Displaying publications 1 - 20 of 135 in total

Abstract:
Sort:
  1. George E, Huisman TH, Yang KG, Kutlari F, Wilson JB, Kutlar A, et al.
    Med J Malaysia, 1989 Sep;44(3):259-62.
    PMID: 2626142
    A new haemoglobin, Haemoglobin Malay is described in a 22 year old Malay. Structural analysis showed a AAC----AGC mutation in codon 17, with the production of an abnormal beta chain (beta Malay) that has an Asn----Ser substitution at position beta 19. This haemoglobin variant could not be detected by conventional procedures.
    Matched MeSH terms: DNA Mutational Analysis
  2. Jankovic L, Efremov GD, Petkov G, Kattamis C, George E, Yang KG, et al.
    Br J Haematol, 1990 May;75(1):122-6.
    PMID: 2375910
    In an ongoing effort to identify point mutations causing beta-thalassaemia, we have found two previously unreported mutations which are located in the Poly A site of the beta-globin gene. The screening programme used amplified DNA and dot-blot hybridization with several 32P-labelled oligonucleotide probes. DNA samples which remained unidentified by this methodology were subjected to sequencing with 32P-labelled primers and modified T7 DNA polymerase. The newly discovered mutations were confirmed by the dot-blot hybridization technique. One type concerned an AATAAA----AATGAA mutation in the polyadenylation site and was found in one family from Yugoslavia (including one patient with the C----T mutation at codon 29 in trans), one from Bulgaria (the patient had the G----A mutation at IVS-I-110 in trans), and one from Greece (this patient had the C----G mutation at IVS-II-745 in trans). Haematological data for three simple heterozygotes suggested a rather mild beta(+)-thalassemia. The second type involved an AATAAA----AATAGA mutation and was found in one family from Malaysia. The propositus had the beta E mutation on the other chromosome, was originally diagnosed as mild Hb E-beta(+)-thalassaemia, and had Hb A and Hb E percentages which were nearly the same.
    Matched MeSH terms: DNA Mutational Analysis
  3. Fucharoen S, Fucharoen G, Ata K, Aziz S, Hashim S, Hassan K, et al.
    Acta Haematol., 1990;84(2):82-8.
    PMID: 2120891 DOI: 10.1159/000205034
    The spectrum of beta-thalassemia mutations in Malaysia has been determined in 45 beta-thalassemia chromosomes using dot blot hybridization of the polymerase chain reaction amplified DNA and direct DNA sequencing. Eleven different molecular defects, including those previously detected in Chinese, Asian Indians, and American blacks, and a novel frameshift mutation causing beta zero-thalassemia were detected. Since this novel mutation, a T deletion in codon 15 creates a new restriction site for EcoRII enzyme; the mutation could be detected by EcoRII digestion of the appropriate amplified fragment. The results of the present study provide additional information on the molecular heterogeneity of beta-thalassemia in this population. We also demonstrated the nonradioactive detection method of the beta-thalassemia mutation based upon the digoxigenin-labeled oligonucleotide probes.
    Matched MeSH terms: DNA Mutational Analysis
  4. Jo T, Momita S, Sadamori N, Tomonaga M, Fucharoem S, Fukumaki Y, et al.
    Intern. Med., 1992 Feb;31(2):269-72.
    PMID: 1600278
    A 26-year-old Chinese-Malaysian female patient with beta-thalassemia is presented. The main hematological values found in this patient were as follows: 1) normocytic hypochromic anemia (RBC 444 x 10(4)/microliters, Hb 11.8 g/dl) with marked anisopoikilocytosis, 2) erythroid hyperplasia, and 3) increased HbF (HbA 41.4%, HbA2 2.9%, HbF 48.9%). DNA obtained from peripheral leukocytes was analyzed using dot blot hybridization of the polymerase chain reaction (PCR)-amplified DNA with allele-specific oligonucleotide probes. A C----T substitution at position 654 of the second intervening sequence (IVS-2) was detected in her beta-globin clone.
    Matched MeSH terms: DNA Mutational Analysis
  5. Abdullah WA, Jamaluddin NB, Kham SK, Tan JA
    PMID: 9031421
    The spectrum of beta-thalassemia mutations in Malays in Singapore and Kelantan (Northeast Malaysia) was studied. Allele specific priming was used to determine the mutations in beta-carriers at -28, Codon 17, IVSI #1, IVSI #5, Codon 41-42 and IVSII #654 along the beta-globin gene. The most common structural hemoglobin variant in Southeast Asia, Hb E, was detected by DNA amplification with restriction enzyme (Mnl1) analysis. Direct genomic sequencing was carried out to detect the beta-mutations uncharacterized by allele-specific priming. The most prevalent beta-mutations in Singaporean Malays were IVSI #5 (45.83%) followed by Hb E (20.83%), codon 15 (12.5%) and IVSI #1 and IVSII #654 at 4.17% each. In contrast, the distribution of the beta-mutations in Kelantan Malays differed, with Hb E as the most common mutation (39.29%) followed by IVSI #5 (17.86%), codon 41-42 (14.29%), codon 19 (10.71%) and codon 17 (3.57%). The beta-mutations in Kelantan Malays follow closely the distribution of beta-mutations in Thais and Malays of Southern Thailand and Malays of West Malaysia. The AAC-->AGC base substitution in codon 19 has been detected only in these populations. The spectrum of beta-mutations in the Singaporean Malays is more similar to those reported in Indonesia with the beta-mutation at codon 15 (TGG-->TAG) present in both populations. The characterization of beta-mutations in Singaporean and Kelantan Malays will facilitate the establishment of effective prenatal diagnosis programs for beta-thalassemia major in this ethnic group.
    Matched MeSH terms: DNA Mutational Analysis*
  6. Ton SH, Iskandar K, Noriah R, Thanaletchimy N
    Scand. J. Infect. Dis., 1996;28(6):543-8.
    PMID: 9060053
    As most published studies on precore mutants have been carried out on isolates from patients with liver diseases, and it is unclear whether HBsAg carriers with viraemia in the absence of HBeAg are also generally infected by such mutants, it was decided to sequence the precore region in some HBV-DNA isolated from HBsAg-positive carriers. Precore sequences of HBV-DNA from 43 HBsAg carriers in Malaysia were studied. Three HBV subtypes were identified according to the nucleotide sequence of the precore region. Most of the carriers were found to be infected by the subtype adr. Mutations were detected in the precore regions. The most common conserved mutation was a silent mutation involving conversion from T to C (CCT to CCC) at position 1858 at codon 15 (proline). It was found that 4/43 (9.3%) had a mutation at the penultimate codon where TGG was changed to TAG. All 4 isolates with the TAG mutation had nt T at position 1858. Of the 4 carriers who were infected by these mutant viruses, 2 were coinfected with the wild type, 1 was infected only by a variant with the mutation at position 1896, while another was infected by a variant with mutations at positions 1896 and 1899. Three of the 4 were anti-HBe positive while 1 was HBeAg positive. Alanine aminotransaminase activities in all 4 carriers were normal. This study therefore demonstrated that variants with stop codons at the penultimate codon could be found in asymptomatic carriers in Malaysia.
    Matched MeSH terms: DNA Mutational Analysis
  7. Choong ML, Koay ES, Khoo KL, Khaw MC, Sethi SK
    Clin Chem, 1997 Jun;43(6 Pt 1):916-23.
    PMID: 9191540
    The Arg-to-Trp substitution at codon 3500 in the apolipoprotein (apo) B-100 gene is established as a cause of familial defective apo B-100 (FDB), a functional mutation, resulting in reduced LDL receptor binding and manifest hypercholesterolemia. In a search for similar mutations in 163 Malaysians, we screened the putative receptor-binding region (codons 3456-3553) of the apo B-100 gene by PCR amplification and denaturing gradient-gel electrophoresis. Four single-base mutations were detected and confirmed by DNA sequencing. Two females, a Chinese and a Malay, had the same CGG3500-->TGG mutation, resulting in an Arg3500-to-Trp substitution. This is the second published report of such an independent mutation involving the same codon as the established Arg3500-to-Gln mutation. The two other mutations detected, CTT3517-->CTG and GCC3527-->GCT, resulted in degenerate codons with no amino acid substitutions. All four mutations were associated with a unique apo B haplotype, different from those found in Caucasian FDB patients but concurring with that previously reported for two other Asians with FDB.
    Matched MeSH terms: DNA Mutational Analysis/methods
  8. Furuumi H, Firdous N, Inoue T, Ohta H, Winichagoon P, Fucharoen S, et al.
    Hemoglobin, 1998 Mar;22(2):141-51.
    PMID: 9576331
    We have systematically analyzed beta-thalassemia genes using polymerase chain reaction-related techniques, dot-blot hybridization with oligonucleotide probes, allele specific-polymerase chain reaction, and sequencing of amplified DNA fragments from 41 unrelated patients, including 37 beta-thalassemia homozygotes, three with beta-thalassemia/Hb E, and one with beta-thalassemia/Hb S. Four different beta-thalassemia mutations were detected in 78 alleles. These are the IVS-I-5 (G-->C), codon 30 (AGG-->ACG) [also indicated as IVS-I (-1)], IVS-I-1 (G-->A), and codons 41/42 (-TTCT) mutations. The distribution of the beta-thalassemia mutations in the Maldives is 58 alleles (74.3%) with the IVS-I-5 (G-->C) mutation, 12 (15.4%) with the codon 30 (AGG-->ACG) mutation, seven (9%) with the IVS-I-1 (G-->A) mutation, and one with the codons 41/42 (-TTCT) mutation. The first three mutations account for 98.7% of the total number of beta-thalassemia chromosomes studied. These mutations are clustered in the region spanning 6 bp around the junction of exon 1 and the first intervening sequence of the beta-globin gene. These observations have significant implications for setting up a thalassemia prevention and control program in the Maldives. Analysis of haplotypes and frameworks of chromosomes bearing each beta-thalassemia mutation suggested that the origin and spread of these mutations were reflected by the historical record.
    Matched MeSH terms: DNA Mutational Analysis
  9. Mohd Yusoff, N., Choo, K.E., Ghazali, S., Ibrahim, I., Mohd Hussin, Z.A., Mohd Yunus, et al.
    MyJurnal
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked red blood cell enzymopathy common in malaria endemic areas. Individuals affected by this disease show a wide variety of clinical signs including neonatal jaundice. In this preliminary report we describe the heterogeneity of G6PD deficient gene in neonatal jaundice in the Malay population in Kelantan. Thirteen G6PD deficient Malay neonates with hyperbilirubinemia were subjected to mutation analysis of the G6PD gene for known candidate mutations. Molecular defects were identified in the 13 patients studied. Though all of these were mis-sense mutations, identified nucleotide changes were heterogeneous. Six patients were found to have a C to T nucleotide change at nucleotide 563 of the G6PD gene (C563T), corresponding to G6PD Mediterranean; three cases had a single nucleotide change at T383C (G6PD Vanua Lava), two cases had G487A (G6PD Mahidol) and two cases had G1376T (G6PD Canton). These findings suggest that there are heterogeneous mutations of the G6PD gene associated with neonatal jaundice in the Malay population in Kelantan.
    Matched MeSH terms: DNA Mutational Analysis
  10. Iwai K, Hirono A, Matsuoka H, Kawamoto F, Horie T, Lin K, et al.
    Hum Genet, 2001 Jun;108(6):445-9.
    PMID: 11499668
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a heterogeneous enzyme abnormality with high frequency in tropical areas. We performed population screening and molecular studies of G6PD variants to clarify their distribution and features in Southeast Asia. A total of 4317 participants (2019 males, 2298 females) from 16 ethnic groups in Myanmar, Lao in Laos, and Amboinese in Indonesia were screened with a single-step screening method. The prevalence of G6PD-deficient males ranged from 0% (the Akha) to 10.8% (the Shan). These G6PD-deficient individuals and 12 G6PD-deficient patients who had been diagnosed at hospitals in Indonesia and Malaysia were subjected to molecular analysis by a combination of polymerase-chain-reaction-based single-strand conformation polymorphism analysis and direct sequencing. Ten different missense mutations were identified in 63 G6PD-deficient individuals (50 hemizygotes, 11 heterozygotes, and 2 homozygotes) from 14 ethnic groups. One missense mutation (1291 G-->A) found in an Indonesian Chinese, viz., G6PD Surabaya, was previously unknown. The 487 G-->A (G6PD Mahidol) mutation was widely seen in Myanmar, 383 T-->C (G6PD Vanua Lava) was specifically found among Amboinese, 871 G-->A (G6PD Viangchan) was observed mainly in Lao, and 592 C-->T (G6PD Coimbra) was found in Malaysian aborigines (Orang Asli). The other five mutations, 95 A-->G (G6PD Gaohe), 1003 G-->A (G6PD Chatham), 1360 C-->T (G6PD Union), 1376 G-->T (G6PD Canton), and 1388 G-->A (G6PD Kaiping) were identified mostly in accordance with distributions reported previously.
    Matched MeSH terms: DNA Mutational Analysis
  11. Tan KL, Tan JA, Wong YC, Wee YC, Thong MK, Yap SF
    Genet. Test., 2001;5(1):17-22.
    PMID: 11336396 DOI: 10.1089/109065701750168626
    Beta-thalassemia major patients have chronic anemia and are dependent on blood transfusions to sustain life. Molecular characterization and prenatal diagnosis of beta3-thalassemia is essential in Malaysia because about 4.5% of the population are heterozygous carriers for beta-thalassemia. The high percentage of compound heterozygosity (47.62%) found in beta-thalassemia major patients in the Thalassaemia Registry, University of Malaya Medical Centre (UMMC), Malaysia, also supports a need for rapid, economical, and sensitive protocols for the detection of beta-thalassemia mutations. Molecular characterization of beta-thalassemia mutations in Malaysia is currently carried out using ARMS, which detects a single beta-thalassemia mutation per PCR reaction. We developed and evaluated Combine amplification refractory mutation system (C-ARMS) techniques for efficient molecular detection of two to three beta-thalassemia mutations in a single PCR reaction. Three C-ARMS protocols were evaluated and established for molecular characterization of common beta-thalassemia mutations in the Malay and Chinese ethnic groups in Malaysia. Two C-ARMS protocols (cd 41-42/IVSII #654 and -29/cd 71-72) detected the beta-thalassemia mutations in 74.98% of the Chinese patients studied. The CARMS for cd 41-42/IVSII #654 detected beta-thalassemia mutations in 72% of the Chinese families. C-ARMS for cd 41-42/IVSI #5/cd 17 allowed detection of beta-thalassemia mutations in 36.53% of beta-thalassemia in the Malay patients. C-ARMS for cd 41-42/IVSI #5/cd 17 detected beta-thalassemia in 45.54% of the Chinese patients. We conclude that C-ARMS with the ability to detect two to three mutations in a single reaction provides more rapid and cost-effective protocols for beta-thalassemia prenatal diagnosis and molecular analysis programs in Malaysia.
    Matched MeSH terms: DNA Mutational Analysis/economics*; DNA Mutational Analysis/methods*
  12. Yusoff NM, Shirakawa T, Nishiyama K, Ghazali S, Ee CK, Orita A, et al.
    Int J Hematol, 2002 Aug;76(2):149-52.
    PMID: 12215013 DOI: 10.1007/BF02982577
    Multiplex polymerase chain reaction (PCR) using multiple tandem forward primers and a common reverse primer (MPTP) was recently established as a comprehensive screening method for mutations in X-linked recessive diseases. In the work reported here, MPTP was used to scan for mutations of the glucose-6-phosphate dehydrogenase (G6PD) gene. Mutations in exons 3,4,5,6,7,9, 11, and 12 of the G6PD gene were screened by MPTP in 93 unrelated Malaysian patients with G6PD deficiency. Of the 93 patients, 80 (86%) had identified mutations. Although all of these were missense mutations, identified nucleotide changes were heterogeneous, with 9 mutations involving various parts of the exons. These 9 mutations were G-to-A nucleotide changes at nucleotide 871 of the G6PD gene (G871A), corresponding to G6PD Viangchan, G6PD Mediterranean (C563T), G6PD Vanua Lava (T383C), G6PD Coimbra (C592T), G6PD Kaiping (G1388A), G6PD Orissa (C131G), G6PD Mahidol (G487A), G6PD Canton (G1376T), and G6PD Chatham (G1003A). Our results document heterogeneous mutations of the G6PD gene in the Malaysian population.
    Matched MeSH terms: DNA Mutational Analysis
  13. Kham SK, Tan PL, Tay AH, Heng CK, Yeoh AE, Quah TC
    J Pediatr Hematol Oncol, 2002 Jun-Jul;24(5):353-9.
    PMID: 12142782
    The purpose of this study was to determine the frequency of thiopurine methyltransferase (TPMT) polymorphisms in a multiracial Asian population and to assess its relevance in the management of childhood acute lymphoblastic leukemia (ALL). Six hundred unrelated cord blood samples from 200 Chinese, Malay, and Indian healthy newborns were collected at the National University Hospital, Singapore; an additional 100 children with ALL were analyzed for five of the commonly reported TPMT variant alleles using polymerase chain reaction/restriction fragment length polymorphism and allele-specific polymerase chain reaction-based assays. In the cord blood study, the TPMT*3C variant was detected in all three ethnic groups; Chinese, Malays, and Indians had allele frequencies of 3%, 2.3%, and 0.8%, respectively. The TPMT*3A variant was found only among the Indians at a low allele frequency of 0.5%. The TPMT*6 variant was found in one Malay sample. Among the children with ALL, two white and one Chinese were heterozygous for the TPMT*3A variant and showed intermediate sensitivity to 6-mercaptopurine during maintenance therapy. Three Chinese patients and one Malay patient were heterozygous for the TPMT*3C variant. Mercaptopurine sensitivity could be validated in only one out of four TPMT*3C heterozygous patients. The overall allele frequency of the TPMT variants in this multiracial population was 2.5%. The TPMT*3C was the most common variant allele; TPMT*3A and TPMT*6 were rare. These results support the feasibility of performing TPMT genotyping in all children diagnosed with acute leukemia to minimize toxicity from thiopurine chemotherapy.
    Matched MeSH terms: DNA Mutational Analysis
  14. Zeenathul NA, Mohd-Azmi ML, Ali AS, Aini I, Sheik-Omar AR, Abdul-Rahim AM, et al.
    Rev. Argent. Microbiol., 2002 Jan-Mar;34(1):7-14.
    PMID: 11942085
    Both wild-type virulent and mutant strains of pseudorabies virus (PrV) were used in this study. Mutants used were derived from the plaque purified strain PrVmAIP. A total of six drug resistant mutants, three bromodeoxyuridine (BUdR) resistant and three iododeoxyuridine (IUdR) resistant, respectively, were isolated and passaged in chicken embryo fibroblast (CEF) cells. The DNA of these PrVs were compared with the wild-type isolates by means of the restriction fragment pattern (RFP) findings produced with Bam HI, Kpn I, Hind III and Bgl II restriction enzymes (RE). Compared to the wild-type PrVs (PrV-VBA1-parental strain of PrVmAIP; PrV-VBA2; PrV-VBA3), the RFP of PrVmAIP showed the presence of mutations within the RE sites studied. Both PrV-VBA1 and PrV-VBA2 appeared to be closely related but their RFPs differed from PrV-VBA3. Significant differences either in the number, size or migrations of the DNA fragments could also be detected in the BUdR resistant strains. Even though different features of cytopathic effect (GPE) were observed in the IUdR resistant PrVs, the RFP findings remained identical. The PrVs studied showed considerable differences from the reference PrV (PrV-CD).
    Matched MeSH terms: DNA Mutational Analysis
  15. Ainoon O, Yu YH, Amir Muhriz AL, Boo NY, Cheong SK, Hamidah NH
    Hum Mutat, 2003 Jan;21(1):101.
    PMID: 12497642 DOI: 10.1002/humu.9103
    We performed DNA analysis using cord blood samples on 86 male Malay neonates diagnosed as G6PD deficiency in the National University of Malaysia Hospital by a combination of rapid PCR-based techniques, single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing. We found 37.2% were 871G>A (G6PD Viangchan), 26.7% were nt 563 C>T (G6PD Mediterranean) and 15.1% were 487G>A (G6PD Mahidol) followed by 4.7% 1376G>T (G6PD Canton), 3.5% 383T>C (G6PD Vanua Lava), 3.5% 592C>T (G6PD Coimbra), 2.3% 1388G>A (G6PD Kaiping), 2.3% 1360C>T (G6PD Union), 2.3% 1003G>A (G6PD Chatham), 1.2% 131C>G (G6PD Orissa) and 1.2% 1361G>A (G6PD Andalus). Seventy-one (82.6%) of the 86 G6PD-deficient neonates had neonatal jaundice. Fifty seven (80%) of the 71 neonates with jaundice required phototherapy with only one neonate progressing to severe hyperbilirubinemia (serum bilirubin >340 micromol/l) requiring exchange transfusion. There was no significant difference in the incidence of neonatal jaundice, mean serum bilirubin level, mean age for peak serum bilirubin, percentage of babies requiring phototherapy and mean number of days of phototherapy between the three common variants. In conclusion, the molecular defects of Malay G6PD deficiency is heterogeneous and G6PD Viangchan, Mahidol and Mediterranean account for at least 80% of the cases. Our findings support the observation that G6PD Viangchan and Mahidol are common Southeast Asian variants. Their presence in the Malays suggests a common ancestral origin with the Cambodians, Laotians and Thais. Our findings together with other preliminary data on the presence of the Mediterranean variant in this region provide evidence of strong Arab influence in the Malay Archipelago.
    Matched MeSH terms: DNA Mutational Analysis
  16. Nasuha NA, Daud AH, Ghazali MM, Yusoff AA, Zainuddin N, Abdullah JM, et al.
    Asian J Surg, 2003 Apr;26(2):120-5.
    PMID: 12732498
    A case of pleomorphic xanthoastrocytoma in a 10-year-old Malay boy is reported. The patient presented with headache and epilepsy. On computed tomography, a ring-enhancing low-density lesion was observed in the left fronto-temporal area. During surgery, a cystic tumour containing serous fluid was found and almost totally removed. Histologically, the tumour exhibited marked pleomorphism of oval and spindle-shaped cells intermixed with uni- and multinucleated giant cells, and xanthomatous cells with foamy cytoplasm. The tumour displayed pericellular reticulin and periodic acid-Schiff positive granules. Focally, six mitotic characters per 10 high-power fields were seen, and necrosis was confined only to the inner lining of the cyst. Mutational analysis showed that a frameshift mutation (a 4-bp deletion) in the p53 gene had occurred in codons 273 and 274 of exon 8. No mutation was detected in the p16 gene. No allelic loss and/or loss of heterozygosity were observed on chromosome 10 using microsatellite marker D105532. The patient was treated with postoperative radiotherapy because of histological anaplasia and the presence of residual tumour. The patient showed marked neurological recovery after a follow-up period of 2 years.
    Matched MeSH terms: DNA Mutational Analysis
  17. Lee AS, Ho GH, Oh PC, Balram C, Ooi LL, Lim DT, et al.
    Hum Mutat, 2003 Aug;22(2):178.
    PMID: 12872263
    The mutation spectrum of the BRCA1 gene among ethnic groups from Asia has not been well studied. We investigated the frequency of mutations in the BRCA1 gene among Malay breast cancer patients from Singapore, independent of family history. By using the protein truncation test (PTT) and direct sequencing, BRCA1 mutations were detected in 6 of 49 (12.2%) unrelated patients. Four novel missense mutations in exon 11, T557A (1788A>G), T582A (1863A>G), N656S (2086A>G) and P684S (2169C>T) were identified in one patient. Two patients had missense mutations in exon 23, V1809A (5545T>C), which has been previously detected in individuals from Central and Eastern Europe. Three unrelated patients had the deleterious 2846insA frameshift mutation in exon 11. Methylation specific PCR (MSP) of the promoter region of the BRCA1 gene detected hypermethylation of tumor DNA in an additional 2 patients. Haplotype analysis using the microsatellite markers D17S855, D17S1323 and D17S1325 revealed a common haplotype for the three unrelated patients and their three relatives with the 2846insA mutation. These findings strongly suggest that the 2846insA mutation, the most common deleterious mutation in this study, may possibly be a founder mutation in breast cancer patients of Malay ethnic background.
    Matched MeSH terms: DNA Mutational Analysis/methods
  18. Matsuo M, Nishiyama K, Shirakawa T, Padilla CD, San LP, Suryantoro P, et al.
    PMID: 15906715
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is common in malaria endemic regions and is estimated to affect more than 400 million people worldwide. Deficient subjects are mostly asymptomatic but clinical manifestations range from neonatal jaundice due to acute hemolytic anemia to chronic non-spherocytic hemolytic anemia. To date, biochemical parameters allowed more than 400 different G6PD variants to be distinguished thereby suggesting a vast genetic heterogeneity. So far, only a small portion of this heterogeneity has been confirmed at the DNA level with the identification of about 90 different point mutations in the G6PD coding sequence. To determine the molecular background of G6PD deficiency in Southeast Asian countries, we conducted molecular analyses of G6PD patients from the Philippines, Malaysia, Singapore, Vietnam and Indonesia. The most prevalent mutation identified differs from country to country, thus suggesting independent mutational events of the G6PD gene.
    Matched MeSH terms: DNA Mutational Analysis
  19. Mohd Yusoff N, Shirakawa T, Nishiyama K, Choo KE, Isa MN, Matsuo M
    PMID: 15906717
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked red blood cell enzymopathy common in malaria endemic areas. Individuals affected by this disease show a wide variety of clinical signs of acute hemolytic anemia. Mutations of the G6PD gene in the Malay population with G6PD deficiency in Kelantan, a state in North East Malaysia were studied. Ninety-three individuals with G6PD deficiency were subjected to mutation analysis of the G6PD gene using polymerase chain reaction based techniques of multiplex PCR. Of the ninety-three DNA samples studied, molecular defects were identified in 80 cases (86%). Variants were heterogeneous - 28.7% were found to have a G to A nucleotide change at nucleotide 871 of the G6PD gene (G871A), corresponding to G6PD Viangchan. The other major mutations were G6PD Mediterranean, G6PD Vanua Lava, G6PD Coimbra, G6PD Kaiping, G6PD Orissa, G6PD Mahidol, G6PD Canton and G6PD Chatham. These results showed that there are heterogeneous mutations of the G6PD gene associated with G6PD deficiency and that G6PD Viangchan and G6PD Mediterranean account for the main variants in G6PD deficiency among the Malay population in Malaysia.
    Matched MeSH terms: DNA Mutational Analysis
  20. Tan JAMA, Yap SF, Tan KL, Wong YC, Wee YC, Kok JL
    Acta Haematol., 2003;109(4):169-75.
    PMID: 12853688 DOI: 10.1159/000070965
    Molecular characterization of the compound heterozygous condition - (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia - in four families showing mild beta-thalassemia intermedia was carried out using DNA amplification techniques. Using the Amplification Refractory Mutation System (ARMS) to confirm the beta-mutations and DNA amplification to detect the 100-kb Chinese-specific (G)gamma((A)gammadeltabeta)(o)-deletion, ()two families were confirmed to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia with the IVSII No. 654 beta(+)-allele. In the third family, the (G)gamma((A)gammadeltabeta)(o)-deletion was confirmed in the father and the mother was a beta-thalassemia carrier with the cd 41-42 beta(o)-allele. Their affected child with (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia was found to be transfusion dependent. The same (G)gamma((A)gammadeltabeta)(o)-deletion and beta-thalassemia (cd 41-42) was also confirmed in a fourth family. In addition, the mother was also diagnosed with Hb H disease (genotype -alpha(3.7)/-(SEA)). Both the children were found to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia but they were not transfusion dependent and this could be due to co-inheritance of alpha-thalassemia-2 (genotype-alpha(3.7)/alphaalpha) in the children together with their compound heterozygous condition.
    Matched MeSH terms: DNA Mutational Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links