Displaying publications 1 - 20 of 80 in total

Abstract:
Sort:
  1. B Aziz S, S Marf A, Dannoun EMA, Brza MA, Abdullah RM
    Polymers (Basel), 2020 Sep 24;12(10).
    PMID: 32987807 DOI: 10.3390/polym12102184
    This report presents a facile and efficient methodology for the fabrication of plasticized polyvinyl alcohol (PVA):chitosan (CS) polymer electrolytes using a solution cast technique. Regarding characterizations of electrical properties and structural behavior, the electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) are used, respectively. Crystalline peaks appear in the XRD pattern of the PVA:CS:NH4I while no peaks can be seen in the XRD pattern of plasticized systems. The degree of crystallinity is calculated for all the samples from the deconvoluted area of crystalline and amorphous phases. Considering the EIS measurements, the most conductive plasticized system shows a relatively high conductivity of (1.37 × 10-4) S/cm, which is eligible for applications in energy storage devices. The analysis of the EIS spectra reveals a decrease in bulk resistance which indicates an increase in free ion carriers. The electrical equivalent circuit (EEC) model is used in the analysis of EIS plots. Dielectric properties are modified with the addition of glycerol as a plasticizer. It is proved that the addition of glycerol as a plasticizer lowers ion association. It also shows, at the low-frequency region, a large value of a dielectric constant which is correlated with electrode polarization (EP). The distribution of relaxation times is associated with conducting ions.
    Matched MeSH terms: Dielectric Spectroscopy
  2. Basirun WJ, Sookhakian M, Baradaran S, Endut Z, Mahmoudian MR, Ebadi M, et al.
    Sci Rep, 2015;5:9108.
    PMID: 25765731 DOI: 10.1038/srep09108
    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm(-2), in contrast to MnO2, which produced a maximum power density of 9.2 mW cm(-2). The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.
    Matched MeSH terms: Dielectric Spectroscopy
  3. B Aziz S, H Hamsan M, M Nofal M, San S, Abdulwahid RT, Raza Saeed S, et al.
    Polymers (Basel), 2020 Jul 09;12(7).
    PMID: 32660095 DOI: 10.3390/polym12071526
    In this study, solid polymer blend electrolytes (SPBEs) based on chitosan (CS) and methylcellulose (MC) incorporated with different concentrations of ammonium fluoride (NH4F) salt were synthesized using a solution cast technique. Both Fourier transformation infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results confirmed a strong interaction and dispersion of the amorphous region within the CS:MC system in the presence of NH4F. To gain better insights into the electrical properties of the samples, the results of electrochemical impedance spectroscopy (EIS) were analyzed by electrical equivalent circuit (EEC) modeling. The highest conductivity of 2.96 × 10-3 S cm-1 was recorded for the sample incorporated with 40 wt.% of NH4F. Through transference number measurement (TNM) analysis, the fraction of ions was specified. The electrochemical stability of the electrolyte sample was found to be up to 2.3 V via the linear sweep voltammetry (LSV) study. The value of specific capacitance was determined to be around 58.3 F/g. The stability test showed that the electrical double layer capacitor (EDLC) system can be recharged and discharged for up to 100 cycles with an average specific capacitance of 64.1 F/g. The synthesized EDLC cell was found to exhibit high efficiency (90%). In the 1st cycle, the values of internal resistance, energy density and power density of the EDLC cell were determined to be 65 Ω, 9.3 Wh/kg and 1282 W/kg, respectively.
    Matched MeSH terms: Dielectric Spectroscopy
  4. Mahmoodi P, Rezayi M, Rasouli E, Avan A, Gholami M, Ghayour Mobarhan M, et al.
    J Nanobiotechnology, 2020 Jan 13;18(1):11.
    PMID: 31931815 DOI: 10.1186/s12951-020-0577-9
    BACKGROUND: In several years ago, infection with human papillomaviruses (HPVs), have been prevalent in the worlds especially HPV type 18, can lead to cervical cancer. Therefore, rapid, accurate, and early diagnosis of HPV for successful treatment is essential. The present study describes the development of a selective and sensitive electrochemical biosensor base on DNA, for early detection of HPV-18. For this purpose, a nanocomposite of reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) were electrodeposited on a screen-printed carbon electrode (SPCE). Then, Au nanoparticles (AuNPs) were dropped on a modified SPCE. Subsequently, single strand DNA (ssDNA) probe was immobilized on the modified electrode. The link attached between AuNPs and probe ssDNA provided by L-cysteine via functionalizing AuNPs (Cys-AuNPs). The differential pulse voltammetry (DPV) assay was also used to electrochemical measurement. The measurement was based on the oxidation signals of anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) before and after hybridization between the probe and target DNA.

    RESULTS: The calibration curve showed a linear range between 0.01 fM to 0.01 nM with a limit of detection 0.05 fM. The results showed that the optimum concentration for DNA probe was 5 µM. The good performance of the proposed biosensor was achieved through hybridization of DNA probe-modified SPCE with extracted DNA from clinical samples.

    CONCLUSIONS: According to the investigated results, this biosensor can be introduced as a proprietary, accurate, sensitive, and rapid diagnostic method of HPV 18 in the polymerase chain reaction (PCR) of real samples.

    Matched MeSH terms: Dielectric Spectroscopy
  5. Mahmoudian MR, Basirun WJ, Woi PM, Hazarkhani H, Alias YB
    Mikrochim Acta, 2019 05 22;186(6):369.
    PMID: 31119482 DOI: 10.1007/s00604-019-3481-y
    The study presents the synthesis of polypyrrole-coated palladium platinum/nitrogen-doped reduced graphene oxide nanocomposites (PdPt-PPy/N-rGO NC) via direct the reduction of Pd(II) and Pt(II) in the presence of pyrrole monomer, N-rGO and L-cysteine as the reducing agent. X-ray diffraction confirmed the presence of metallic Pd and Pt from the reduction of Pd and Pt cations. Transmission electron microscopy images revealed the presence of Pd, Pt and PPy deposition on N-rGO. Impedance spectroscopy results gave a decreased charge transfer resistance due to the presence of N-rGO. The nanocomposites were synthesized with different Pd/Pt ratios (2:1, 1:1 and 1:2). A glassy carbon electrode (GCE) modified with the nanocomposite showed enhanced electrochemical sensing capability for formaldehyde in 0.1 M sulfuric acid solution. Cyclic voltammetry showed an increase in the formaldehyde oxidation peak current at the GCE modified with Pd2Pt1 PPy N-rGO. At a typical potential of 0.45 V (vs. SCE), the sensitivity in the linear segment was 345.8 μA.mM -1. cm-2. The voltammetric response was linear between 0.01 and 0.9 mM formaldehyde concentration range, with a 27 µM detection limit (at S/N = 3). Graphical abstract Schematic presentation of formaldehyde detection by Pd2Pt1-PPy/nitrogen-doped reduced Graphene Oxide Nanocomposite (Pd2Pt1-PPy /N-Gr NC). The decrease of charge transfer resistance and the agglomeration of deposited metals in the presence of N-rGO enhance the current response of the electrochemical sensor.
    Matched MeSH terms: Dielectric Spectroscopy
  6. Taniselass S, Arshad MKM, Gopinath SCB, Fathil MFM, Ibau C, Anbu P
    Mikrochim Acta, 2021 07 15;188(8):257.
    PMID: 34268634 DOI: 10.1007/s00604-021-04922-x
    A label-free chemical bonding strategy mediated by reduced graphene oxide (rGO) basal plane functional groups has been developed for cardiac Troponin I (cTnI) detection. Four different chemical strategies on respective electrode sensing surface were precedingly examined using electrochemical impedance spectroscopy. The impedimetric assessment was carried out by sweeping frequency at the range 0.1-500 kHz perturbated at a small amplitude of AC voltage (25 mV). The chemical strategy-4 denoted as S-4 shows a significant analytical performance on cTnI detection in spiked buffer and human serum, whereby the pre-mixture of rGO and (3-Aminopropyl)triethoxysilane (APTES) creates a large number of amine sites (-NH2), which significantly enhanced the antibody immobilization without excessive functionalization. The as-fabricated immunosensor exhibited an ultra-low limit of detection of 6.3 ag mL-1 and the lowest antigen concentration measured was at 10 ag mL-1. The immunosensor showed a linear and wide range of cTnI detection (10 ag mL-1-100 ng mL-1) in human serum with a regression coefficient of 0.9716, rapid detection (5 min of binding time), and stable and highly reproducible bioelectrode response with RSD 
    Matched MeSH terms: Dielectric Spectroscopy
  7. Akhter S, Basirun WJ, Alias Y, Johan MR, Bagheri S, Shalauddin M, et al.
    Anal Biochem, 2018 06 15;551:29-36.
    PMID: 29753720 DOI: 10.1016/j.ab.2018.05.004
    In the present study, a nanocomposite of f-MWCNTs-chitosan-Co was prepared by the immobilization of Co(II) on f-MWCNTs-chitosan by a self-assembly method and used for the quantitative determination of paracetamol (PR). The composite was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive x-ray analysis (EDX). The electroactivity of cobalt immobilized on f-MWCNTs-chitosan was assessed during the electro-oxidation of paracetamol. The prepared GCE modified f-MWCNTs/CTS-Co showed strong electrocatalytic activity towards the oxidation of PR. The electrochemical performances were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range between 0.1 and 400 μmol L-1 with a detection limit of 0.01 μmol L-1 for the PR solution. The fabricated sensor exhibited significant selectivity towards PR detection. The fabricated sensor was successfully applied for the determination of PR in commercial tablets and human serum sample.
    Matched MeSH terms: Dielectric Spectroscopy
  8. Mohd Noor Zairi Mohd Sapri, Azizah Hanom Ahmad
    Science Letters, 2016;10(1):11-13.
    MyJurnal
    Solid polymer electrolytes electrolytes based Poly
    (ethylene oxide) (PEO) complexed with sodium
    trifluoromethanesulfonate (NaCF3SO3
    ) salt were prepared by
    using solution cast technique. Ion-polymer ionic conductivity
    and interaction studies have been reported by Electrical
    Impedance spectroscopy (EIS) and Fourier transform infrared
    spectroscopy (FTIR). FTIR studies suggested that there are
    stronger interaction between Na+
    ions and the polymer than
    interaction of anions cations of the salt. The temperature
    dependance electrical conductivity of polymer electrolytes films
    follow Arrhenius relation and the low activation energy 0.2993
    eV was observed for PEO-18 wt. % NaCF3SO3 below 323 K.
    Matched MeSH terms: Dielectric Spectroscopy
  9. Velayutham TS, Ng BK, Gan WC, Abd Majid WH, Hashim R, Zahid NI, et al.
    J Chem Phys, 2014 Aug 28;141(8):085101.
    PMID: 25173043 DOI: 10.1063/1.4893873
    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10(-2)-10(6) Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.
    Matched MeSH terms: Dielectric Spectroscopy
  10. Kiew LV, Chang CY, Huang SY, Wang PW, Heh CH, Liu CT, et al.
    Biosens Bioelectron, 2021 Jul 01;183:113213.
    PMID: 33857754 DOI: 10.1016/j.bios.2021.113213
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells through the binding of its spike protein (S-protein) to the cell surface-expressing angiotensin-converting enzyme 2 (ACE2). Thus, inhibition of S-protein-ACE2 binding may impede SARS-CoV-2 cell entry and attenuate the progression of Coronavirus disease 2019 (COVID-19). In this study, an electrochemical impedance spectroscopy-based biosensing platform consisting of a recombinant ACE2-coated palladium nano-thin-film electrode as the core sensing element was fabricated for the screening of potential inhibitors against S-protein-ACE2 binding. The platform could detect interference of small analytes against S-protein-ACE2 binding at low analyte concentration and small volume (0.1 μg/mL and ~1 μL, estimated total analyte consumption 
    Matched MeSH terms: Dielectric Spectroscopy
  11. Ramesh, S., Shanti, R., Chin, S.F.
    ASM Science Journal, 2011;5(1):19-26.
    MyJurnal
    In this present study, a series of polymer electrolyte thin films were synthesized by incorporating different ratios of lithium triflate (LiCF3SO3) in a low molecular weight polyvinyl chloride (PVC) matrix by the solution casting technique. The incorporation of LiCF3SO3 suppressed the high degree of crystallinity in PVC enabling the system to possess an appreciable ionic conductivity. The ionic conductivity of the samples, with different LiCF3SO3 content, was determined by the aid of ac impedance spectroscopy. The highest ionic conductivity of 4.04  10–9 S cm–1 was identified for the composition of PVC: LiCF3SO3 (75:25). Further understanding of the ionic conductivity mechanism was based on temperature-dependent conductivity data which obeyed Arrhenius theory, indicating that the ionic conductivity enhancement was thermally assisted. The possible dipole-dipole interaction between the chemical constituents was confirmed with changes in cage peak, analysed using Fourier transform infrared spectroscopy.
    Matched MeSH terms: Dielectric Spectroscopy
  12. Azri FA, Selamat J, Sukor R, Yusof NA, Raston NHA, Eissa S, et al.
    Anal Bioanal Chem, 2021 Jun;413(15):3861-3872.
    PMID: 34021369 DOI: 10.1007/s00216-021-03336-1
    Aptamers are short single-stranded oligonucleotides (either DNA or RNA) that can fold into well-defined three-dimensional (3D) spatial structures which enable them to capture their specific target by complementary shape interactions. Aptamers are selected from large random libraries through the SELEX process and only a small fraction of the sequence is involved in direct docking with the target. In this paper, we describe the possible truncation variants of zearalenone (ZEA) aptamer which might be an effective binding region for the target. The originally selected zearalenone (ZEA) aptamer was 80-mer in length and shown to bind the target with a high affinity (Kd = 41 ± 5 nM). Herein, computational docking simulation was performed with 15 truncated variants to determine the predicted binding energy and responsible binding site of the aptamer-analyte complex. The results revealed that 5 truncated variants had binding energy lower than - 7.0 kcal/mol. Circular dichroism analysis was performed on the shortlisted aptamer and the conformational change of aptamers was observed with the presence of an analyte. Aptamer Z3IN (29-mer) was chosen as the most enhanced affinity for its target with a dissociation constant of 11.77 ± 1.44 nM. The aptamer was further applied in the electrochemical aptasensor of ZEA based on an indirect competitive format. The results demonstrated that the truncated aptamer leads to an enhancement of the sensitivity of the biosensor.
    Matched MeSH terms: Dielectric Spectroscopy
  13. Bakhsheshi-Rad HR, Hamzah E, Low HT, Kasiri-Asgarani M, Farahany S, Akbari E, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Apr 01;73:215-219.
    PMID: 28183601 DOI: 10.1016/j.msec.2016.11.138
    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mg
    Matched MeSH terms: Dielectric Spectroscopy
  14. Jiang H, Peng H, Guo H, Zeng Y, Li L, Zhang Y, et al.
    ACS Appl Mater Interfaces, 2020 Nov 18;12(46):51344-51356.
    PMID: 33146507 DOI: 10.1021/acsami.0c13139
    Thin-film lithium-ion microbatteries with a high energy density and long lifespan are exceedingly desired for developing self-powered integrated micro-nano devices and systems. However, exploring high-performance thin-film anodes still remains a challenge. Herein, a double-layer-structure diamond-like carbon-ZnS (DLC-ZnS) thin-film anode fabricated by radio frequency magnetron sputtering exhibits high specific capacity and good cycling stability up to 1000 cycles, superior to the pure ZnS thin-film anode. To understand the mechanism, the bimodal amplitude modulated-frequency modulated atomic force microscopy was used to explore the mechanical properties of the thin films, and the DLC layer shows significantly higher Young's modulus than the ZnS thin film. The DLC interface with a high Young's modulus can effectively buffer the mechanical stress originating from the huge volume changes of the ZnS layer during lithiation/delithiation processes; therefore, the DLC interface maintains the higher mechanical integrity of the DLC-ZnS thin film and improves the utilization of ZnS. In addition, the electrochemical kinetics of the DLC-ZnS and ZnS thin films were also investigated by electrochemical methods. Electrochemical impedance spectroscopy tests indicate the obstacle of the DLC interface to Li+ ion diffusion in the initial charge/discharge processes; however, the DLC-ZnS thin film exhibits lower total resistance than the ZnS thin film afterward. In particular, galvanostatic intermittent titration technique tests were performed to find out the differences between the two thin films during the galvanostatical charge/discharge processes. The results demonstrate the obviously enhanced conversion reaction reversibility and decreased alloy reaction polarization of the DLC-ZnS thin film; therefore, it delivers higher reversible capacity.
    Matched MeSH terms: Dielectric Spectroscopy
  15. Basirun WJ, Sookhakian M, Baradaran S, Mahmoudian MR, Ebadi M
    Nanoscale Res Lett, 2013;8(1):397.
    PMID: 24059434 DOI: 10.1186/1556-276X-8-397
    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.
    Matched MeSH terms: Dielectric Spectroscopy
  16. Aliyin Abdul Ghani, Hadariah Bahron, Mohamad Kamal Harun, Karimah Kassim, El Hassane Anouar
    MyJurnal
    Two imines of different molecular sizes namely 3-(phenylimino) indolin-2-one (PII) and 3,3- (1,4-phenylenebis (azan-1-yl-1-ylidene) diindolin-2-one (PDI) were investigated for their corrosion inhibition on mild steel in 1 M HCl solution using electrochemical impedance spectroscopy (EIS). The bigger molecule PDI containing double the amount of isatin moiety exhibited higher inhibition efficiency of 87.3% while PII that contained monoisatin moiety showed a lower inhibition efficiency of 74.8%. Both compounds had an increase in inhibition efficiencies percentage as concentrations increased. Density functional theory (DFT) was used to determine the correlation between the corrosion inhibition efficiency and electronic parameters. The DFT calculations indicated that the corrosion inhibition efficiency was mainly dependant on the frontier orbital energy gap and the chemical softness/hardness of the imines.
    Matched MeSH terms: Dielectric Spectroscopy
  17. Fayeka M, Haseeb A, Fazal MA
    Sains Malaysiana, 2017;46:295-302.
    Sn-Ag based solder alloy seems to be a promising lead-free solder for the application on electronic assembly. The corrosion behavior of different lead free solder alloys such as Sn-3.0Ag, Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu was investigated in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to characterize the samples after the tests. The results showed that the addition of 0.5 wt. % copper with Sn-3.0 Ag solder alloy led to a better corrosion resistance while lowering of Ag content from 3.0 to 1.0 wt. % decreased the resistance. Sn-3.0Ag-0.5Cu exhibits a better corrosion resistance in terms of increased charge transfer resistance and impedance values as well as the lowest capacitance. These characteristics signify its suitability for the application in electronic packaging.
    Matched MeSH terms: Dielectric Spectroscopy
  18. Kumar R, Singh L, Zularisam AW, Hai FI
    Bioresour Technol, 2016 Nov;220:537-542.
    PMID: 27614156 DOI: 10.1016/j.biortech.2016.09.003
    This study aims to investigate the potential of porous Co3O4 nanorods as the cathode catalyst for oxygen reduction reaction (ORR) in aqueous air cathode microbial fuel cells (MFCs). The porous Co3O4 nanorods were synthesized by a facile and cost-effective hydrothermal method. Three different concentrations (0.5mg/cm(2), 1mg/cm(2), and 2mg/cm(2)) of Co3O4 nanorods coated on graphite electrodes were used to test its performance in MFCs. The results showed that the addition of porous Co3O4 nanorods enhanced the electrocatalytic activity and ORR kinetics significantly and the overall resistance of the system was greatly reduced. Moreover, the MFC with a higher concentration of the catalyst achieved a maximum power density of 503±16mW/m(2), which was approximately five times higher than the bare graphite electrode. The improved catalytic activity of the cathodes could be due to the porous properties of Co3O4 nanorods that provided the higher number of active sites for oxygen.
    Matched MeSH terms: Dielectric Spectroscopy
  19. Farahani H, Wagiran R, Hamidon MN
    Sensors (Basel), 2014 Apr 30;14(5):7881-939.
    PMID: 24784036 DOI: 10.3390/s140507881
    Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors), polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types.
    Matched MeSH terms: Dielectric Spectroscopy/instrumentation*
  20. Yazid SNAM, Isa IM, Hashim N
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:465-473.
    PMID: 27524043 DOI: 10.1016/j.msec.2016.06.006
    This paper presents the fabrication of a highly sensitive and selective glucose sensor based on cuprous oxide/graphene nanocomposites-modified glassy carbon electrode (Cu2O/graphene/GCE). The Cu2O/graphene nanocomposites were synthesized based on a simple and straightforward chemical reduction process in alkaline aqueous solution using sodium carbonate as reductant. The size and shape of Cu2O nanoparticles on graphene sheets can be controlled by changing the amount of graphene oxide added during reaction. The electrochemical properties of Cu2O/graphene/GCE in 0.1M phosphate buffer solution were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. It was found that the pH, concentration of supporting electrolyte, and scan rate had very crucial effect on the sensitivity of prepared sensor towards glucose oxidation. At an applied potential of +0.50V, the Cu2O/graphene/GCE presented a high sensitivity of 1330.05μAmM(-1)cm(-2) and fast response (within 3s). The amperometric non-enzymatic glucose sensor developed had a linear relationship from 0.01mM to 3.0mM glucose and detection limit of 0.36μM. In the presence of ascorbic acid, uric acid, dopamine, chloride and citrate ion and other carbohydrates, the interferences were negligible. The proposed sensor was successfully applied for the determination of glucose concentration in real human blood samples.
    Matched MeSH terms: Dielectric Spectroscopy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links