Displaying publications 1 - 20 of 89 in total

Abstract:
Sort:
  1. Zhang T, Wu Q, Zhang Z
    Curr Biol, 2020 04 06;30(7):1346-1351.e2.
    PMID: 32197085 DOI: 10.1016/j.cub.2020.03.022
    An outbreak of coronavirus disease 2019 (COVID-19) caused by the 2019 novel coronavirus (SARS-CoV-2) began in the city of Wuhan in China and has widely spread worldwide. Currently, it is vital to explore potential intermediate hosts of SARS-CoV-2 to control COVID-19 spread. Therefore, we reinvestigated published data from pangolin lung samples from which SARS-CoV-like CoVs were detected by Liu et al. [1]. We found genomic and evolutionary evidence of the occurrence of a SARS-CoV-2-like CoV (named Pangolin-CoV) in dead Malayan pangolins. Pangolin-CoV is 91.02% and 90.55% identical to SARS-CoV-2 and BatCoV RaTG13, respectively, at the whole-genome level. Aside from RaTG13, Pangolin-CoV is the most closely related CoV to SARS-CoV-2. The S1 protein of Pangolin-CoV is much more closely related to SARS-CoV-2 than to RaTG13. Five key amino acid residues involved in the interaction with human ACE2 are completely consistent between Pangolin-CoV and SARS-CoV-2, but four amino acid mutations are present in RaTG13. Both Pangolin-CoV and RaTG13 lost the putative furin recognition sequence motif at S1/S2 cleavage site that can be observed in the SARS-CoV-2. Conclusively, this study suggests that pangolin species are a natural reservoir of SARS-CoV-2-like CoVs.
    Matched MeSH terms: Disease Reservoirs/virology*
  2. Yoke-Kqueen C, Learn-Han L, Noorzaleha AS, Son R, Sabrina S, Jiun-Horng S, et al.
    Lett Appl Microbiol, 2008 Mar;46(3):318-24.
    PMID: 18179445 DOI: 10.1111/j.1472-765X.2007.02311.x
    The aims of this communication were to study characterization of serogroups among Salmonella isolates and the relationship of antimicrobial resistance to serogroups. Multiple antimicrobial resistance (MAR) was performed on 189 Salmonella enterica isolates associated with 38 different serovars that were recovered from poultry and four types of indigenous vegetables.
    Matched MeSH terms: Disease Reservoirs
  3. Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al.
    Nature, 2020 07;583(7815):286-289.
    PMID: 32380510 DOI: 10.1038/s41586-020-2313-x
    The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.
    Matched MeSH terms: Disease Reservoirs/virology
  4. Wong KT, Shieh WJ, Zaki SR, Tan CT
    Springer Semin. Immunopathol., 2002;24(2):215-28.
    PMID: 12503066
    The Nipah virus outbreak represented one of several bat-derived paramyxoviruses that has emerged during the last decade to cause severe human and animal disease. The pathogenesis of Nipah infection is associated with its ability to infect blood vessels and extravascular parenchyma in many organs, particularly in the central nervous system. The clinical manifestations of acute Nipah infection range from fever and mild headache to a severe acute encephalitic syndrome in which there is a high mortality. Much remains to be understood about this new disease, including its intriguing ability to cause relapsing encephalitis in some survivors. This review provides an overview of the Nipah outbreak, focussing on what is presently known about it as an infectious disease, including the clinical aspects, pathology and pathogenesis.
    Matched MeSH terms: Disease Reservoirs
  5. Tay ST, Kho KL, Wee WY, Choo SW
    Acta Trop, 2016 Mar;155:25-33.
    PMID: 26658020 DOI: 10.1016/j.actatropica.2015.11.019
    Bartonella elizabethae has been known to cause endocarditis and neuroretinitis in humans. The genomic features and virulence profiles of a B. elizabethae strain (designated as BeUM) isolated from the spleen of a wild rat in Kuala Lumpur, Malaysia are described in this study. The BeUM strain has a genome size of 1,932,479bp and GC content of 38.3%. There is a high degree of conservation between the genomes of strain BeUM with B. elizabethae type strains (ATCC 49927 and F9251) and a rat-borne strain, Re6043vi. Of 2137 gene clusters identified from B. elizabethae strains, 2064 (96.6%) are indicated as the core gene clusters. Comparative genome analysis of B. elizabethae strains reveals virulence genes which are known in other pathogenic Bartonella species, including VirB2-11, vbhB2-B11, VirD4, trw, vapA2-5, hbpA-E, bepA-F, bepH, badA/vomp/brp, ialB, omp43/89 and korA-B. A putative intact prophage has been identified in the strain BeUM, in addition to a 8kb pathogenicity island. The whole genome analysis supports the zoonotic potential of the rodent-borne B. elizabethae, and provides basis for future functional and pathogenicity studies of B. elizabethae.
    Matched MeSH terms: Disease Reservoirs
  6. Tay ST, Mokhtar AS, Zain SN, Low KC
    Am J Trop Med Hyg, 2014 Jun;90(6):1039-42.
    PMID: 24732465 DOI: 10.4269/ajtmh.13-0273
    This study describes our investigation on the prevalence and molecular identification of bartonellae from Rattus diardii and R. norvegicus in the urban areas of Malaysia. Of 95 rats investigated, Bartonella tribocorum, B. rattimassiliensis, B. coopersplainsensis, B. elizabethae, and B. queenslandensis were isolated from kidney and spleen homogenates of four rats. Bartonellae DNA was amplified from the rat organ tissues by using primers specific for the bartonellae RNA polymerase beta subunit (rpoB) gene in nine other rats. Sequence analysis of the rpoB gene fragments shows the identification of B. queenslandensis in five rats, B. elizabethae in three rats, and B. tribocorum in one rat. Combining the results of isolation and molecular detection of bartonellae, we found that the prevalence of Bartonella infection in the Rattus spp. investigated in this study was 13.7%. Implementation of effective rat control program in the urban areas is necessary to prevent the spillover of bartonellosis from rats to humans.
    Matched MeSH terms: Disease Reservoirs
  7. Tan CT, Wong KT
    Ann Acad Med Singap, 2003 Jan;32(1):112-7.
    PMID: 12625108
    INTRODUCTION: Between September 1998 and June 1999, there was a severe outbreak of viral encephalitis among the pig farm workers in Malaysia.

    METHODS: This is a review of the published literature related to the outbreak with the focus on human diseases.

    RESULTS: The encephalitis was caused by a newly discovered paramyxovirus related to Hendra virus, later named Nipah virus. There were 265 patients with acute encephalitis. The disease is thought to spread from pig to man through close contact. The risk of human-to-human spread is thought to below. The disease affected mainly adult Chinese males, half of whom had affected family members. The disease presented mainly as acute encephalitis with a short incubation period of less than two weeks, with the main symptoms of fever, headache, and giddiness followed by coma. Distinctive clinical signs include segmental myoclonus, areflexia and hypotonia, hypertension, and tachycardia. Initial cerebrospinal fluid was abnormal in 75% of patients. Serology was helpful in confirming the diagnosis. Magnetic resonance imaging showed distinctive changes of multiple, discrete, and small high signal lesions, best seen with fluid-attenuated inversion recovery (FLAIR) sequences. Mortality was high at 40% and death was probably due to severe brainstem involvement. The main necropsy finding in acute encephalitis was that of disseminated microinfarction associated with vasculitis and direct neuronal involvement. Ribavirin was able to reduce the mortality by 36%. Relapse encephalitis was seen in 7.5% of those who recovered from acute encephalitis, and late-onset encephalitis in 3.4% of those with initial non-encephalitic or asymptomatic diseases. The mean interval between initial illness and the onset of the complication was 8.4 months. The relapse and late-onset encephalitis which manifested as focal encephalitis arose from recurrent infection.

    CONCLUSION: Nipah virus, a recently discovered paramyxovirus, causes a unique encephalitis with high mortality as well as relapse and late-onset encephalitis. The infection is mainly spread from pigs to man.

    Matched MeSH terms: Disease Reservoirs
  8. Tabasi M, Alesheikh AA, Sofizadeh A, Saeidian B, Pradhan B, AlAmri A
    Parasit Vectors, 2020 Nov 11;13(1):572.
    PMID: 33176858 DOI: 10.1186/s13071-020-04447-x
    BACKGROUND: Zoonotic cutaneous leishmaniasis (ZCL) is a neglected tropical disease worldwide, especially the Middle East. Although previous works attempt to model the ZCL spread using various environmental factors, the interactions between vectors (Phlebotomus papatasi), reservoir hosts, humans, and the environment can affect its spread. Considering all of these aspects is not a trivial task.

    METHODS: An agent-based model (ABM) is a relatively new approach that provides a framework for analyzing the heterogeneity of the interactions, along with biological and environmental factors in such complex systems. The objective of this research is to design and develop an ABM that uses Geospatial Information System (GIS) capabilities, biological behaviors of vectors and reservoir hosts, and an improved Susceptible-Exposed-Infected-Recovered (SEIR) epidemic model to explore the spread of ZCL. Various scenarios were implemented to analyze the future ZCL spreads in different parts of Maraveh Tappeh County, in the northeast region of Golestan Province in northeastern Iran, with alternative socio-ecological conditions.

    RESULTS: The results confirmed that the spread of the disease arises principally in the desert, low altitude areas, and riverside population centers. The outcomes also showed that the restricting movement of humans reduces the severity of the transmission. Moreover, the spread of ZCL has a particular temporal pattern, since the most prevalent cases occurred in the fall. The evaluation test also showed the similarity between the results and the reported spatiotemporal trends.

    CONCLUSIONS: This study demonstrates the capability and efficiency of ABM to model and predict the spread of ZCL. The results of the presented approach can be considered as a guide for public health management and controlling the vector population .

    Matched MeSH terms: Disease Reservoirs/parasitology*
  9. Stone R
    Science, 2011 Mar 4;331(6021):1128-31.
    PMID: 21385693 DOI: 10.1126/science.331.6021.1128
    Matched MeSH terms: Disease Reservoirs
  10. Solomon T, Ooi MH, Beasley DW, Mallewa M
    BMJ, 2003 Apr 19;326(7394):865-9.
    PMID: 12702624
    Matched MeSH terms: Disease Reservoirs
  11. Sivanandam S, Mak JW, Lai PF
    PMID: 1145240
    R. sabanus and R. muelleri are very common in the lowland forests of Malaysia. In nature they are infected with Breinlia sp. and D. ramachandrani. In an attempt to determine whether they are also susceptible to subperiodic B. malayi and thereby being potential reservoirs of infection of the disease, 24 R. muelleri and 17 R. sabanus were experimentally infected with the parasite. Results show that although they can support the full development of the parasite, they are poor hosts. This confirms the observation that in Malaysia natural infection of Rattus spp. with the parasite has not been seen. These rats therefore are probably not important in the zoonotic transmission of subperiodic B. malayi in Malaysia.
    Matched MeSH terms: Disease Reservoirs
  12. Singh B, Daneshvar C
    Clin Microbiol Rev, 2013 Apr;26(2):165-84.
    PMID: 23554413 DOI: 10.1128/CMR.00079-12
    Plasmodium knowlesi is a malaria parasite that is found in nature in long-tailed and pig-tailed macaques. Naturally acquired human infections were thought to be extremely rare until a large focus of human infections was reported in 2004 in Sarawak, Malaysian Borneo. Human infections have since been described throughout Southeast Asia, and P. knowlesi is now recognized as the fifth species of Plasmodium causing malaria in humans. The molecular, entomological, and epidemiological data indicate that human infections with P. knowlesi are not newly emergent and that knowlesi malaria is primarily a zoonosis. Human infections were undiagnosed until molecular detection methods that could distinguish P. knowlesi from the morphologically similar human malaria parasite P. malariae became available. P. knowlesi infections cause a spectrum of disease and are potentially fatal, but if detected early enough, infections in humans are readily treatable. In this review on knowlesi malaria, we describe the early studies on P. knowlesi and focus on the epidemiology, diagnosis, clinical aspects, and treatment of knowlesi malaria. We also discuss the gaps in our knowledge and the challenges that lie ahead in studying the epidemiology and pathogenesis of knowlesi malaria and in the prevention and control of this zoonotic infection.
    Matched MeSH terms: Disease Reservoirs
  13. Simpson DI, Bowen ET, Way HJ, Platt GS, Hill MN, Kamath S, et al.
    Ann Trop Med Parasitol, 1974 Dec;68(4):393-404.
    PMID: 4155608
    Matched MeSH terms: Disease Reservoirs
  14. Simpson DI, Smith CE, Marshall TF, Platt GS, Way HJ, Bowen ET, et al.
    Trans R Soc Trop Med Hyg, 1976;70(1):66-72.
    PMID: 1265821
    The possible role of pigs as arbovirus maintenance hosts and their importance as amplifier hosts was studied. Blood samples from 464 pigs of all ages collected in 1962 and 1964 were tested against 10 arboviruses. Antibodies to Japanese encephalitis and Getah viruses were particularly prevalent and their calculated monthly infection rates were 19-5% and 13-3% respectively. In 1969, 447 pigs were bled monthly throughout the year and the infection rates for Japanese encephalitis virus were calculated in pigs during the first year of life. Infection rates were not uniform throughout the year; the rate increases as the pig grew older and there was a marked seasonal increase in the infection rate in the period from November to January. This coincided with the seasonal major population peak of Culex tritaeniorhynchus following intense breeding of this mosquito prior to rice planting. It is suggested that, in Sarawak, the pig acts as a maintenance host of Japanese encephalitis in a cycle involving C. gelidus mosquitoes and also acts as an important amplifier host towards the end of the year in a cycle involving C. tritaeniorhynchus. It is further suggested that Getah virus is maintained in a similar cycle between C. tritaeniorhynchus and pigs.
    Matched MeSH terms: Disease Reservoirs*
  15. Shearer FM, Huang Z, Weiss DJ, Wiebe A, Gibson HS, Battle KE, et al.
    PLoS Negl Trop Dis, 2016 Aug;10(8):e0004915.
    PMID: 27494405 DOI: 10.1371/journal.pntd.0004915
    BACKGROUND: Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated.

    METHODOLOGY/PRINCIPAL FINDINGS: A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines).

    CONCLUSIONS/SIGNIFICANCE: We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.

    Matched MeSH terms: Disease Reservoirs
  16. Shankar EM, Che KF, Yong YK, Girija ASS, Velu V, Ansari AW, et al.
    Pathog Dis, 2021 Jan 09;79(1).
    PMID: 33289808 DOI: 10.1093/femspd/ftaa076
    A vast proportion of coronavirus disease 2019 (COVID-19) individuals remain asymptomatic and can shed severe acute respiratory syndrome (SARS-CoV) type 2 virus to transmit the infection, which also explains the exponential increase in the number of COVID-19 cases globally. Furthermore, the rate of recovery from clinical COVID-19 in certain pockets of the globe is surprisingly high. Based on published reports and available literature, here, we speculated a few immunovirological mechanisms as to why a vast majority of individuals remain asymptomatic similar to exotic animal (bats and pangolins) reservoirs that remain refractile to disease development despite carrying a huge load of diverse insidious viral species, and whether such evolutionary advantage would unveil therapeutic strategies against COVID-19 infection in humans. Understanding the unique mechanisms that exotic animal species employ to achieve viral control, as well as inflammatory regulation, appears to hold key clues to the development of therapeutic versatility against COVID-19.
    Matched MeSH terms: Disease Reservoirs
  17. Shah-Majid M, Azlina AM, Ana Maria AR, Zaharah B, Norhaliza AH
    Vet Rec, 2004 Nov 20;155(21):680-1.
    PMID: 15581146
    Matched MeSH terms: Disease Reservoirs/veterinary
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links