Displaying publications 1 - 20 of 343 in total

Abstract:
Sort:
  1. Kalinichenko LS, Kohl Z, Mühle C, Hassan Z, Hahn A, Schmitt EM, et al.
    J Neurochem, 2024 Mar;168(3):269-287.
    PMID: 38284431 DOI: 10.1111/jnc.16051
    Point mutations in the α-synuclein coding gene may lead to the development of Parkinson's disease (PD). PD is often accompanied by other psychiatric conditions, such as anxiety, depression, and drug use disorders, which typically emerge in adulthood. Some of these point mutations, such as SNCA and A30T, have been linked to behavioral effects that are not commonly associated with PD, especially regarding alcohol consumption patterns. In this study, we investigated whether the familial PD point mutation A53T is associated with changes in alcohol consumption behavior and emotional states at ages not yet characterized by α-synuclein accumulation. The affective and alcohol-drinking phenotypes remained unaltered in female PDGF-hA53T-synuclein-transgenic (A53T) mice during both early and late adulthood. Brain region-specific activation of ceramide-producing enzymes, acid sphingomyelinase (ASM), and neutral sphingomyelinase (NSM), known for their neuroprotective properties, was observed during early adulthood but not in late adulthood. In males, the A53T mutation was linked to a reduction in alcohol consumption in both early and late adulthood. However, male A53T mice displayed increased anxiety- and depression-like behaviors during both early and late adulthood. Enhanced ASM activity in the dorsal mesencephalon and ventral hippocampus may potentially contribute to these adverse behavioral effects of the mutation in males during late adulthood. In summary, the A53T gene mutation was associated with diverse changes in emotional states and alcohol consumption behavior long before the onset of PD, and these effects varied by sex. These alterations in behavior may be linked to changes in brain ceramide metabolism.
    Matched MeSH terms: Alcohol Drinking/genetics
  2. Hussain A, Maitra J, Saifi A, Ahmed S, Ahmed J, Shrestha NK, et al.
    Environ Res, 2024 Mar 01;244:117952.
    PMID: 38113992 DOI: 10.1016/j.envres.2023.117952
    In developing countries like India, an economically viable and ecologically approachable strategy is required to safeguard the drinking water. Excessive fluoride intake through drinking water can lead to dental fluorosis, skeletal fluorosis, or both. The present study has been under with an objective to investigate the feasibility of using cellulose derived from coconut fiber as an adsorbent under varying pH conditions for fluoride elimination from water. The assessment of equilibrium concentration of metal ions using adsorption isotherms is an integral part of the study. This present finding indicates the considerable effect of variation of adsorbent dosages on the fluoride removal efficiency under constant temperature conditions of 25 ± 2 °C with a contact period of 24 h. It is pertinent to mention that maximum adsorption of 88% has been observed with a pH value of 6 with 6 h time duration with fluoride dosage of 50 mg/L. The equilibrium concentration dwindled to 0.4 mg/L at fluoride concentration of 20 mg/L. The Langmuir model designates the adsorption capacity value of 2.15 mg/L with initial fluoride concentration of 0.21 mg/g with R2 value of 0.660. Similarly, the adsorption capacity using Freundlich isotherms is found to be 0.58 L/g and 0.59 L/g with fluoride concentration of 1.84 mg/L and 2.15 mg/L respectively. The results from the present study confirm that coconut fiber possesses appropriate sorption capabilities of fluoride ion but is a pH dependent phenomenon. The outcomes of the study indicate the possible use of cellulose extracted from waste coconut fiber as a low-cost fluoride adsorbent. The present study can be well implemented on real scale systems as it will be beneficial economically as well as environmentally.
    Matched MeSH terms: Drinking Water*
  3. Praveena SM, Aris AZ, Hashim Z, Hashim JH
    J Expo Sci Environ Epidemiol, 2024 Jan;34(1):161-174.
    PMID: 37563210 DOI: 10.1038/s41370-023-00585-3
    BACKGROUND: Like other countries, surface water degradation in Malaysia is linked with common global issues. Although different aspects of drinking water suitability have been examined, the overall understanding of drinking water quality in Malaysia is poor.

    OBJECTIVE: Hence, the present review aims to provide an understanding of drinking water (tap water, groundwater, gravity feed system) quality and its potential implications on policy, human health, and drinking water management law and identification of potential direction of future drinking water research and management needs in Malaysia.

    METHODS: This study utilized a scoping review method. PRISMA Extension for Scoping Reviews was used for search strategy. Relevant studies were screened using the selected keywords and databases.

    RESULTS: A total of 26 drinking water quality studies involving tap water, groundwater, and gravity feed systems have been selected for review. These studies found that the majority of Malaysian Drinking Water and WHO Drinking Water standards have been met. High levels of Cu, Cd, Fe and Pb were attributable to galvanized plumbing and pipe material corrosion. Variation of fluoride in tap water depends on dosage planning and operational processes of the public water supply. Pollutants (nitrate and ammonia) in groundwater and gravity feed system water have been linked to agricultural practices in rural areas. Microbiological quality in tap water is associated with growing biofilms inside the pipelines while in groundwater is caused by shallow surface events. However, only eight studies have reported about the human risks of chemical pollutants in tap water.

    IMPACT STATEMENT: The review discusses the state of drinking water quality in Malaysia and its impact on public health. It suggests that policymakers can use this information to improve the quality of drinking water and enforce restrictions, while also raising public awareness about the importance of safe drinking water. The study can guide future research and initiatives in Malaysia, ultimately contributing to efforts to ensure access to clean and dependable drinking water.

    Matched MeSH terms: Drinking Water*
  4. Goldschmidt L, Mncina B, Langa M, Rebello S, Budaza T, Tshabalala J, et al.
    BMC Public Health, 2023 Sep 30;23(1):1890.
    PMID: 37775803 DOI: 10.1186/s12889-023-16775-5
    BACKGROUND: Unhealthy alcohol use is a leading contributor to premature death and disability worldwide. The World Health Organization's Global Status Report on Alcohol and Health ranked South Africa as having one of the riskiest patterns of alcohol consumption, which calls for intervention. Recognising the need for effective primary care interventions, particularly in the absence of appropriate alcohol-related harm reduction policies at national and local levels, this paper highlights the opportunities and challenges associated with a two-pronged, community-centred approach to the identification of unhealthy alcohol use and interventions.

    METHODS: This approach included the use of the Alcohol Use Disorders Identification Test-Consumption (AUDIT-C) as a means of screening to identify individuals at moderate (score of 5-7) to high risk (score of 8 +) alcohol use, raising awareness, and investigating the potential utility of brief advice and referrals as a means of reducing risk.

    RESULTS: Of the 54,187 participants, 43.0% reported engaging in moderate-risk alcohol consumption, with 22.1% reporting high-risk alcohol consumption. Resistance to brief advice was observed to increase with higher AUDIT-C scores. Similarly, participants engaging in high-risk alcohol consumption were resistant to accepting treatment referrals, with fewer than 10% open to receiving a referral.

    CONCLUSIONS: While men were most likely to report patterns of high-risk alcohol consumption, they were more resistant to accepting referrals. Additionally, participants who were willing to receive brief advice were often resistant to taking active steps to alter their alcohol use. This study highlights the need to consider how to prevent harmful patterns of alcohol use effectively and holistically, especially in low socioeconomic settings through primary health care and community services.

    Matched MeSH terms: Alcohol Drinking/prevention & control
  5. Li Y, Vogel C, Kalinichenko LS, Hübner H, Weikert D, Schaefer N, et al.
    Addict Biol, 2023 Aug;28(8):e13305.
    PMID: 37500485 DOI: 10.1111/adb.13305
    Alcohol consumption is a widespread behaviour that may eventually result in the development of alcohol use disorder (AUD). Alcohol, however, is rarely consumed in pure form but in fruit- or corn-derived preparations, like beer. These preparations add other compounds to the consumption, which may critically modify alcohol intake and AUD risk. We investigated the effects of hordenine, a barley-derived beer compound on alcohol use-related behaviours. We found that the dopamine D2 receptor agonist hordenine (50 mg/kg) limited ongoing alcohol consumption and prophylactically diminished relapse drinking after withdrawal in mice. Although not having reinforcing effects on its own, hordenine blocked the establishment of alcohol-induced conditioned place preference (CPP). However, it independently enhanced alcohol CPP retrieval. Hordenine had a dose-dependent inhibitory effect on locomotor activity. Chronic hordenine exposure enhanced monoamine tissue levels in many brain regions. Further characterization revealed monoaminergic binding sites of hordenine and found a strong binding on the serotonin and dopamine transporters, and dopamine D3 , and adrenergic α1A and α2A receptor activation but no effects on GABAA receptor or glycinergic signalling. These findings suggest that natural ingredients of beer, like hordenine, may work as an inhibitory and use-regulating factor by their modulation of monoaminergic signalling in the brain.
    Matched MeSH terms: Alcohol Drinking
  6. Gong J, Harris K, Lipnicki DM, Castro-Costa E, Lima-Costa MF, Diniz BS, et al.
    Alzheimers Dement, 2023 Aug;19(8):3365-3378.
    PMID: 36790027 DOI: 10.1002/alz.12962
    INTRODUCTION: Sex differences in dementia risk, and risk factor (RF) associations with dementia, remain uncertain across diverse ethno-regional groups.

    METHODS: A total of 29,850 participants (58% women) from 21 cohorts across six continents were included in an individual participant data meta-analysis. Sex-specific hazard ratios (HRs), and women-to-men ratio of hazard ratios (RHRs) for associations between RFs and all-cause dementia were derived from mixed-effect Cox models.

    RESULTS: Incident dementia occurred in 2089 (66% women) participants over 4.6 years (median). Women had higher dementia risk (HR, 1.12 [1.02, 1.23]) than men, particularly in low- and lower-middle-income economies. Associations between longer education and former alcohol use with dementia risk (RHR, 1.01 [1.00, 1.03] per year, and 0.55 [0.38, 0.79], respectively) were stronger for men than women; otherwise, there were no discernible sex differences in other RFs.

    DISCUSSION: Dementia risk was higher in women than men, with possible variations by country-level income settings, but most RFs appear to work similarly in women and men.

    Matched MeSH terms: Alcohol Drinking
  7. Müller CP, Schumann G, Rehm J, Kornhuber J, Lenz B
    Mol Psychiatry, 2023 Jul;28(7):2683-2696.
    PMID: 37117460 DOI: 10.1038/s41380-023-02074-3
    Self-management includes all behavioural measures and cognitive activities aimed at coping with challenges arising throughout the lifespan. While virtually all of these challenges can be met without pharmacological means, alcohol consumption has long been instrumentalized as a supporting tool to help coping with problems arising selectively at adolescence, adulthood, and ageing. Here, we present, to our knowledge, the first systematic review of alcohol instrumentalization throughout lifespan. We searched MEDLINE, Google Scholar, PsycINFO and CINAHL (from Jan, 1990, to Dec, 2022) and analysed consumption patterns, goals and potential neurobiological mechanisms. Evidence shows a regular non-addictive use of alcohol to self-manage developmental issues during adolescence, adulthood, and ageing. Alcohol is selectively used to overcome problems arising from dysfunctional personality traits, which manifest in adolescence. A large range of psychiatric disorders gives rise to alcohol use for the self-management of distinct symptoms starting mainly in adulthood. We identify those neuropharmacological effects of alcohol that selectively serve self-management under specific conditions. Finally, we discuss the adverse effects and associated risks that arise from the use of alcohol for self-management. Even well-controlled alcohol use adversely impacts health. Based on these findings, we suggest the implementation of an entirely new view. Health policy action may actively embrace both sides of the phenomenon through a personalized informed use that allows for harm-controlled self-management with alcohol.
    Matched MeSH terms: Alcohol Drinking
  8. Naderipour A, Nowdeh SA, Babanezhad M, Najmi ES, Kamyab H, Abdul-Malek Z
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71754-71765.
    PMID: 34499303 DOI: 10.1007/s11356-021-16342-8
    In this paper, the technical-economic framework for designing of water pumping system based on photovoltaic clean energy with water tank storage is presented to supply drinking water of customers for remote areas. The objective function is to minimize the net present cost (NPC) (as economic index) including initial investment costs, maintenance, and replacement costs, and reliability constraint is defined as customer's water not supplied probability (CWNSP) as technical index. A meta-heuristic intelligent water drops algorithm (IWDA) is proposed to optimize the solar water pumping system considering NPC and CWNSP with high accuracy and speed of optimization in achieving the global solution. The simulation results show that the proposed method is capable of responding to customer's water demand by optimally sizing components and water storage tank based on IWDA which is inspired based on flowing the water drops in rivers by achieving the lowest cost with optimal reliability. The NPC of the system with CWNSP equal to 3.17 % is obtained 0.24 M$ for 6-m-high water extraction. The results showed that with increasing the water extraction height, the NPC increased, and the reliability also weakened. Moreover, the superiority of the IWDA is confirmed compared with particle swarm optimization (PSO) in designing a water pumping system with the lowest NPC.
    Matched MeSH terms: Drinking Water*
  9. Khairul Hasni NA, Anual ZF, Rashid SA, Syed Abu Thahir S, Veloo Y, Fang KS, et al.
    Environ Pollut, 2023 May 01;324:121095.
    PMID: 36682614 DOI: 10.1016/j.envpol.2023.121095
    Contamination of water systems with endocrine disrupting chemicals (EDCs) is becoming a major public health concern due to their toxicity and ubiquity. The intrusion of EDCs into water sources and drinking water has been associated with various adverse health effects on humans. However, there is no comprehensive overview of the occurrence of EDCs in Malaysia's water systems. This report aims to describe the occurrence of EDCs and their locations. Literature search was conducted electronically in two databases (PubMed and Scopus). A total of 41 peer-reviewed articles published between January 2000 and May 2021 were selected. Most of the articles dealt with pharmaceuticals (16), followed by pesticides (7), hormones (7), mixed compounds (7), and plasticisers (4). Most studies (40/41) were conducted in Peninsular Malaysia, with 60.9% in the central region and almost half (48.8%) in the Selangor State. Only one study was conducted in the northern region and East Malaysia. The Langat River, the Klang River, and the Selangor River were among the most frequently studied EDC-contaminated surface waters, while the Pahang River and the Skudai River had the highest concentrations of some of the listed compounds. Most of the risk assessments resulted in a hazard quotient (HQ) and a risk quotient (RQ)  1 in the Selangor River. An RQ > 1 for combined pharmaceuticals was found in Putrajaya tap water. Overall, this work provides a comprehensive overview of the occurrence of EDCs in Malaysia's water systems. The findings from this review can be used to mitigate risks and strengthen legislation and policies for safer drinking water.
    Matched MeSH terms: Drinking Water*
  10. Moradi H, Sabbaghi S, Mirbagheri NS, Chen P, Rasouli K, Kamyab H, et al.
    Environ Res, 2023 Apr 15;223:115484.
    PMID: 36775091 DOI: 10.1016/j.envres.2023.115484
    The presence of chloride ion as an environmental pollutant is having a devastating and irreversible effect on aquatic and terrestrial ecosystems. To ensure safe and clean drinking water, it is vital to remove this substance using non-toxic and eco-friendly methods. This study presents a novel and highly efficient Ag NPs-modified bentonite adsorbent for removing chloride ion, a common environmental pollutant, from drinking water using a facile approach. The surface chemical properties and morphology of the pristine Na-bentonite and Ag NPs-Modified bentonite were characterized by field emission scanning electron microscopy (FESEM) and X-ray spectroscopy (EDX), X-Ray diffraction (XRD), Fourier transform infrared (FTIR), and zeta potential (ζ). To achieve maximum chloride ion removal, the effects of experimental parameters, including adsorbent dosage (1-9 g/L), chloride ion concentration (100-900 mg/L), and reaction time (5-25 h), were examined using the Response Surface Methodology (RSM). The chloride ion removal of 90% was obtained at optimum conditions (adsorbent dosage: 7 g/L, chloride ion concentration: 500 mg/L, and reaction time: 20 h). The adsorption isotherm and kinetics results indicated that the Langmuir isotherm model and pseudo-second-order kinetics were found suitable to chloride ion removal. Additionally, the regeneration and reusability of the Ag NPs-modified bentonite were further studied. In the regeneration and reusability study, the Ag NPs-modified bentonite has shown consistently ≥90% and ≥87% chloride ion removal even up to 2 repeated cycles, separately. Thus, the findings in this study provided convincing evidence for using Ag-NPs modified bentonite as a high-efficiency and promising adsorbent to remove chloride ion from drinking water.
    Matched MeSH terms: Drinking Water*
  11. Kalinichenko LS, Mühle C, Jia T, Anderheiden F, Datz M, Eberle AL, et al.
    Cereb Cortex, 2023 Jan 05;33(3):844-864.
    PMID: 35296883 DOI: 10.1093/cercor/bhac106
    Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models. Reduced NSM activity resulted in enhanced alcohol consumption in males, but delayed conditioned rewarding effects. It enhanced the acute dopamine response to alcohol, but decreased monoaminergic systems adaptations to chronic alcohol. Reduced NSM activity increased depression- and anxiety-like behavior, but was not involved in alcohol use for the self-management of the emotional state. Constitutively reduced NSM activity impaired structural development in the brain and enhanced lipidomic sensitivity to chronic alcohol. While the central effects were mostly opposite to NSM function in females, similar roles in bone-mediated osteocalcin release and its effects on alcohol drinking and emotional behavior were observed. These findings support the view that the NSM and multiple downstream mechanism may be a source of the sex-differences in alcohol use and emotional behavior.
    Matched MeSH terms: Alcohol Drinking
  12. Manimegalai S, Vickram S, Deena SR, Rohini K, Thanigaivel S, Manikandan S, et al.
    Chemosphere, 2023 Jan;312(Pt 1):137319.
    PMID: 36410505 DOI: 10.1016/j.chemosphere.2022.137319
    Water treatment is a worldwide issue. This review aims to present current problems and future challenges in water treatments with the existing methodologies. Carbon nanotube production, characterization, and prospective uses have been the subject of considerable and rigorous research around the world. They have a large number of technical uses because of their distinct physical characteristics. Various catalyst materials are used to make carbon nanotubes. This review's primary focus is on integrated and single-treatment technologies for all kinds of drinking water resources, including ground and surface water. Inorganic non-metallic matter, heavy metals, natural organic matter, endocrine-disrupting chemicals, disinfection by-products and microbiological pollutants are among the contaminants that these treatment systems can remediate in polluted drinking water resources. Significant advances in the antibacterial and adsorption capabilities of carbon-based nanomaterials have opened up new options for excluding organic/inorganic and biological contaminants from drinking water in recent years. The advancements in multifunctional nanocomposites synthesis pave the possibility for their use in enhanced wastewater purification system design. The adsorptive and antibacterial characteristics of six main kinds of carbon nanomaterials are single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, fullerene and single-walled carbon nanohorns. This review potentially addressed the essential metallic and polymeric nanocomposites, are described and compared. Barriers to use these nanoparticles in long-term water treatment are also discussed.
    Matched MeSH terms: Drinking Water*
  13. Ramly N, Ahmad Mahir HM, Wan Azmi WNF, Hashim Z, Hashim JH, Shaharudin R
    Front Public Health, 2023;11:998511.
    PMID: 36875418 DOI: 10.3389/fpubh.2023.998511
    Arsenic is a carcinogen element that occurs naturally in our environment. Humans can be exposed to arsenic through ingestion, inhalation, and dermal absorption. However, the most significant exposure pathway is via oral ingestion. Therefore, a comparative cross-sectional study was conducted to determine the local arsenic concentration in drinking water and hair. Then, the prevalence of arsenicosis was evaluated to assess the presence of the disease in the community. The study was conducted in two villages, namely Village AG and Village P, in Perak, Malaysia. Socio-demographic data, water consumption patterns, medical history, and signs and symptoms of arsenic poisoning were obtained using questionnaires. In addition, physical examinations by medical doctors were performed to confirm the signs reported by the respondents. A total of 395 drinking water samples and 639 hair samples were collected from both villages. The samples were analyzed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) to determine arsenic concentration. The results showed that 41% of water samples from Village AG contained arsenic concentrations of more than 0.01 mg/L. In contrast, none of the water samples from Village P exceeded this level. Whilst, for hair samples, 85 (13.5%) of total respondents had arsenic levels above 1 μg/g. A total of 18 respondents in Village AG had at least one sign of arsenicosis and hair arsenic levels of more than 1 μg/g. Factors significantly associated with increased arsenic levels in hair were female, increasing age, living in Village AG and smoking. The prevalence of arsenicosis in the exposed village indicates chronic arsenic exposure, and immediate mitigation action needs to be taken to ensure the wellbeing of the residents in the exposed village.
    Matched MeSH terms: Drinking Water*
  14. Ngui HHL, Kow ASF, Lai S, Tham CL, Ho YC, Lee MT
    Int J Mol Sci, 2022 Nov 29;23(23).
    PMID: 36499240 DOI: 10.3390/ijms232314912
    Recreational use of alcohol is a social norm in many communities worldwide. Alcohol use in moderation brings pleasure and may protect the cardiovascular system. However, excessive alcohol consumption or alcohol abuse are detrimental to one's health. Three million deaths due to excessive alcohol consumption were reported by the World Health Organization. Emerging evidence also revealed the danger of moderate consumption, which includes the increased risk to cancer. Alcohol abuse and periods of withdrawal have been linked to depression and anxiety. Here, we present the effects of alcohol consumption (acute and chronic) on important brain structures-the frontal lobe, the temporal lobe, the limbic system, and the cerebellum. Apart from this, we also present the link between alcohol abuse and withdrawal and mood disorders in this review, thus drawing a link to oxidative stress. In addition, we also discuss the positive impacts of some pharmacotherapies used. Due to the ever-rising demands of life, the cycle between alcohol abuse, withdrawal, and mood disorders may be a never-ending cycle of destruction. Hence, through this review, we hope that we can emphasise the importance and urgency of managing this issue with the appropriate approaches.
    Matched MeSH terms: Alcohol Drinking/adverse effects
  15. Ringgit G, Siddiquee S, Saallah S, Mohamad Lal MT
    Sci Rep, 2022 Nov 03;12(1):18582.
    PMID: 36329094 DOI: 10.1038/s41598-022-21926-6
    An electrochemical method for detecting the presence of zinc (Zn2+) ions in drinking water was developed using functionalized multi-walled carbon nanotubes (f-MWCNTs) and chitosan (CS). Numerous cylinder-shaped graphene molecules make up f-MWCNTs, which have a high mechanical and electrical conductivity. CS benefits from nanomaterials include biocompatibility, biodegradability, and low toxicity, which are excellent in capacity absorption of metal ions. Dangerous levels of metal ions such as zinc are currently present in drinking water as a result of human and natural activity. Zinc toxicity is associated with a variety of disorders, including Alzheimer's, Parkinson's, diabetes, and cancer. This study incorporated f-MWCNTs and CS with Prussian blue (PB) immobilised on a gold electrode (AuE). Several parameters, including as buffers, pH, scan rate, redox indicator, accumulation time, and volume, were optimised using the cyclic voltammetry (CV) method. According to the CV method, the optimal parameters were phosphate buffered saline (0.1 M, pH 2), 5 mM Prussian blue, 200 mVs-1 scan rate, and 5 s accumulation time. Under ideal circumstances, the differential pulse voltammetry (DPV) method was used to determine the Zn2+ ions concentration range of 0.2-7.0 ppm. The limit of detection (LOD) was 2.60 × 10-7 mol L-1 with a correlation coefficient of R2 = 0.9777. The recovery rate of the developed sensor (f-MWCNTs/CS/PB/AuE) ranged from 95.78 to 98.96%. The developed sensor showed a variety of advantages for detecting Zn2+ in drinking water, including a quick setup process, quick detection, high sensitivity, and mobility. This study developed the essential sensor for monitoring Zn2+ levels in drinking water in the future.
    Matched MeSH terms: Drinking Water*
  16. Oluwasola IE, Ahmad AL, Shoparwe NF, Ismail S
    J Contam Hydrol, 2022 Oct;250:104057.
    PMID: 36130428 DOI: 10.1016/j.jconhyd.2022.104057
    The current toxicity concerns of gadolinium-based contrast agents (GBCAs) have birthed the need to regulate and, sometimes restrict its clinical administration. However, tolerable concentration levels of Gd in the water sector have not been set. Therefore, the detection and speedy increase of the anthropogenic Gd-GBCAs in the various water bodies, including those serving as the primary source of drinking water for adults and children, is perturbing. Nevertheless, the strongly canvassed risk-benefit considerations and superior uniqueness of GBCAs compared to the other ferromagnetic metals guarantees its continuous administration for Magnetic resonance imaging (MRI) investigations regardless of the toxicity concerns. Unfortunately, findings have shown that both the advanced and conventional wastewater treatment processes do not satisfactorily remove GBCAs but rather risk transforming the chelated GBCAs to their free ionic metal (Gd 3+) through inadvertent degradation processes. This unintentional water processing-induced GBCA dechelation leads to the intricate  pathway for unintentional human intake of Gd ion. Hence exposure to its probable ecotoxicity and several reported inimical effects on human health such as; digestive symptoms, twitching or weakness, cognitive flu, persistent skin diseases, body pains, acute renal and non-renal adverse reactions, chronic skin, and eyes changes. This work proposed an economical and manageable remediation technique for the potential remediation of Gd-GBCAs in wastewater, while a precautionary limit for Gd in public water and commercial drinks is advocated.
    Matched MeSH terms: Drinking Water*
  17. Wee SY, Ismail NAH, Haron DEM, Yusoff FM, Praveena SM, Aris AZ
    J Hazard Mater, 2022 02 15;424(Pt A):127327.
    PMID: 34600377 DOI: 10.1016/j.jhazmat.2021.127327
    Humans are exposed to endocrine disrupting compounds (EDCs) in tap water via drinking water. Currently, most of the analytical methods used to assess a long list of EDCs in drinking water have been made available only for a single group of EDCs and their metabolites, in contrast with other environmental matrices (e.g., surface water, sediments, and biota) for which more robust methods have been developed that allow detection of multiple groups. This study reveals an analytical method of one-step solid phase extraction, incorporated together with liquid chromatography-tandem mass spectrometry for the quantification of multiclass EDCs (i.e., pharmaceuticals, hormones, plasticizers, and pesticides) in drinking water. Fifteen multiclass EDCs significantly varied in amount between field samples (p 
    Matched MeSH terms: Drinking Water*
  18. Ahmed J, Wong LP, Chua YP, Hydrie MZI, Channa N
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1259-1277.
    PMID: 34355319 DOI: 10.1007/s11356-021-15681-w
    The United Nation's Sustainable Development Goals include the target of ensuring access to water and sanitation and hygiene (WASH) for all; however, very few studies have assessed comprehensive school WASH service in Pakistan. The purpose of this study was to identify WASH services in primary schools of Pakistan, and to assess how recent WASH interventions and policies are associated with the school's academic performance. A representative cross-sectional study was conducted in primary schools in the Sindh province of Pakistan. Structured observations and interviews were done to ascertain the schools' WASH conditions. The primary exposures of interest were the implementation of previous WASH interventions and National WASH policy in the school and the WASH coverage. Outcomes of interest included WASH conditions and school performance. The structural equation modeling (SEM) using a bootstrap resampling procedure was employed to characterize how WASH exposures were associated with WASH conditions and school performance. Data were collected from 425 schools. The Basic WASH facilities coverage in the primary schools of Sindh remains overall low according to WHO WASH service ladder criteria. Also, inconsistency in all three inclusive domains of WASH (availability, accessibility, and functionality) facilities were found. The school performance was significantly associated (P<0.001) with the presence of WASH interventions and/or WASH policy, while WASH policy and/or recent WASH intervention at the school were not associated with overall water quality. Our assessment unveiled several WASH gaps that exist, including high heavy metal and fecal contamination. Adoption of national WASH policy and financing of evidence-based WASH interventions are recommended in primary schools to improve educational outcomes.
    Matched MeSH terms: Drinking Water*
  19. Guo M, Tan CL, Wu L, Peng J, Ren R, Chiu CH
    PMID: 34682476 DOI: 10.3390/ijerph182010729
    With the development of the network economy, especially the promotion and popularization of mobile networks, traditional offline businesses are further integrated with online businesses, promoting the development of business online strategies. However, with the growth of enterprises' business, their negative externalities on the environment have gradually become prominent, further affecting sustainable consumption. The relationships between businesses, the environment, and consumption have become the focus of attention. China's fast-growing bottled water companies face similar challenges. The pollution that occurs due to bottled water packaging poses great threats to consumers. Hence, this study extended the Theory of Planned Behavior (TPB) by integrating three risk aspects, namely, water pollution risk perception (WPRP), non-degradable package pollution risk perception (NPPRP), and false information risk perception (FIRP), to examine the consumers' perceptions toward these risk aspects before purchasing bottled water online. This study employed a cross-sectional approach to collect data from online consumers via a survey method. A total of 401 valid samples were collected and then analyzed via a structural equation model using the AMOS statistical package. The results showed that attitude (AT), subjective norm (SN), and perceived behavior control (PBC) toward online bottled water purchase had significant and positive effects on the consumers' purchase intentions (PIs). However, under the influence of risk perception, the consumers' attitudes, SNs and PBC became suppressed by WPRP, and SN became suppressed due to the impact of FIRP. Furthermore, the negative impacts of NPPRP and FIRP on PI were partially mediated by AT, SN and PBC. Meanwhile, WPRP imposed the most significant direct effect on PI. The study results will help businesses to develop better online strategies to reduce the risk perception of bottled water and provide theoretical value and practical guidance for realizing sustainable consumption.
    Matched MeSH terms: Drinking Water*
  20. Lawson-Wood K, Jaafar M, Felipe-Sotelo M, Ward NI
    Environ Sci Pollut Res Int, 2021 Sep;28(35):48929-48941.
    PMID: 33928502 DOI: 10.1007/s11356-021-13902-w
    Some regions of Argentina are affected by high concentrations of molybdenum, arsenic and vanadium from natural sources in their groundwater. In particular, Mo levels in groundwater from Eduardo Castex (La Pampa, Argentina) typically exceed the guidelines for drinking water formerly established by WHO at 70 μg/L. Therefore, this study investigated the uptake of Mo in plants, using cress (Lepidium sativum L.) as a model using hydroponic experiments with synthetic solutions and groundwater from La Pampa. Cress grown from control experiments (150 μg/L Mo, pH 7) presented an average Mo concentration of 35.2 mg/kg (dry weight, d.w.), higher than the typical total plant range (0.7-2.5 mg/kg d.w.) in the literature. Using pooled groundwater samples (65.0-92.5 μg/L Mo) from wells of La Pampa (Argentina) as growth solutions resulted in significantly lower cress Mo levels (1.89-4.59 mg/kg d.w.) than were obtained for synthetic solutions of equivalent Mo concentration. This may be due to the high levels in these groundwater samples of As, V, Fe and Mn which are known to be associated with volcanic deposits. This research addressed the hitherto scarcity of data about the effect of various physicochemical parameters on the uptake of Mo in plants.
    Matched MeSH terms: Drinking Water*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links