Displaying publications 1 - 20 of 89 in total

Abstract:
Sort:
  1. Field HE
    Zoonoses Public Health, 2009 Aug;56(6-7):278-84.
    PMID: 19497090 DOI: 10.1111/j.1863-2378.2008.01218.x
    Nearly 75% of all emerging infectious diseases (EIDs) that impact or threaten human health are zoonotic. The majority have spilled from wildlife reservoirs, either directly to humans or via domestic animals. The emergence of many can be attributed to predisposing factors such as global travel, trade, agricultural expansion, deforestation/habitat fragmentation, and urbanization; such factors increase the interface and/or the rate of contact between human, domestic animal, and wildlife populations, thereby creating increased opportunities for spillover events to occur. Infectious disease emergence can be regarded as primarily an ecological process. The epidemiological investigation of EIDs associated with wildlife requires a trans-disciplinary approach that includes an understanding of the ecology of the wildlife species, and an understanding of human behaviours that increase risk of exposure. Investigations of the emergence of Nipah virus in Malaysia in 1999 and severe acute respiratory syndrome (SARS) in China in 2003 provide useful case studies. The emergence of Nipah virus was associated with the increased size and density of commercial pig farms and their encroachment into forested areas. The movement of pigs for sale and slaughter in turn led to the rapid spread of infection to southern peninsular Malaysia, where the high-density, largely urban pig populations facilitated transmission to humans. Identifying the factors associated with the emergence of SARS in southern China requires an understanding of the ecology of infection both in the natural reservoir and in secondary market reservoir species. A necessary extension of understanding the ecology of the reservoir is an understanding of the trade, and of the social and cultural context of wildlife consumption. Emerging infectious diseases originating from wildlife populations will continue to threaten public health. Mitigating and managing the risk requires an appreciation of the connectedness between human, livestock and wildlife health, and of the factors and processes that disrupt the balance.
    Matched MeSH terms: Disease Reservoirs/veterinary
  2. Kolomytsev AA, Kurinnov VV, Mikolaĭchuk SV, Zakutskiĭ NI
    Vopr. Virusol., 2008 Mar-Apr;53(2):10-3.
    PMID: 18450103
    Nipah encephalitis is a particular dangerous disease that affects animals and man. Fatal cases of the disease have been identified in the persons looking after pigs in the villages of Malaysia. The causative agent is presumably referred to as morbilliviruses of the Paramixoviridae family. Two hundred persons died among the ill patients with the signs of encephalitis. The principal hosts of the virus were fox-bats (Megaschiroptera) inhabiting in the surrounding forests. The present paper descries the epidemiological features of the disease, its clinical manifestations, abnormal anatomic changes, diagnosis, and implemented controlling measures.
    Matched MeSH terms: Disease Reservoirs/veterinary*; Disease Reservoirs/virology
  3. Koh FX, Panchadcharam C, Sitam FT, Tay ST
    Vet Parasitol Reg Stud Reports, 2018 08;13:141-147.
    PMID: 31014863 DOI: 10.1016/j.vprsr.2018.05.006
    Anaplasma spp. are Gram-negative obligate intracellular, tick-borne bacteria which are of medical and veterinary importance. Little information is available on Anaplasma infection affecting domestic and wildlife animals in Malaysia. This study investigated the presence of Anaplasma spp. in the blood samples of domestic and wildlife animals in Peninsular Malaysia, using polymerase chain reaction (EHR-PCR) assays targeting the 16S rRNA gene of Anaplasmataceae. High detection rates (60.7% and 59.0%, respectively) of Anaplasma DNA were noted in 224 cattle (Bos taurus) and 78 deer (77 Rusa timorensis and one Rusa unicolor) investigated in this study. Of the 60 amplified fragments obtained for sequence analysis, Anaplasma marginale was exclusively detected in cattle while Anaplasma platys/Anaplasma phagocytophilum was predominantly detected in the deer. Based on sequence analyses of the longer fragment of the 16S rRNA gene (approximately 1000 bp), the occurrence of A. marginale, Anaplasma capra and Candidatus Anaplasma camelii in cattle, Candidatus A. camelii in deer and Anaplasma bovis in a goat was identified in this study. To assess whether animals were infected with more than one species of Anaplasma, nested amplification of A. phagocytophilum, A. bovis and Ehrlichia chaffeensis DNA was performed for 33 animal samples initially screened positive for Anaplasmataceae. No amplification of E. chaffeensis DNA was obtained from animals investigated. BLAST analyses of the 16S rDNA sequences from three deer (R. timorensis), a buffalo (Bubalus bubalis) and a cow (B. taurus) reveal similarity with that of Candidatus Anaplasma boleense strain (GenBank accession no.: KX987335). Sequence analyses of the partial gene fragments of major surface protein (msp4) gene from two deer (R. timorensis) and a monitor lizard (Varanus salvator) show the detection of a strain highly similar (99%) to that of A. phagocytophilum strain ZJ-China (EU008082). The findings in this study show the occurrence of various Anaplasma species including those newly reported species in Malaysian domestic and wildlife animals. The role of these animals as reservoirs/maintenance hosts for Anaplasma infection are yet to be determined.
    Matched MeSH terms: Disease Reservoirs/microbiology; Disease Reservoirs/veterinary*
  4. Glennon EE, Restif O, Sbarbaro SR, Garnier R, Cunningham AA, Suu-Ire RD, et al.
    Vet J, 2018 03;233:25-34.
    PMID: 29486875 DOI: 10.1016/j.tvjl.2017.12.024
    Bat-borne viruses carry undeniable risks to the health of human beings and animals, and there is growing recognition of the need for a 'One Health' approach to understand their frequently complex spill-over routes. While domesticated animals can play central roles in major spill-over events of zoonotic bat-borne viruses, for example during the pig-amplified Malaysian Nipah virus outbreak of 1998-1999, the extent of their potential to act as bridging or amplifying species for these viruses has not been characterised systematically. This review aims to compile current knowledge on the role of domesticated animals as hosts of two types of bat-borne viruses, henipaviruses and filoviruses. A systematic literature search of these virus-host interactions in domesticated animals identified 72 relevant studies, which were categorised by year, location, design and type of evidence generated. The review then focusses on Africa as a case study, comparing research efforts in domesticated animals and bats with the distributions of documented human cases. Major gaps remain in our knowledge of the potential ability of domesticated animals to contract or spread these zoonoses. Closing these gaps will be necessary to fully evaluate and mitigate spill-over risks of these viruses, especially with global agricultural intensification.
    Matched MeSH terms: Disease Reservoirs/virology*
  5. DeCarlo C, Omar AH, Haroun MI, Bigler L, Bin Rais MN, Abu J, et al.
    Vector Borne Zoonotic Dis, 2017 10;17(10):709-713.
    PMID: 28873035 DOI: 10.1089/vbz.2016.2098
    West Nile virus (WNV) is a zoonotic single-strand RNA arbovirus (family Flaviviridae: Flavivirus), transmitted among avian hosts in enzootic cycles by a mosquito vector. The virus has a significant disease effect on humans and equines when it bridges into a cycle with various sequelae with epidemic potential. This study was carried out to identify the potential spectrum of WNV hosts in three geographic areas with climatologically distinct features: Malaysia, Qatar, and the United States of America (U.S.). Serum samples were collected from avian and mammal species suspected to be reservoirs for the virus at these areas in a cross-sectional epidemiologic study. The samples were tested for the presence of antibodies against the virus using an enzyme-linked immunosorbent assay. Data on putative risk factors were also collected and analyzed for significance of association with seropositivity using the logistic regression analysis. Among the tested avian and mammalian species, raccoons had the highest seroconversion rate (54%) followed by crows (30%), horses (27%), camels (10%), other avian species (7%), and canine species (3%). It was almost twice as likely to detect seroconversion among these mammalian and avian species in the fall in comparison to other seasons of the year. Only mammalian and avian species and seasons of the year were significantly associated with the likelihood of seroconversion to WNV when we controlled for other factors in the multivariate analysis. Our data from the U.S. showed that raccoons and camels are susceptible to infection by the virus and may play a role in the perpetuation of endemic foci for the disease.
    Matched MeSH terms: Disease Reservoirs/veterinary*
  6. Muslim A, Fong MY, Mahmud R, Sivanandam S
    Trop Biomed, 2013 Dec;30(4):727-30.
    PMID: 24522144 MyJurnal
    A case of human eye infection caused by Brugia pahangi was reported in 2010 in a semi rural village in Selangor, peninsular Malaysia. Our report here reveals results of investigation on the vector and animal host for the transmission of the infection. We conducted entomological survey and cat blood examination in the vicinity of the patient's home. The mosquito species Armigeres subalbatus was incriminated as the vector, whereas cat served as the reservoir host.
    Matched MeSH terms: Disease Reservoirs*
  7. Mohamed NA, Said MH, Mohd Rani MD, Ramli S, Isahak I
    Trop Biomed, 2019 Sep 01;36(3):709-717.
    PMID: 33597493
    Bats are slowly gaining recognition as a potential reservoir for viruses harmful to human (Smith and Wang, 2013). Bats are reservoir to viruses causing Ebola virus diseases (EBV) (Leroy et al., 2005), Nipah Encephalitis (NiV) (Chua et al., 2002), SARS(Li et al., 2005) and MERS-CoV (Yang et al., 2015) being the latest one making headlines. About 18 years ago, a major outbreak of Nipah virus encephalitis occurred in Peninsular Malaysia resulted in the deaths of 105 persons and the slaughter of approximately 1.1 million pigs. In 2006, a novel bat orthoreovirus was found to be associated with acute respiratory syndrome in Malaysia. Following that incidents, many studies have been done on bats, particularly to determine their species, behaviour, and antibody level and there were also studies in human on antibody prevalence to batsrelated viruses e.g. Nipah and Hendra and PRV. Humans may become infected with viruses from bats through intermediate host (swine, horse) or through aerosol or direct contact with bats. Communities living adjacent to bat roosts should aware of possible risk of infection transmission from bats. An earlier study in Guatemala demonstrated that risk of exposure to bats in communities near bats roosts was common, but recognition of the potential for disease transmission from bats was low (Moran et al., 2015). Surprisingly, there is no local published data on public awareness towards bats-related infection despite potential risk of getting the infection. This study aimed to determine knowledge and awareness on bat-related infections, attitudes towards bats and practices related to health-seeking behaviours following exposure to bats.
    Matched MeSH terms: Disease Reservoirs/virology
  8. Bisseru B, Chong LK
    Trop Geogr Med, 1969 Jun;21(2):138-46.
    PMID: 5816416
    Matched MeSH terms: Disease Reservoirs
  9. Fong YL, Cadigan FC, Coatney GR
    Trans R Soc Trop Med Hyg, 1971;65(6):839-40.
    PMID: 5003320
    Matched MeSH terms: Disease Reservoirs
  10. Simpson DI, Smith CE, Marshall TF, Platt GS, Way HJ, Bowen ET, et al.
    Trans R Soc Trop Med Hyg, 1976;70(1):66-72.
    PMID: 1265821
    The possible role of pigs as arbovirus maintenance hosts and their importance as amplifier hosts was studied. Blood samples from 464 pigs of all ages collected in 1962 and 1964 were tested against 10 arboviruses. Antibodies to Japanese encephalitis and Getah viruses were particularly prevalent and their calculated monthly infection rates were 19-5% and 13-3% respectively. In 1969, 447 pigs were bled monthly throughout the year and the infection rates for Japanese encephalitis virus were calculated in pigs during the first year of life. Infection rates were not uniform throughout the year; the rate increases as the pig grew older and there was a marked seasonal increase in the infection rate in the period from November to January. This coincided with the seasonal major population peak of Culex tritaeniorhynchus following intense breeding of this mosquito prior to rice planting. It is suggested that, in Sarawak, the pig acts as a maintenance host of Japanese encephalitis in a cycle involving C. gelidus mosquitoes and also acts as an important amplifier host towards the end of the year in a cycle involving C. tritaeniorhynchus. It is further suggested that Getah virus is maintained in a similar cycle between C. tritaeniorhynchus and pigs.
    Matched MeSH terms: Disease Reservoirs*
  11. Landman WJ, Schrier CC
    Tijdschr Diergeneeskd, 2004 Dec 1;129(23):782-96.
    PMID: 15624878
    Avian influenza viruses are highly infectious micro-organisms that primarily affect birds. Nevertheless, they have also been isolated from a number of mammals, including humans. Avian influenza virus can cause large economic losses to the poultry industry because of its high mortality. Although there are pathogenic variants with a low virulence and which generally cause only mild, if any, clinical symptoms, the subtypes H5 and H7 can mutate from a low to a highly virulent (pathogenic) virus and should be taken into consideration in eradication strategies. The primary source of infection for commercial poultry is direct and indirect contact with wild birds, with waterfowl forming a natural reservoir of the virus. Live-poultry markets, exotic birds, and ostriches also play a significant role in the epidemiology of avian influenza. The secondary transmission (i.e., between poultry farms) of avian influenza virus is attributed primarily to fomites and people. Airborne transmission is also important, and the virus can be spread by aerosol in humans. Diagnostic tests detect viral proteins and genes. Virus-specific antibodies can be traced by serological tests, with virus isolation and identification being complementary procedures. The number of outbreaks of avian influenza seems to be increasing - over the last 5 years outbreaks have been reported in Italy, Hong Kong, Chile, the Netherlands, South Korea, Vietnam, Japan, Thailand, Cambodia, Indonesia, Laos, China, Pakistan, United States of America, Canada, South Africa, and Malaysia. Moreover, a growing number of human cases of avian influenza, in some cases fatal, have paralleled the outbreaks in commercial poultry. There is great concern about the possibility that a new virus subtype with pandemic potential could emerge from these outbreaks. From the perspective of human health, it is essential to eradicate the virus from poultry; however, the large number of small-holdings with poultry, the lack of control experience and resources, and the international scale of transmission and infection make rapid control and long-term prevention of recurrence extremely difficult. In the Western world, the renewed interest in free-range housing carries a threat for future outbreaks. The growing ethical objections to the largescale culling of birds require a different approach to the eradication of avian influenza.
    Matched MeSH terms: Disease Reservoirs/veterinary
  12. Shah-Majid M, Azlina AM, Ana Maria AR, Zaharah B, Norhaliza AH
    Vet Rec, 2004 Nov 20;155(21):680-1.
    PMID: 15581146
    Matched MeSH terms: Disease Reservoirs/veterinary
  13. Shah-Majid M, Maria AR, Shahidayani S, Salwani AM, Khairani S
    Vet Rec, 2007 May 19;160(20):702-3.
    PMID: 17513839
    Matched MeSH terms: Disease Reservoirs/veterinary
  14. Inder Singh K, Krishnasamy M, Ambu S, Rasul R, Chong NL
    PMID: 9444010
    Surveillance studies on cercarial dermatitis were carried out in paddy growing areas in Peninsular Malaysia. It was observed that dermatitis in paddy planters occurred in paddy fields which were cultivated using animals such as bafflos or fields where domestic animals were allowed to graze during the off planting season as these animals harbored the parasite. The causative agent of cercarial dermatitis was Schistosoma spindale. A total of 215 small mammals trapped from Alor Setar and 126 trapped from Labu were examined for the schistosome. In Alor Setar Bandicota indica, Rattus argentiventer and Rattus rattus diardii were the only wild mammals found to be infected with the parasite, while in the Labu areas only Rattus tiomanicus jalorensis was positive for the schistosome. The occurrence of S. spindale in R. argentiventer and R.r. diardii in Alor Setar and in R.t. jalorensis in Labu constitute new host and geographic distribution records of the schistosome.
    Matched MeSH terms: Disease Reservoirs*
  15. Oda K, Igarashi A, Kheong CT, Hong CC, Vijayamalar B, Sinniah M, et al.
    PMID: 9185254
    Serum specimens were collected from 6 species of animals living in 9 states of Malaysia including Sabah, North Borneo in 1993. Antibodies against Japanese encephalitis (JE) virus in these sera were detected by means of hemagglutination-inhibition (HI) and neutralization (NT) tests. By HI test, 702 of 2,152 (32.6%) sera showed positive results. Higher positive rates were obtained by the NT test, in which 1,787 of 1,927 (92.7%) sera had antibodies against JE virus. All serum specimens with positive HI were confirmed as positive by the NT. Swine sera showed especially higher rates of antibody positive and higher antibody titers compared with other animals. These results suggest that JE infections are widely distributed among many animals of Malaysia, and pig is the most susceptible amplifier host for JE virus.
    Matched MeSH terms: Disease Reservoirs*
  16. Joseph PG, Yee HT, Sivanandan SP
    PMID: 6523172
    House shrews (Suncus murinus) and rats (Rattus rattus diardii), trapped during a survey period from July 1978 to December 1979 and thereafter on a random basis, from residences within and outside the Veterinary Research Institute, Ipoh, Malaysia campus, were bacteriologically examined for the presence of salmonellae. Of the 55 shrews and 8 rats examined, 39 (71%) shrews and 2 (25%) rats were found positive. There were 46 Salmonella isolates which included 5 dual infections. These were serotyped as S. weltevreden, S. bareilly, S. stanley, S. augustenborg, S. hvittingfoss, S. emek, S. paratyphi B, S. ohio and S. matopeni in order of frequency of isolation. The significance of these findings especially with regard to salmonellosis in man and animals is discussed.
    Matched MeSH terms: Disease Reservoirs/veterinary
  17. Dondero TJ, Lim BL
    PMID: 1027105
    Preliminary studies have shown that Lymnaea rubiginosa, a common fresh-water snail in Peninsular Malaysia, which is easily colonized and reared in the laboratory, is a capable experimental intermediate host for Angiostrongylus malaysiensis. Overall 73% of the snails tested became infected following 6 hours exposure to infective rat faeces. Higher infection rates, up to 100%, and heavier worm loads, occurred among the larger sized snails. Snail attrition was low except when very heavy worm loads were acquired.
    Matched MeSH terms: Disease Reservoirs*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links