Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Lim, Siau Peng, Fazal Reza, Zaihan Ariffin
    MyJurnal
    The purpose of this study was to evaluate hardness (indicator for polymerization) and thickness of two types of resin cement at coronal, middle and apical level of tooth root canal. Ten extracted maxillary incisors were instrumented and post space was prepared for cementation of titanium post. Samples were divided into two groups and each group was cemented either of the two types of resin cements; Panavia F [dual-cured (PF)] and Rely X Luting 2 [self-cured (RL)]. The teeth were longitudinally sectioned; hardness and thickness was measured using Vickers hardness tester and a microscope (Leica DMLM). SEM observations along the cement line at the 3 different root levels were performed. Statistical analysis was performed to test significance of differences in hardness and thickness of the two types of cement (t-test; p= 0.05) and at different levels of the same type (one-way ANOVA followed by multiple comparison; p= 0.05). Significant difference of hardness was found at the apical level between the two groups and between the coronal and apical level of PF (p0.05). Moreover, voids were more obvious within the dual-cured group of cement. Dual-cured resin cement was found to be less polymerized than self-cured type at apical level. Increased thicknesses of resin cements in comparison to post space size were observed in both groups. Use of metallic post with resin cements needs further evaluation.
    Matched MeSH terms: Dental Cements
  2. Tang X, Yang Y, Xie Y
    Sains Malaysiana, 2016;45:1543-1550.
    The main objective of this work was to investigate the influence of waterborne epoxy resin emulsion (WER) on the physical properties of oil well cement slurries. Cement slurries containing 5%, 10% and 15% of WER bwoc were compared with WER-free slurries. The rheological behavior was carried out according to API standard. Uniaxial compressive strength and shear bond strength of cement stone were evaluated at the ages of 24, 48 and 72 h. The experimental results illustrate that the addition of WER does not alter the rheological behavior. The addition of WER has increased the shear bond strength almost 52% at 24 h of aging for 10% WER bwoc when compared with unmodified slurry. The enhancement on shear bond strength was attributed to the mechanical anchoring and resin film forming at the interface
    Matched MeSH terms: Dental Cements
  3. Rajeev V, Arunachalam R, Nayar S, Arunima PR, Ganapathy S, Vedam V
    Eur J Dent, 2017 4 25;11(1):58-63.
    PMID: 28435367 DOI: 10.4103/ejd.ejd_113_16
    OBJECTIVE: This in vitro study was designed to assess shear bond strength (SBS) of ormocer flowable (OF) resin as a luting agent, ormocer as an indirect veneer material with portrayal of modes of failures using scanning electron microscope (SEM).

    MATERIALS AND METHODS: Sixty maxillary central incisors were divided into Group I, II, and III with 20 samples each based on luting cement used. They were OF, self-adhesive (SA) cement, and total etch (TE) cement. These groups were subdivided into "a" and "b" of ten each based on the type of veneering materials used. Veneer discs were fabricated using Ormocer restorative (O) and pressable ceramic (C). Specimens were thermocycled and loaded under universal testing machine for SBS. The statistical analysis was done using one-way ANOVA post hoc Tukey honest significant difference method.

    RESULTS: A significant difference was observed between the Groups I and II (P < 0.05). The highest mean bond strength when using ormocer veneer was obtained with the Group Ia (19.11 ± 1.92 Mpa) and lowest by Group IIa (8.1 ± 1.04 Mpa), whereas the highest mean bond strength while using ceramic veneer was of similar range for Group Ib (18.04 ± 4.08 Mpa) and Group IIIb (18.07 ± 1.40 Mpa). SEM analysis revealed OF and TE presented mixed type of failure when compared with SA where failure mode was totally adhesive.

    CONCLUSION: OF was found equally efficient like TE. Bond strength of ormocer as a veneer was not inferior to ceramic making it one of the promising additions in the field of dentistry.

    Matched MeSH terms: Dental Cements
  4. Meng Y, Ling TC, Mo KH, Tian W
    Sci Total Environ, 2019 Jun 25;671:827-837.
    PMID: 30947055 DOI: 10.1016/j.scitotenv.2019.03.411
    Carbonation for the curing of cement-based materials has been gaining increased attention in recent years, especially in light of emerging initiatives to reduce carbon dioxide (CO2) emissions. Carbonation method or CO2 curing is founded on the basis of the reaction between CO2 and cement products to form thermally stable and denser carbonate, which not only improves the physical and mechanical properties of cement-based materials, but also has the ability to utilize and store CO2 safely and permanently. This study aims to assess the effect of CO2 curing technology on the high-temperatures performance of cement blocks. Upon molding, dry-mix cement blocks were cured under statically accelerated carbonation condition (20% CO2 concentration with 70% relative humidity) for 28 days, followed by exposure to elevated temperatures of 300 °C to 800 °C in order to comprehensively study the principal phase changes and decompositions of cement hydrates. The results indicated that CO2 curing improved the performance of cement blocks, such as enhancement in the residual compressive strength and reducing the sorptivity. At 600 °C, the scanning electron microscopy (SEM) revealed a denser microstructure while thermal analisis and X-ray diffraction (XRD) analysis also clearly demonstrated that higher amounts of calcium carbonate were present in the cement blocks after CO2 curing, suggesting better high-temperature performance compared to natural cured cement blocks. In general, an improved high-temperature performance, specifically at 600 °C of the dry-mixed cement blocks was demonstrated by adopting the CO2 curing technology. This confirms the potential of utilizing CO2 curing technology in not only improving quality of cement blocks, new avenue for storing of CO2 in construction material can be realized at the same time.
    Matched MeSH terms: Dental Cements
  5. Chai, L.F., Chai, L.C., Suhaimi, N., Son, R.
    MyJurnal
    Local wood charcoal was used as the main component of the electrodes of an air-cathode microbial
    fuel cell (air-cathode MFC) in current study. The air cathode was build with finely milled charcoal powder and cement plaster as binder; while anode was made up of a packed bed of charcoal granules. Mangrove estuary brackish water was inoculated in the anodic chamber as the fuel and a source of exoelectrogens. The constructed fuel cell was monitored by measuring the potential over time. The MFC generated a stable power density at 33mW/m2 (0.5V) under a load of 200Ω after 72 hours of operation. An open circuit voltage (OCV) of 0.7mV was obtained after 15 hours operating under open circuit. The result of power generation by the constructed fuel cell indicating that wood charcoal could be used as electrode in an MFC and that brackish water contained potential exoelectrogens. However, further investigation and modification is required to increase the performance of the fuel cell.
    Matched MeSH terms: Dental Cements
  6. Dahlia Lema, A.M., Kartini, K., Dyg. Siti Quraisyah, A.A., Anthony, A.D., Nuraini, T., Siti Rahimah, R.
    MyJurnal
    Sludge is an unavoidable product of wastewater treatment that creates problems of disposal. Increasingly, strict environmental control regulations have resulted in limitations on sludge disposal options.Disposal by incineration has been found to be a good option. In this research, application of domestic waste sludge powder (DWSP) was used as cement replacement in concrete mix. This study utilised replacement of 3 %, 5 %, 7 %, 10 % and 15 % by weight of OPC with water binder (w/b) ratio of 0.60, 0.55 and 0.40 for Grade 30, Grade 40 and Grade 50 respectively. The performance of DWSP concrete in terms of its compressive strength, water absorption, water permeability and Rapid Chloride Ion penetration were investigated. All values of compressive strength for DWSP concrete were lower compared to the OPC control, and the strength decreased as the percentage of replacement with DWSP increased for Grade 30 and Grade 50, except for Grade 40 at replacement of 7 %. Meanwhile, water absorption and water permeability for the DWSP concrete increased as the replacement increased. Overall, with further research in producing quality DWSP, the potential of using this waste as a cement replacement material is very promising.
    Matched MeSH terms: Dental Cements
  7. Rosnani Ahmad, Rohaidah Md Nor, Siti Azliya Ismail
    MyJurnal
    Sawdust is considered a waste material and a number of innovative ways are being taken to mitigate its effects on the environment. The use of sawdust as additional admixture in cement-sand brick production is an alternative option to mitigate the problem. In this study, three different types of cement-sand brick mixture in proportion of 1%, 2% and 3% of sawdust added to the normal mixture are prepared. Compression test was conducted on the brick mixture and results indicated 1% sawdust satisfy the Class 1 loadbearing brick whilst the 2% sawdust is slightly above the minimum required strength of 5.2 MN/ m2 for an ordinary quality brick set by the Standards MS 76:1972. Thus, the use of sawdust as admixture in cement-sand brick should not exceed 3%.
    Matched MeSH terms: Dental Cements
  8. Aldossary MS, Abu Hajia SS, Santini A
    Int Orthod, 2018 12;16(4):638-651.
    PMID: 30385291 DOI: 10.1016/j.ortho.2018.09.005
    OBJECTIVE: To measure Total Light Energy (TLE) Transmission through six makes of ceramic orthodontic brackets alone and bracket-plus-adhesive samples, using the MARC™-Resin Calibrator (RC).

    METHODS: Six makes, three each monocrystalline (M) and polycrystalline (P) were used; PureSapphire (M), SPA Aesthetic (M), Ghost (M), Mist (P), Reflections (P), and Dual Ceramic (P). The Ortholux™ Light Curing Unit (LCU) was used to cure the orthodontic adhesive Transbond™XT. The LCU's tip irradiance was measured and TLE transmitted through the ceramic bracket was obtained, then adhesive added to the bracket, and transmitted TLE measured through bracket-plus-adhesive samples. The LCU was set at five seconds as recommended for curing adhesive through ceramic brackets.

    RESULTS: Mean tip irradiance was 1859.2±16.2mW/cm2. The TLE transmitted through brackets alone ranged 1.7 to 3.9J/cm2, in the descending order: Ghost>Pure Sapphire>Reflections>Mist>SPA Aesthetics>Dual Ceramic. The TLE transmitted through bracket-plus-adhesive samples ranged 1.6 to 3.7J/cm2, in the descending order: Ghost>Mist>Reflections>Pure Sapphire>SPA Aesthetics>Dual Ceramic. TLE was reduced with the addition of adhesive (range -0.1 to -0.7J/cm2). There was a significant difference for Pure Sapphire, Reflections, and Mist (P<0.05), but not for SPA Aesthetics, Ghost, and Dual Ceramic. There was no overall significant difference between the monocrystalline and polycrystalline makes. The two best makes were of the monocrystalline type, concerning TLE transmission, but with the exception of polycrystalline Dual Ceramic; the next worst make was a monocrystalline bracket, SPA Aesthetics.

    CONCLUSION: Light energy attenuation through ceramic orthodontic brackets is make-dependent, with no overall difference between monocrystalline and polycrystalline brackets. Light energy is further attenuated with the addition of resin-based orthodontic adhesive.

    Matched MeSH terms: Dental Cements
  9. Rosli H. Mahat
    MyJurnal
    A month hourly measurement of radon concentration was taken in the bedroom of a two story link house in Kuala Lumpur. The house is a typical urban house in Malaysia, constructed with bricks, concrete and cement plaster. These materials are natural sources of radon in the house. The hourly radon concentration was found to vary from 0 pCiL-1 to 3 pCiL-1. It was found to peak during early morning and to minimize in the evening. The daily average radon concentration varied from 0.2 pCiL-1 to 1.0 pCiL-1.
    Matched MeSH terms: Dental Cements
  10. Chauhan NS, Saraswat N, Parashar A, Sandu KS, Jhajharia K, Rabadiya N
    J Int Soc Prev Community Dent, 2019 04 12;9(2):144-151.
    PMID: 31058064 DOI: 10.4103/jispcd.JISPCD_334_18
    Aims and Objectives: To compare the effect for fracture resistance of different coronally extended post length with two different post materials.

    Materials and Methods: One hundred and sixty endodontically treated maxillary central incisors embedded in acrylic resin with decoronated root portion were taken for the study. The postspaces were prepared according to standard protocol. The samples were divided into two groups according to the post material: glass-fiber post and Quartz fiber post. These groups were further subdivided on the basis of coronal extension of 4 and 6 mm for glass fiber and Quartz fiber posts, respectively. The posts were then luted with dual-polymerizing resin cement followed by core buildup. Samples were subjected to increasing compressive oblique load until fracture occurred in a universal testing machine. Data were analyzed with one-way ANOVA and independent Student's t-test. Analysis was done using SPSS version 15 (SPSS Inc., Chicago, IL, USA) Windows software program.

    Results: Glass fiber post with coronal extension of 4 mm (182.8 N) showed better results than with 6-mm length (124.1 N). Similarly, in quartz fiber posts group, 4-mm postlength (314 N) was better when compared with 6 mm (160 N). The 4-mm coronal extension of quartz fiber post displayed superior fracture resistance.

    Conclusions: Glass fiber posts showed better fracture resistance than Quartz fiber posts. 4-mm coronal length showed more fracture resistance than 6 mm.

    Matched MeSH terms: Dental Cements
  11. Abdullah H, Pearson GJ
    Asian J Aesthet Dent, 1993 Jul;1(2):91-4.
    PMID: 7921802
    The effect of temperature change on the working and setting time of a glass ionomer luting cement and a resin luting cement was measured using the oscillating rheometer. The time taken for each cement to set was calculated from the chart recordings. It was observed that as the temperature increased, the working and setting time of both materials decreased. However, the reduction was much more marked for the dual curing resin cement.
    Matched MeSH terms: Dental Cements/chemistry*
  12. Ainul Haezah Noruzman, Mohammad Ismail, Taliat Ola Yusuf, Parham Forouzani
    MyJurnal
    The volume of waste generated from surface coating industries is of global concern. The disposal of this waste in the form of effluent has put enormous pressure on land and also poses as a health hazard when it leaches into soil and underground water. The study aims to examine the utilization of vinyl acetate effluents from water based paint factories as an admixture in concrete. Concrete specimens containing 0%, 2.5%, 5% and 10% of vinyl acetate effluents by weight of cement were prepared. The specimens were tested for drying shrinkage for 28 days and porosity was tested using mercury intrusion porosimetry. Findings show that concrete containing various proportions of vinyl acetate effluents manifests higher shrinkage behaviour compared to the control item. An investigation of pore size distribution reveals that polymer effluents have particles size larger than 50 nm which are categorize as macroporous in accordance to IUPAC classification. It can be concluded that adding polymer vinyl acetate effluents affects concrete deformation due to the condition of its pore structures. The utilization of this material may provide beneficial effect in terms of the durability performance of concrete and minimize environmental pollution.
    Matched MeSH terms: Dental Cements
  13. Rahman, M. E., Leblouba, M., Pakrashi, V.
    MyJurnal
    The aim of this study is to investigate the effects of Palm Oil Clinker (POC) added as a stabilizer for improving the strength of peat. Cement and POC are added into peat up to 50% of the maximum dry unit weight. Treated peat achieved higher dry unit weight, almost 2.5 times as compared to untreated peat. Unconfined compressive strength (UCS) of treated peat is also investigated for soaked and unsoaked conditions. The results show that curing time improved the unconfined compressive strength of treated sample and increased by a factor of 20 and 11 for unsoaked and soaked conditions after 28 days of curing, respectively. The treated samples added with POC can be related to an increase in unconfined compressive strength for long time curing.
    Matched MeSH terms: Dental Cements
  14. Ong RM, Luddin N, Ahmed HM, Omar NS
    Singapore Dent J, 2012 Dec;33(1):19-23.
    PMID: 23739319 DOI: 10.1016/j.sdj.2012.11.001
    The aim of this study was to compare the cytotoxicity of accelerated-set white MTA (AWMTA) and accelerated-set Malaysian white PC (AMWPC) on stem cells from human exfoliated deciduous teeth (SHED). The test materials were introduced into paraffin wax moulds after mixing with calcium chloride dihydrate and sterile distilled water. Subsequently, the set cement specimens were sterilized, incubated in a prepared Dulbecco's modified Eagle medium (DMEM) for seven days. The biomarker CD166 was used for characterization of SHED using flow cytometry. The material extracts were diluted at five different concentrations and incubated for 72h with SHED. The cell viability was evaluated using Dimethylthiazol diphenyltetrazolium bromide (MTT) assay, and the data was analysed using Mann-Whitney test (P<0.05). The results showed that AWMTA revealed significantly greater cell viability at 25 and 12.5mg/ml concentrations (P<0.05). Concomitantly, AMWPC exhibited greater cell viability at concentrations <12.5mg/ml and the results were significant at 1.563mg/ml (P<0.05). Both materials demonstrated moderate cytotoxicity at 25mg/ml and slight cytotoxicity at 6.25 and 3.125mg/ml. At 1.563mg/ml, no cytotoxic activity was merely observed with AMWPC. In conclusion, AMWPC exhibited favourable and comparable cell viability to that of AWMTA, and has the potential to be used as an alternative and less costly material in dental applications.
    Matched MeSH terms: Dental Cements
  15. Purmal K, Nambiar P
    J Vet Dent, 2009;26(1):36-9.
    PMID: 19476086
    Matched MeSH terms: Dental Cements/therapeutic use
  16. Nor Umairah Abd Rahim, Mohd Fadzil bin Arshad
    MyJurnal
    Ordinary Portland Cement (OPC) is widely used by the construction industry. Research to find the precise proportion of cement replacement material which can be used to produce a product called Ternary Blended Cement (TBC) is not new. The objective of this study is to determine the effect of POFA and SF as TBC on the heat of hydration and compressive strength of mortar. Before producing TBC, specimens using BBC is required. Mix design proportion for POFA and SF are 5%, 10%, 15%, and 20%. Mix design proportion TBC are chose from the highest compressive strength value achieved at 7 days of curing. This research found the heat of hydration of TBC containing 20% POFA and 5% SF is high in the beginning to drop at the end of hydration process in addition to producing lower compressive strength.
    Matched MeSH terms: Dental Cements
  17. Zalina Laili, Muhamad Samudi Yasir, Mohd Abdul Wahab Yusof
    Sains Malaysiana, 2017;46:1617-1623.
    The influence of water-to-cement ratio (w/c) on the compressive strength of cement-biochar-spent resins matrix was
    investigated. Spent resins waste from nuclear reactor operation was solidified using cement with w/c ranging from 0.35
    to 0.90 by weight. In this study, biochar was used as a cement admixture. Some properties of spent resins and biochar
    were determined prior to the formulation study. Compressive strength of harden cement-biochar-spent resins matrix
    was determined at 28 days. The compressive strength of cement-biochar-spent resins matrix was found to depend on the
    w/c and the amount of spent resins added to the formulation. The immersion test of cement-biochar-spent resins matrix
    showed no significant effects of cracking and swelling. The compressive strength of the cement-biochar-spent resins
    matrix increased after two weeks in water immersion test.
    Matched MeSH terms: Dental Cements
  18. Ab-Ghani Z, Ngo H, McIntyre J
    Aust Dent J, 2007 Dec;52(4):276-81.
    PMID: 18265682
    BACKGROUND: There have been cononcerns about the dissolution of conventional glass ionomer cement (GIC) and its possible degradation when exposed to an acidic environment over time. The objective of this study was to investigate the effects of exposure of Fuji IX Fast to the simulated acidic aspects of the oral environment in terms of any change in the elemental composition of strontium (Sr), phosphorus (P), calcium (Ca) and fluorine (F) which resulted at the surface of this material.

    METHODS: Sixty-five cylindrical block of Fuji IX Fast were prepared using split moulds. The demineralizing solution was an acetate buffered demineralizing solution at pH 403. The remineralizing solution was a buffered solution containing 1.5 mM Ca, 0.9 mM P and 10 ppm F at pH 7. The blocks of Fuji IX Fast were subjected either to two-day alternating cycles of remineralization and demineralization for up to 24 days (test); 6 two-day cycles of demineralizing or remineralizing solution separately, or deionized distilled water alone (controls) or were left untreated (base line control). Mineral profiles of Ca, P, Sr and F within 100 microm of the material surface were assessed following 8, 16 and 24 days of treatment (test); 4, 8 or 12 days (controls) or for baseline control samples, using electron probe microanalysis (EPMA).

    RESULTS: There were significant changes in mineral profile in the test specimens in terms of Sr and Ca concentrations. A molecule for molecule exchange of these elements resulted between GIC and eluant solutions. Fluoride loss from the GIC occurredto the level comparable with uptake levels recorded in eluant solutions from previous studies. The ionic exchanges appeared to be the result of dissolution followed by an equilibrium-driven diffusion. These exchanges were superficial though substantial.

    CONCLUSIONS: Simulated exposure of Fuji IX to the oral environment resulted in an exchange of Ca from the bathing solutions into Fuji IX to replace any Sr which was lost to the GIC. Fluorine loss from the GIC followed previously described patterns. The possible clinical significance of this exchange was discussed.

    Matched MeSH terms: Dental Cements/chemistry*
  19. Abdullah D, Ford TR, Papaioannou S, Nicholson J, McDonald F
    Biomaterials, 2002 Oct;23(19):4001-10.
    PMID: 12162333
    Biocompatibility of two variants of accelerated Portland cement (APC) were investigated in vitro by observing the cytomorphology of SaOS-2 osteosarcoma cells in the presence of test materials and the effect of these materials on the expression of markers of bone remodelling. Glass ionomer cement (GIC), mineral trioxide aggregate (MTA) and unmodified Portland cement (RC) were used for comparison. A direct contact assay was undertaken in four samples of each test material, collected at 12, 24, 48 and 72 h. Cell morphology was observed using scanning electron microscopy (SEM) and scored. Culture media were collected for cytokine quantification using enzyme-linked immunosorbent assay (ELISA). On SEM evaluation, healthy SaOS-2 cells were found adhering onto the surfaces of APC variant, RC and MTA. In contrast, rounded and dying cells were observed on GIC. Using ELISA, levels of interleukin (IL)-1beta, IL-6, IL-18 and OC were significantly higher in APC variants compared with controls and GIC (p<0.01), but these levels of cytokines were not statistically significant compared with MTA. The results of this study provide evidence that both APC variants are non-toxic and may have potential to promote bone healing. Further development of APC is indicated to produce a viable dental restorative material and possibly a material for orthopaedic
    Matched MeSH terms: Dental Cements/chemistry*
  20. Chin ZW, Chong WS, Mani SA
    Oral Health Prev Dent, 2016;14(2):125-35.
    PMID: 26525124 DOI: 10.3290/j.ohpd.a34999
    PURPOSE: To assess the knowledge, attitude and utilisation regarding fissure sealants (FS) and preventive resin restorations (PRR) among Malaysian dentists.

    MATERIALS AND METHODS: A questionnaire consisting of 35 questions was distributed by mail or an online survey to 425 registered dentists selected according to place of work by stratified random sampling.

    RESULTS: One hundred fifty-three dentists responded to the survey. A positive attitude towards FS and PRR was noted among most Malaysian dentists. About half of the respondents used FS/PRR occasionally (48.4%), while few (13.7%) applied them routinely. The majority of the dentists agreed that minimally invasive dentistry is important and FS are effective in caries prevention, using them on high caries-risk individuals. Most of the dentists used pumice or paste to clean teeth before placing FS/PRR. A significant number of dentists used a bonding agent prior to placing FS. Although only 57.5% dentists were aware of guidelines for FS use, most dentists agreed that guidelines are important.

    CONCLUSION: Although there was a positive attitude towards FS/PRR, few dentists applied them routinely. Some of the steps undertaken for placement of FS and PRR were outdated. Updating local guidelines for dentists to ensure uniform practice of FS and PRR is justified.

    Matched MeSH terms: Dental Cements/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links