Copy Number Variations
  16. Tan NH, Palmer R, Wang R
    J Obstet Gynaecol Res, 2010 Feb;36(1):19-26.
    PMID: 20178523 DOI: 10.1111/j.1447-0756.2009.01110.x
    Array-based comparative genomic hybridization (array CGH) is a new molecular technique that has the potential to revolutionize cytogenetics. However, use of high resolution array CGH in the clinical setting is plagued by the problem of widespread copy number variations (CNV) in the human genome. Constitutional microarray, containing only clones that interrogate regions of known constitutional syndromes, may circumvent the dilemma of detecting CNV of unknown clinical significance.
    Matched MeSH terms: DNA Copy Number Variations
  17. Bakri NM, Ramachandran V, Kee HF, Subrayan V, Isa H, Ngah NF, et al.
    Kaohsiung J. Med. Sci., 2017 Dec;33(12):602-608.
    PMID: 29132549 DOI: 10.1016/j.kjms.2017.08.003
    Age-related macular degeneration (AMD) is the most widely recognised cause of irreversible vision loss and previous studies have suggested that the advancement of wet AMD is influenced by both modifiable and non-modifiable elements. Single nucleotide polymorphism (SNPs) and copy number of variations (CNVs) have been associated with AMD in various populations, however the results are conflicting. Our aim is to determine the CNVs of Complement Factor H-Related genes among Malaysian subjects with wet AMD. 130 patients with wet AMD and 120 healthy controls were included in this research. DNA was extracted from all subjects and CNVs of CFH, CFHR1 and CFHR3 genes; determined using quantitative real-time PCR and were compared between the two groups. A consistent association was observed between CFH gene and wet AMD susceptibility (P 
    Matched MeSH terms: DNA Copy Number Variations/genetics*
  18. Siddig A, Tengku Din TADA, Mohd Nafi SN, Yahya MM, Sulong S, Wan Abdul Rahman WF
    Genes (Basel), 2021 03 05;12(3).
    PMID: 33807872 DOI: 10.3390/genes12030372
    Breast cancer commonly affects women of older age; however, in developing countries, up to 20% of breast cancer cases present in young women (younger than 40 years as defined by oncology literature). Breast cancer in young women is often defined to be aggressive in nature, usually of high histological grade at the time of diagnosis and negative for endocrine receptors with poor overall survival rate. Several researchers have attributed this aggressive nature to a hidden unique biology. However, findings in this aspect remain controversial. Thus, in this article, we aimed to review published work addressing somatic mutations, chromosome copy number variants, single nucleotide polymorphisms, differential gene expression, microRNAs and gene methylation profile of early-onset breast cancer, as well as its altered pathways resulting from those aberrations. Distinct biology behind early-onset of breast cancer was clear among estrogen receptor-positive and sporadic cases. However, further research is needed to determine and validate specific novel markers, which may help in customizing therapy for this group of patients.
    Matched MeSH terms: DNA Copy Number Variations
  19. Hakkaart C, Pearson JF, Marquart L, Dennis J, Wiggins GAR, Barnes DR, et al.
    Commun Biol, 2022 Oct 06;5(1):1061.
    PMID: 36203093 DOI: 10.1038/s42003-022-03978-6
    The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.
    Matched MeSH terms: DNA Copy Number Variations
  20. Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, et al.
    Science, 2020 Mar 20;367(6484).
    PMID: 32193295 DOI: 10.1126/science.aay5012
    Genome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented common genetic variation private to southern Africa, central Africa, Oceania, and the Americas, but an absence of such variants fixed between major geographical regions. We also find deep and gradual population separations within Africa, contrasting population size histories between hunter-gatherer and agriculturalist groups in the past 10,000 years, and a contrast between single Neanderthal but multiple Denisovan source populations contributing to present-day human populations.
    Matched MeSH terms: DNA Copy Number Variations
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links