Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Rathakrishnan A, Klekamp B, Wang SM, Komarasamy TV, Natkunam SK, Sathar J, et al.
    PLoS One, 2014;9(3):e92021.
    PMID: 24647042 DOI: 10.1371/journal.pone.0092021
    With its elusive pathogenesis, dengue imposes serious healthcare, economic and social burden on endemic countries. This study describes the clinical and immunological parameters of a dengue cohort in a Malaysian city, the first according to the WHO 2009 dengue classification.
    Matched MeSH terms: Dengue/immunology*
  2. Abubakar S, Azila A, Suzana M, Chang LY
    Malays J Pathol, 2002 Jun;24(1):29-36.
    PMID: 16329553
    At least three major antigenic dengue 2 virus proteins were recognized by pooled dengue fever patients' sera in infected Aedes albopictus (C6/36) mosquito cells. Dengue virus envelope (E), premembrane (PrM) and non-structural protein 1 (NS 1) dimer were detected beginning on day 3 postinfection in both the cell membrane and cytosolic fractions. Using the patients' sera, the presence of antigenic intermediate core protein (C)-PrM and NS1-non-structural protein 2a (NS2a) in the cytoplasmic fraction of dengue 2 virus infected cells was revealed. The presence of a approximately 92 and approximately 84 kDa NS 1 dimer in the membrane (NS 1m) and cytosolic (NS 1c) fractions of C6/36 cells, respectively, was also recognized. Using individual patient's serum, it was further confirmed that all patients' sera contained antibodies that specifically recognized E, NS 1 and PrM present in the dengue 2 virus-infected cell membrane fractions, suggesting that these glycosylated virus proteins were the main antigenic proteins recognized in vivo. Detection of dengue 2 virus C antibody in some patients further suggested that C could be antigenic if presented in vivo.
    Matched MeSH terms: Dengue/immunology*
  3. Osman O, Fong MY, Devi S
    Jpn J Infect Dis, 2007 Jul;60(4):205-8.
    PMID: 17642533
    The purpose of this study was to examine the extent of dengue infection in Brunei and to determine the predominant serotype circulating in the country. The study generated useful epidemiological data on dengue infection in Brunei. A total of 271 samples from patients suspected of having dengue infections were selected and analyzed. All patients were seen in clinics and hospitals in Brunei. The samples were collected from April 2005 to April 2006 and transported to the WHO Collaborating Centre for Arbovirus Reference and Research, University of Malaya, Malaysia. The following tests were used to achieve the objectives: in-house IgM-capture enzyme-linked immunosorbent assay, virus isolation in mosquito albopictus cell line (C6/36), and viral RNA detection and serotyping by reverse transcriptase-polymerase chain reaction (RT-PCR). The results show that 45 people were positive for dengue-specific IgM (27 males and 18 females), while RT-PCR detected dengue viral RNA in 12 patients, 3 identified as DEN-1 and 9 as DEN-2. Dengue virus was isolated from 6 patients using the C6/36 cell line; 3 were DEN-2 isolates and 3 were DEN-1 isolates. These data show that dengue virus is circulating in Brunei and the predominant infecting serotype for that period was DEN-2 followed by DEN-1. This study is the first to report the detection and isolation of dengue virus from Brunei using RT-PCR and culture in the C6/36 albopictus mosquito cell line.
    Matched MeSH terms: Dengue/immunology
  4. Tan JW, Wan Zahidi NF, Kow ASF, Soo KM, Shaari K, Israf DA, et al.
    Biosci Rep, 2019 06 28;39(6).
    PMID: 31110077 DOI: 10.1042/BSR20181273
    Mast cells (MCs), a type of immune effector cell, have recently become recognized for their ability to cause vascular leakage during dengue virus (DENV) infection. Although MC stabilizers have been reported to attenuate DENV induced infection in animal studies, there are limited in vitro studies on the use of MC stabilizers against DENV induced MC degranulation. 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) has been reported to be a potential MC stabilizer by inhibiting IgE-mediated MC activation in both cellular and animal models. The present study aims to establish an in vitro model of DENV3-induced RBL-2H3 cells using ketotifen fumarate as a control drug, as well as to determine the effect of tHGA on the release of MC mediators upon DENV infection. Our results demonstrated that the optimal multiplicities of infection (MOI) were 0.4 × 10-2 and 0.8 × 10-2 focus forming units (FFU)/cell. Ketotifen fumarate was proven to attenuate DENV3-induced RBL-2H3 cells degranulation in this in vitro model. In contrast, tHGA was unable to attenuate the release of both β-hexosaminidase and tumor necrosis factor (TNF)-α. Nonetheless, our study has successfully established an in vitro model of DENV3-induced RBL-2H3 cells, which might be useful for the screening of potential MC stabilizers for anti-dengue therapies.
    Matched MeSH terms: Dengue/immunology*
  5. Thayan R, Huat TL, See LL, Tan CP, Khairullah NS, Yusof R, et al.
    Trans R Soc Trop Med Hyg, 2009 Apr;103(4):413-9.
    PMID: 19203772 DOI: 10.1016/j.trstmh.2008.12.018
    Dengue infection is a major public health problem affecting millions of people living in tropical countries. With no suitable vaccines and specific antiviral drugs, treatment for dengue is usually symptomatic and supportive. Early diagnosis and recognition of severe disease is therefore crucial for better management of the patient. Two-dimension electrophoresis was used to identify disease-associated proteins that can be used for diagnosis and as drug targets for treatment. Two markers, identified by mass spectrometry analysis as alpha1-antitrypsin and NS1 proteins were found to be upregulated in dengue fever (DF; n=10) and dengue haemorrhagic fever (DHF; n=10) patients compared with healthy individuals (n=8). Both alpha1-antitrypsin and NS1 proteins were overexpressed two-fold in DHF patients compared with DF patients. Our study suggests that alpha1-antitrypsin and NS1 protein could be used as biomarkers as early indicators of DHF risk among patients with suspected dengue infection.
    Matched MeSH terms: Severe Dengue/immunology
  6. Wong SS, Abd-Jamil J, Abubakar S
    Viral Immunol, 2007 Sep;20(3):359-68.
    PMID: 17931106
    Outbreaks involving dengue viruses (DENV) of the same genotype occur in a cyclical pattern in Malaysia. Two cycles of outbreaks involving dengue virus type 2 (DENV-2) of the same genotype occurred in the 1990s in the Klang Valley, Malaysia. Sera of patients from the first outbreak and sera of mice inoculated with virus from the same outbreak had poorer neutralization activity against virus of the second outbreak. Conversely, patient sera from the second outbreak showed higher neutralization titer against virus of the early outbreak. At subneutralizing concentrations, sera of mice immunized with second outbreak virus did not significantly enhance infection with viruses from the earlier outbreak. Amino acid substitution from valine to isoleucine at position 129 of the envelope protein (E), as well as threonine to alanine at position 117 and lysine to arginine at position 272 of the NS1 protein, differentiated viruses of the two outbreaks. These findings highlight the potential influence of specific intragenotypic variations in eliciting varied host immune responses against the different DENV subgenotypes. This could be an important contributing factor in the recurring homogenotypic dengue virus outbreaks seen in dengue-endemic regions.
    Matched MeSH terms: Dengue/immunology*
  7. Soe HJ, Manikam R, Raju CS, Khan MA, Sekaran SD
    PLoS One, 2020;15(8):e0237141.
    PMID: 32764789 DOI: 10.1371/journal.pone.0237141
    Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.
    Matched MeSH terms: Severe Dengue/immunology
  8. Meena AA, Murugesan A, Sopnajothi S, Yong YK, Ganesh PS, Vimali IJ, et al.
    Viral Immunol, 2019 09 18;33(1):54-60.
    PMID: 31532346 DOI: 10.1089/vim.2019.0100
    Dengue virus (DENV) infection has become an increasingly common concern in tropical and subtropical regions. It has protean manifestations ranging from febrile phase to severe life-threatening illness. In this study, we estimated Th1 and Th2 cytokines and correlated the levels with dengue severity along with certain hematological and biochemical parameters. We also studied the seroprevalence of dengue between October and December 2017 at the Government Theni Medical College, India. Individuals with dengue fever (DF) were positive for either IgM or IgG, or both. The biochemical and hematological parameters along with plasma tumor necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), granulocyte monocyte-colony stimulating factor (GM-CSF), interleukin (IL)-13, IL-12p70, IL-10, IL-5, IL-4, and IL-2 cytokines were estimated. The prevalence of DF was 42.9% during the study period. IL-2, TNF-α, IL-4, and IL-10 levels were significantly elevated (p 
    Matched MeSH terms: Dengue/immunology*
  9. Hoh BP, Umi-Shakina H, Zuraihan Z, Zaiharina MZ, Rafidah-Hanim S, Mahiran M, et al.
    Hum Immunol, 2015 Jun;76(6):421-6.
    PMID: 25858769 DOI: 10.1016/j.humimm.2015.03.019
    Dengue causes significantly more human disease than any other arboviruses. It causes a spectrum of illness, ranging from mild self-limited fever, to severe and fatal dengue hemorrhagic fever, as evidenced by vascular leakage and multifactorial hemostatic abnormalities. There is no specific treatment available till date. Evidence shows that chemokines CXCL10, CXCL11 and their receptor CXCR3 are involved in severity of dengue, but their genetic association with the susceptibility of vascular leakage during dengue infection has not been reported. We genotyped 14 common variants of these candidate genes in 176 patients infected with dengue. rs4859584 and rs8878 (CXCL10) were significantly associated with vascular permeability of dengue infection (P<0.05); while variants of CXCL11 showed moderate significance of association (P=0.0527). Haplotype blocks were constructed for genes CXCL10 and CXCL11 (5 and 7 common variants respectively). Haplotype association tests performed revealed that, "CCCCA" of gene CXCL10 and "AGTTTAC" of CXCL11 were found to be significantly associated with vascular leakage (P=0.0154 and 0.0366 respectively). In summary, our association study further strengthens the evidence of the involvement of CXCL10 and CXCL11 in the pathogenesis of dengue infection.
    Matched MeSH terms: Dengue/immunology
  10. Lim HX, Lim J, Poh CL
    Med Microbiol Immunol, 2021 Feb;210(1):1-11.
    PMID: 33515283 DOI: 10.1007/s00430-021-00700-x
    Dengue virus (DENV) comprises four serotypes (DENV1-4) which cause 390 million global infections with 500,000 hospitalizations and 25,000 fatalities annually. Currently, the only FDA approved DENV vaccine is the chimeric live-attenuated vaccine, Dengvaxia®, which is based on the yellow fever virus (YFV) genome that carries the prM and E genes of the respective DENV 1, 2, 3, and 4 serotypes. However, it has lower efficacies against serotypes DENV1 (51%) and DENV2 (34%) when compared with DENV3 (75%) and DENV4 (77%). The absence of T cell epitopes from non-structural (NS) and capsid (C) proteins of the yellow fever vaccine strain might have prevented Dengvaxia® to elicit robust cellular immune responses, as CD8+ T cell epitopes are mainly localized in the NS3 and NS5 regions. Multi-epitope-based peptide vaccines carrying CD4+, CD8+ T cell and B cell epitopes represent a novel approach to generate specific immune responses. Therefore, assessing and selecting epitopes that can induce robust B and T cell responses is a prerequisite for constructing an efficient multi-epitope peptide vaccine. Potent B and T cell epitopes can be identified by utilizing immunoinformatic analysis, but the immunogenicity of the epitopes have to be experimentally validated. In this review, we presented T cell epitopes that have been predicted by bioinformatic approaches as well as recent experimental validations of CD4+ and CD8+ T cell epitopes by ex-vivo stimulation of PBMCs with specific peptides. Immunoproteomic analysis could be utilized to uncover HLA-specific epitopes presented by DENV-infected cells. Based on various approaches, immunodominant epitopes capable of inducing strong immune responses could be selected and incorporated to form a universally applicable multi-epitope-based peptide dengue vaccine.
    Matched MeSH terms: Dengue/immunology*
  11. Zainal N, Tan KK, Johari J, Hussein H, Wan Musa WR, Hassan J, et al.
    Microbiol. Immunol., 2018 Oct;62(10):659-672.
    PMID: 30259549 DOI: 10.1111/1348-0421.12652
    Dengue is the most prevalent mosquito-borne disease in Southeast Asia, where the incidence of systemic lupus erythematosus (SLE) is approximately 30 to 53 per 100,000. Severe dengue, however, is rarely reported among individuals with SLE. Here, whether sera of patients with SLE cross-neutralize dengue virus (DENV) was investigated. Serum samples were obtained from individuals with SLE who were dengue IgG and IgM serology negative. Neutralization assays were performed against the three major DENV serotypes. Of the dengue serology negative sera of individuals with SLE, 60%, 61% and 52% of the sera at 1/320 dilution showed more than 50% inhibition against dengue type-1 virus (DENV-1), DENV-2 and DENV-3, respectively. The neutralizing capacity of the sera was significantly greater against DENV-1 (P 
    Matched MeSH terms: Dengue/immunology*
  12. Chan SY, Kautner IM, Lam SK
    J Virol Methods, 1994 Oct;49(3):315-22.
    PMID: 7868649
    The potential of RT-PCR to rapidly diagnose dengue infections from both acute and convalescent phase patients' sera was evaluated. The RNA extraction method involved binding of the viral RNA to silica particles in the presence of high concentration of guanidine thiocyanate. The protocol that was established was sensitive enough to detect 40 plaque forming units per 100 microliter of serum and results could be obtained within one day. Results from this study indicate that clinical samples should be collected in the early acute phase of illness when anti-dengue antibodies were undetectable or of low titres to ensure a more reliable diagnosis.
    Matched MeSH terms: Dengue/immunology*
  13. Dhanoa A, Hassan SS, Jahan NK, Reidpath DD, Fatt QK, Ahmad MP, et al.
    Infect Dis Poverty, 2018 Jan 16;7(1):1.
    PMID: 29335021 DOI: 10.1186/s40249-017-0384-1
    BACKGROUND: The frequency and magnitude of dengue epidemics continue to increase exponentially in Malaysia, with a shift in the age range predominance toward adults and an expansion to rural areas. Despite this, information pertaining to the extent of transmission of dengue virus (DENV) in the rural community is lacking. This community-based pilot study was conducted to establish DENV seroprevalence amongst healthy adults in a rural district in Southern Malaysia, and to identify influencing factors.

    METHODS: In this study undertaken between April and May 2015, a total of 277 adult participants were recruited from households across three localities in the Sungai Segamat subdistrict in Segamat district. Sera were tested for immunoglobulin G (IgG) (Panbio® Dengue Indirect IgG ELISA/high-titer capture) and immunoglobulin M (IgM) (Panbio®) antibodies. The plaque reduction neutralization test (PRNT) was conducted on random samples of IgG-positive sera for further confirmation. Medical history and a recall of previous history of dengue were collected through interviews, whereas sociodemographic information was obtained from an existing database.

    RESULTS: The overall seroprevalence for DENV infection was 86.6% (240/277) (95% CI: 83-91%). Serological evidence of recent infection (IgM/high-titer capture IgG) was noted in 11.2% (31/277) of participants, whereas there was evidence of past infection in 75.5% (209/277) of participants (indirect IgG minus recent infections). The PRNT assay showed that the detected antibodies were indeed specific to DENV. The multivariate analysis showed that the older age group was significantly associated with past DENV infections. Seropositivity increased with age; 48.5% in the age group of <25 years to more than 85% in age group of >45 years (P 

    Matched MeSH terms: Dengue/immunology*
  14. Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, et al.
    Cell Host Microbe, 2021 Nov 10;29(11):1634-1648.e5.
    PMID: 34610295 DOI: 10.1016/j.chom.2021.09.006
    Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
    Matched MeSH terms: Dengue/immunology*
  15. Mohamed Ismail NA, Wan Abd Rahim WE, Salleh SA, Neoh HM, Jamal R, Jamil MA
    ScientificWorldJournal, 2014;2014:436975.
    PMID: 25587564 DOI: 10.1155/2014/436975
    Malaysia a dengue endemic country with dengue infections in pregnancy on the rise. The present study was aimed at determining dengue seroprevalence (IgG or IgM) during pregnancy and its neonatal transmission in dengue seropositive women.
    Matched MeSH terms: Dengue/immunology*
  16. Wong LP, AbuBakar S, Chinna K
    PLoS Negl Trop Dis, 2014 May;8(5):e2789.
    PMID: 24853259 DOI: 10.1371/journal.pntd.0002789
    Demographic, economic and behavioural factors are central features underpinning the successful management and biological control of dengue. This study aimed to examine these factors and their association with the seroprevalence of this disease.
    Matched MeSH terms: Dengue/immunology
  17. Yeo AS, Rathakrishnan A, Wang SM, Ponnampalavanar S, Manikam R, Sathar J, et al.
    Biomed Res Int, 2015;2015:420867.
    PMID: 25815314 DOI: 10.1155/2015/420867
    Dengue virus infection is a common tropical disease which often occurs without being detected. These asymptomatic cases provide information in relation to the manifestation of immunological aspects. In this study, we developed an ELISA method to compare neutralizing effects of dengue prM and E antibodies between dengue patients and their asymptomatic household members. Recombinant D2 premembrane (prM) was constructed, cloned, and tested for antigenicity. The recombinant protein was purified and tested with controls by using an indirect ELISA method. Positive dengue serum samples with their asymptomatic pair were then carried out onto the developed ELISA. In addition, commercially available recombinant envelope (E) protein was used to develop an ELISA which was tested with the same set of serum samples in the prM ELISA. Asymptomatic individuals showed preexisting heterotypic neutralizing antibodies. The recombinant prM was antigenically reactive in the developed ELISA. Dengue patients had higher prM and E antibodies compared to their household members. Our study highlights the neutralizing antibodies levels with respect to dengue prM and E between dengue patients and asymptomatic individuals.
    Matched MeSH terms: Dengue/immunology*
  18. Wallace HG, Lim TW, Rudnick A, Knudsen AB, Cheong WH, Chew V
    PMID: 6105712
    The first major Malaysian epidemic of dengue hemorrhagic fever with severe manifestations occurred in 1973, with 969 reported cases and 54 deaths. In a detailed study of 138 clinically diagnosed and laboratory confirmed cases at the General Hospital in Kuala Lumpur, hemorrhagic manifestations were observed in 68.7% and shock in 18.1% of the patients. The cases occurred mainly from May to September, largely in urban and suburban areas of the majority of the states in the country. A main focus of infection was Jinjang, a heavily populated outlying district of Kuala Lumpur, where unusually high incidences of morbidity, severe disease and mortality were seen. Severe disease was seen mostly in children under the age of 15 years, although a significant number of adults suffered milder illnesses. The Chinese population was chiefly affected, due to their living in crowded, low-income housing where the vector, Aedes aegypti, occurred in the greatest numbers. All four dengue types were recovered during the epidemic period, although dengue 3 (DEN-3) was incriminated as the major epidemic type. Entomological data revealed high indices of A. aegypti throughout the country and left little doubt that this epidemic was aegypti transmitted. Spraying and fogging operations were carried out in attempts to control vector populations.
    Matched MeSH terms: Dengue/immunology
  19. Pang T
    Ann Acad Med Singap, 1987 Oct;16(4):612-6.
    PMID: 2895602
    Studies were carried out into the immunopathogenesis and laboratory diagnosis of dengue virus infections. Using an experimental system it was shown that cell-mediated immunity (CMI), as measured by delayed-type hypersensitivity (DTH) was induced in mice infected with dengue virus. The nature of the DTH response satisfies most criteria for a classical DTH reaction. In addition, it was also shown that infection with dengue virus causes a transient immunosuppression as measured by the immune response to other, unrelated antigens. With regard to the laboratory diagnosis of dengue infections, it was found that mosquito cells were a sensitive system for the isolation of dengue viruses and that the success of isolation was related to the antibody content of the serum. A new method for the rapid isolation of dengue viruses was also developed involving the intracerebral inoculation of mosquito larvae. By the use of this method viral antigens can be detected as early as 2-3 days after specimen inoculation. The significance of these findings in relation to the immunopathogenesis, prevention and control of disease syndromes due to dengue viruses is discussed.
    Matched MeSH terms: Dengue/immunology*
  20. Chinikar S, Ghiasi SM, Shah-Hosseini N, Mostafavi E, Moradi M, Khakifirouz S, et al.
    Travel Med Infect Dis, 2013 May-Jun;11(3):166-9.
    PMID: 23194952 DOI: 10.1016/j.tmaid.2012.10.001
    Dengue fever is one of the most important arthropod-borne viral diseases of public health significance. It is endemic in most tropical and subtropical parts of the world, many of which are popular tourist destinations. The presence of dengue infection was examined in Iranian patients who were referred to the Arboviruses and Viral Haemorrhagic Fevers Laboratory of the Pasteur Institute of Iran and tested negative for Crimean-Congo Haemorrhagic Fever (CCHF) between 2000 and 2012. Serum samples from these patients were tested for the presence of specific IgG and IgM and viral nucleic acid in blood. Of the 300 sera tested, 15 (5%) were seropositive, and 3 (1%) were both serologically and PCR positive. Of the 15 seropositive cases, 8 (53.3%) had travelled to endemic areas including Malaysia (5, 62.5%), India (2, 25%) and Thailand (1, 12.5%). In contrast, 7 (46.7%) of the cases had not reported travelling abroad. Of these, six cases were from the Sistan and Baluchistan province in southeast Iran and neighbouring Pakistan. Travellers play a key role in the epidemiology of dengue infection in Iran and it is recommended that travellers to endemic areas take precautionary measures to avoid mosquito bites.
    Matched MeSH terms: Dengue/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links