Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Moo KS, Radhakrishnan S, Teoh M, Narayanan P, Bukhari NI, Segarra I
    Yao Xue Xue Bao, 2010 Jul;45(7):901-8.
    PMID: 20931790
    Imatinib is an efficacious anticancer drug with a spectrum of potential antitumour applications limited by poor biodistribution at therapeutic concentrations to the tissues of interest. We assess the pharmacokinetic and tissue distribution profile of imatinib in a liposome formulation. Its single dose (6.25 mg x kg(-1)) in a liposome formulation was administered iv to male mice. Imatinib concentration was measured in plasma, spleen, liver, kidney and brain using a HPLC assay. Non-compartmental pharmacokinetic approach was used to assess the disposition parameters. The plasma disposition profile was biphasic with a plateau-like second phase. The AUC(0-->infinity) was 11.24 microg x h x mL(-1), the elimination rate constant (k(el)) was 0.348 h(-1) and the elimination half life (t(1/2)) was 2.0 h. The mean residence time (MRT) was 2.59 h, V(SS) was 1.44 L x kg(-1) and clearance was 0.56 L x h x kg(-1). Liver achieved the highest tissue exposure: CMAX = 18.72 microg x mL(-1); AUC(0-->infinity)= 58.18 microg x h x mL(-1) and longest t(1/2) (4.29 h) and MRT (5.31 h). Kidney and spleen AUC(0-->infinity) were 47.98 microg x h x mL(-1) and 23.46 microg x h x mL(-1), respectively. Half-life was 1.83 h for the kidney and 3.37 h for the spleen. Imatinib penetrated into the brain reaching approximately 1 microg x g(-1). Upon correction by organ blood flow the spleen showed the largest uptake efficiency. Liposomal imatinib presented extensive biodistribution. The drug uptake kinetics showed mechanism differences amongst the tissues. These findings encourage the development of novel imatinib formulations to treat other cancers.
    Matched MeSH terms: Drug Carriers/administration & dosage
  2. Wong TW
    Recent Pat Drug Deliv Formul, 2011 Sep;5(3):227-43.
    PMID: 21834774
    Design of oral fast-release solid dispersion of poorly water-soluble drugs has been a great challenge over past decades on issues of drug recrystallization, drug polymorphism, formulation limited to low drug-to-carrier ratio and drug particle aggregation in matrix. The complexity in solid dispersion design is envisaged to be resolvable by the use of nanoparticulate system as solid dosage form. This manuscript reviews several patented processing approaches of nanoparticulate solid dispersion that have been reported recently. Through drug nanoencapsulation, a higher content of drug may be delivered with less aggregation via placing the same drug mass in a greater number of tinier carriers. Nanoencapsulation, by its own process of formation, brings about submicron particles. Keeping drug in these nanoparticles, a remarkable rise in specific surface area of drug is realized for dissolution. The augmentation of drug dissolution can be sufficiently high to the extent that the influences of polymorphism and crystallization phenomenon on drug dissolution in a solid dispersion may be negligible.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  3. Sahib MN, Darwis Y, Peh KK, Abdulameer SA, Tan YT
    Int J Nanomedicine, 2011;6:2351-66.
    PMID: 22072872 DOI: 10.2147/IJN.S25363
    Inhaled corticosteroids provide unique systems for local treatment of asthma or chronic obstructive pulmonary disease. However, the use of poorly soluble drugs for nebulization has been inadequate, and many patients rely on large doses to achieve optimal control of their disease. Theoretically, nanotechnology with a sustained-release formulation may provide a favorable therapeutic index. The aim of this study was to determine the feasibility of using sterically stabilized phospholipid nanomicelles of budesonide for pulmonary delivery via nebulization.
    Matched MeSH terms: Drug Carriers/administration & dosage
  4. Liew KB, Tan YT, Peh KK
    AAPS PharmSciTech, 2012 Mar;13(1):134-42.
    PMID: 22167416 DOI: 10.1208/s12249-011-9729-4
    The aim of this study was to develop a taste-masked oral disintegrating film (ODF) containing donepezil, with fast disintegration time and suitable mechanical strength, for the treatment of Alzheimer's disease. Hydroxypropyl methylcellulose, corn starch, polyethylene glycol, lactose monohydrate and crosspovidone served as the hydrophilic polymeric bases of the ODF. The uniformity, in vitro disintegration time, drug release and the folding endurance of the ODF were examined. The in vitro results showed that 80% of donepezil hydrochloride was released within 5 minutes with mean disintegration time of 44 seconds. The result of the film flexibility test showed that the number of folding time to crack the film was 40 times, an indication of sufficient mechanical property for patient use. A single-dose, fasting, four-period, eight-treatment, double-blind study involving 16 healthy adult volunteers was performed to evaluate the in situ disintegration time and palatability of ODF. Five parameters, namely taste, aftertaste, mouthfeel, ease of handling and acceptance were evaluated. The mean in situ disintegration time of ODF was 49 seconds. ODF containing 7 mg of sucralose were more superior than saccharin and aspartame in terms of taste, aftertaste, mouthfeel and acceptance. Furthermore, the ODF was stable for at least 6 months when stored at 40°C and 75% relative humidity.
    Matched MeSH terms: Drug Carriers/administration & dosage
  5. Jazayeri SD, Ideris A, Zakaria Z, Omar AR
    J Biomed Biotechnol, 2012;2012:264986.
    PMID: 22701301 DOI: 10.1155/2012/264986
    Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV) subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2%) and MCF-10A (0.5%) human breast cancer cells. Newly hatched specific-pathogen-free (SPF) chicks were inoculated once by oral gavage with 10(9) colony-forming unit (CFU) of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR) were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.
    Matched MeSH terms: Drug Carriers/administration & dosage
  6. Hussain Z, Katas H, Mohd Amin MC, Kumolosasi E, Buang F, Sahudin S
    Int J Pharm, 2013 Feb 28;444(1-2):109-19.
    PMID: 23337632 DOI: 10.1016/j.ijpharm.2013.01.024
    In this study, hydroxytyrosol (HT; a potent antioxidant) was co-administered with hydrocortisone (HC) to mitigate the systemic adverse effects of the latter and to provide additional anti-inflammatory and antioxidant benefits in the treatment of atopic dermatitis (AD). The co-loaded nanoparticles (NPs) prepared had shown different particle sizes, zeta potentials, loading efficiencies, and morphology, when the pH of the chitosan solution was increased from 3.0 to 7.0. Ex vivo permeation data showed that the co-loaded NPs formulation significantly reduced the corresponding flux (17.04μg/cm(2)/h) and permeation coefficient (3.4×10(-3)cm/h) of HC across full-thickness NC/Nga mouse skin. In addition, the NPs formulation showed higher epidermal (1560±31μg/g of skin) and dermal (880±28μg/g of skin) accumulation of HC than did a commercial HC formulation. Moreover, an in vivo study using an NC/Nga mouse model revealed that compared to the other treatment groups, the group treated with the NPs formulation efficiently controlled transepidermal water loss (13±2g/m(2)/h), intensity of erythema (207±12), and dermatitis index (mild). In conclusion, NPs co-loaded with HC/HT is proposed as a promising system for the percutaneous co-delivery of anti-inflammatory and antioxidative agents in the treatment of AD.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  7. Kura AU, Hussein Al Ali SH, Hussein MZ, Fakurazi S, Arulselvan P
    Int J Nanomedicine, 2013;8:1103-10.
    PMID: 23524513 DOI: 10.2147/IJN.S39740
    A new layered organic-inorganic nanocomposite material with an anti-parkinsonian active compound, L-3-(3,4-dihydroxyphenyl) alanine (levodopa), intercalated into the inorganic interlayers of a Zn/Al-layered double hydroxide (LDH) was synthesized using a direct coprecipitation method. The resulting nanocomposite was composed of the organic moiety, levodopa, sandwiched between Zn/Al-LDH inorganic interlayers. The basal spacing of the resulting nano-composite was 10.9 Å. The estimated loading of levodopa in the nanocomposite was approximately 16% (w/w). A Fourier transform infrared study showed that the absorption bands of the nanocomposite were characteristic of both levodopa and Zn/Al-LDH, which further confirmed intercalation, and that the intercalated organic moiety in the nanocomposite was more thermally stable than free levodopa. The resulting nanocomposite showed sustained-release properties, so can be used in a controlled-release formulation. Cytotoxicity analysis using an MTT assay also showed increased cell viability of 3T3 cells exposed to the newly synthesized nanocomposite compared with those exposed to pure levodopa after 72 hours of exposure.
    Matched MeSH terms: Drug Carriers/administration & dosage
  8. Chuah LH, Billa N, Roberts CJ, Burley JC, Manickam S
    Pharm Dev Technol, 2013 May-Jun;18(3):591-9.
    PMID: 22149945 DOI: 10.3109/10837450.2011.640688
    In the present study, we investigate the mucoadhesive characteristics and release of the anticancer agent curcumin, contained in chitosan nanoparticles (CS-NPs). Such a system has potential therapeutic benefits in the treatment of colon cancer through prolonged retention and delivery. The CS-NPs were ionically gelled with tripolyphosphate (TPP) and registered an isoelectric pH of 6.2 (z-average diameter of 214 nm ± 1.0 nm). pH variations around the isoelectric point caused a reduction in CS-NPs electrical charge which correspondingly increased the z-average due to agglomeration. Curcumin release from CS-NPs was slowest at chitosan to TPP weight ratio of 3:1, with a significant retention (36%) at the end of 6 h. Adsorption isotherms of mucin on CS-NPs fitted both the Freundlich and Langmuir models, suggesting a monolayer-limited adsorption on heterogeneous sites with varied affinities. Encapsulated curcumin exerted an influence on the adsorption of mucin due to H-bonding as well as π-π interactions between the phenolic moieties of curcumin and mucin.
    Matched MeSH terms: Drug Carriers/administration & dosage
  9. Loo Ch, Basri M, Ismail R, Lau H, Tejo B, Kanthimathi M, et al.
    Int J Nanomedicine, 2013;8:13-22.
    PMID: 23293516 DOI: 10.2147/IJN.S35648
    To study the effects of varying lipid concentrations, lipid and oil ratio, and the addition of propylene glycol and lecithin on the long-term physical stability of nanostructured lipid nanocarriers (NLC), skin hydration, and transepidermal water loss.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  10. Hussain Z, Katas H, Mohd Amin MC, Kumolosasi E, Sahudin S
    Int J Nanomedicine, 2014;9:5143-56.
    PMID: 25395851 DOI: 10.2147/IJN.S71543
    Atopic dermatitis is a chronic, noncontiguous, and exudative disorder accompanied by perivascular infiltration of immune mediators, including T-helper (Type 1 helper/Type 2 helper) cells, mast cells, and immunoglobulin E. The current study explores the immunomodulatory and histological effects of nanoparticle (NP)-based transcutaneous delivery of hydrocortisone (HC).
    Matched MeSH terms: Drug Carriers/administration & dosage
  11. Saeed MI, Omar AR, Hussein MZ, Elkhidir IM, Sekawi Z
    Hum Vaccin Immunother, 2015;11(10):2414-24.
    PMID: 26186664 DOI: 10.1080/21645515.2015.1052918
    This study introduces a new approach for enhancing immunity toward mucosal vaccines. HEV71 killed vaccine that is formulated with nanosize calcium phosphate adjuvant and encapsulated onto chitosan and alginate delivery carriers was examined for eliciting antibody responses in serum and saliva collected at weeks 0, 1, 3, 5, 7 and 9 for viral-specific IgA & IgG levels and viral neutralizing antibody titers. The antibody responses induced in rabbits by the different formulations delivered by a single (buccal) route were compared to those of dual immunization (intradermal / mucosal) and un-immunized control. Chitosan-loaded vaccine adjuvant induced elevated IgA antibody, while Alginate-adjuvant irreversible bonding sequestered the vaccine and markedly reduced immunogenicity. The induced mucosal and parenteral antibody profiles appeared in an inverse manner of enhanced mucosal IgA antibody accompanied by lower systemic IgG following a single oral immunization route. The combined intradermal and oral dual-immunized group developed an elevated salivary IgA, systemic IgG, and virus neutralizing response. A reduced salivary neutralizing antibody titer was observed and attributed to the continual secretion exchanges in saliva. Designing a successful mucosal delivery formulation needs to take into account the vaccine delivery site, dosage, adjuvant and carrier particle size, charge, and the reversibility of component interactions. The dual immunization seems superior and is a important approach for modulating the antibody response and boosting mucosal protection against HEV71 and similar pathogens based on their transmission mode, tissue tropism and shedding sites. Finally, the study has highlighted the significant role of dual immunization for simultaneous inducing and modulating the systemic and mucosal immune responses to EV71.
    Matched MeSH terms: Drug Carriers/administration & dosage
  12. Shao M, Hussain Z, Thu HE, Khan S, Katas H, Ahmed TA, et al.
    Colloids Surf B Biointerfaces, 2016 Nov 01;147:475-491.
    PMID: 27592075 DOI: 10.1016/j.colsurfb.2016.08.027
    Atopic dermatitis (AD) is a chronically relapsing skin inflammatory disorder characterized by perivascular infiltration of immunoglobulin-E (IgE), T-lymphocytes and mast cells. The key pathophysiological factors causing this disease are immunological disorders and the compromised epidermal barrier integrity. Pruritus, intense itching, psychological stress, deprived physical and mental performance and sleep disturbance are the hallmark features of this dermatological complication. Preventive interventions which include educational programs, avoidance of allergens, exclusive care towards skin, and the rational selection of therapeutic regimen play key roles in the treatment of dermatosis. In last two decades, it is evident from a plethora of studies that scientific focus is being driven from conventional therapies to the advanced nanocarrier-based regimen for an effective management of AD. These nanocarriers which include polymeric nanoparticles (NPs), hydrogel NPs, liposomes, ethosomes, solid lipid nanoparticles (SLNs) and nanoemulsion, provide efficient roles for the target specific delivery of the therapeutic payload. The success of these targeted therapies is due to their pharmaceutical versatility, longer retention time at the target site, avoiding off-target effects and preventing premature degradation of the incorporated drugs. The present review was therefore aimed to summarise convincing evidence for the therapeutic superiority of advanced nanocarrier-mediated strategies over the conventional therapies used in the treatment of AD.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  13. Abdulbaqi IM, Darwis Y, Khan NA, Assi RA, Khan AA
    Int J Nanomedicine, 2016;11:2279-304.
    PMID: 27307730 DOI: 10.2147/IJN.S105016
    Ethosomal systems are novel lipid vesicular carriers containing a relatively high percentage of ethanol. These nanocarriers are especially designed for the efficient delivery of therapeutic agents with different physicochemical properties into deep skin layers and across the skin. Ethosomes have undergone extensive research since they were invented in 1996; new compounds were added to their initial formula, which led to the production of new types of ethosomal systems. Different preparation techniques are used in the preparation of these novel carriers. For ease of application and stability, ethosomal dispersions are incorporated into gels, patches, and creams. Highly diverse in vivo models are used to evaluate their efficacy in dermal/transdermal delivery, in addition to clinical trials. This article provides a detailed review of the ethosomal systems and categorizes them on the basis of their constituents to classical ethosomes, binary ethosomes, and transethosomes. The differences among these systems are discussed from several perspectives, including the formulation, size, ζ-potential (zeta potential), entrapment efficiency, skin-permeation properties, and stability. This paper gives a detailed review on the effects of ethosomal system constituents, preparation methods, and their significant roles in determining the final properties of these nanocarriers. Furthermore, the novel pharmaceutical dosage forms of ethosomal gels, patches, and creams are highlighted. The article also provides detailed information regarding the in vivo studies and clinical trials conducted for the evaluation of these vesicular systems.
    Matched MeSH terms: Drug Carriers/administration & dosage
  14. Rajinikanth PS, Chellian J
    Int J Nanomedicine, 2016 Oct 5;11:5067-5077.
    PMID: 27785014
    The aim of this study was to develop a nanostructured lipid carrier (NLC)-based hydrogel and study its potential for the topical delivery of 5-fluorouracil (5-FU). Precirol(®) ATO 5 (glyceryl palmitostearate) and Labrasol(®) were selected as the solid and liquid lipid phases, respectively. Poloxamer 188 and Solutol(®) HS15 (polyoxyl-15-hydroxystearate) were selected as surfactants. The developed lipid formulations were dispersed in 1% Carbopol(®) 934 (poly[acrylic acid]) gel medium in order to maintain the topical application consistency. The average size, zeta potential, and polydispersity index for the 5-FU-NLC were found to be 208.32±8.21 nm, -21.82±0.40 mV, and 0.352±0.060, respectively. Transmission electron microscopy study revealed that 5-FU-NLC was <200 nm in size, with a spherical shape. In vitro drug permeation studies showed a release pattern with initial burst followed by sustained release, and the rate of 5-FU permeation was significantly improved for 5-FU-NLC gel (10.27±1.82 μg/cm(2)/h) as compared with plain 5-FU gel (2.85±1.12 μg/cm(2)/h). Further, skin retention studies showed a significant retention of 5-FU from the NLC gel (91.256±4.56 μg/cm(2)) as compared with that from the 5-FU plain gel (12.23±3.86 μg/cm(2)) in the rat skin. Skin irritation was also significantly reduced with 5-FU-NLC gel as compared with 5-FU plain gel. These results show that the prepared 5-FU-loaded NLC has high potential to improve the penetration of 5-FU through the stratum corneum, with enormous retention and with minimal skin irritation, which is the prerequisite for topically applied formulations.
    Matched MeSH terms: Drug Carriers/administration & dosage
  15. Ng SF, Tan LS, Buang F
    Drug Dev Ind Pharm, 2017 Jan;43(1):108-119.
    PMID: 27588411 DOI: 10.1080/03639045.2016.1224893
    Previous studies have shown that hydroxytyrosol (HT) can be a potential alternative therapeutic agent for the treatment of rheumatoid arthritis (RA). However, HT is extensively metabolized following oral administration, which leads to formulating HT in a topical vehicle to prolong drug action as well as to provide a localized effect. Hidrox-6 is a freeze-dried powder derived from fresh olives and contains a high amount of HT (∼3%) and other polyphenols. Alginate bilayer films containing 5% and 10% Hidrox-6 were formulated. The films were characterized with respect to their physical, morphology, rheological properties; drug content uniformity; and in vitro drug release. Acute dermal irritancy tests and a skin sensitization study were carried out in rats. An efficacy study of the bilayer films for RA was conducted using Freund's adjuvant-induced polyarthritis rats. Animal data showed that the bilayer film formulations did not cause skin irritancy. The efficacy in vivo results showed that the Hidrox-6 bilayer films lowered the arthritic scores, paw and ankle circumference, serum IL-6 level and cumulative histological scores compared with those measured for controls. The topical Hidrox-6 bilayer films improve synovitis and inflammatory symptoms in RA and can be a potential alternative to oral RA therapy.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  16. Noor NM, Sheikh K, Somavarapu S, Taylor KMG
    Eur J Pharm Biopharm, 2017 Aug;117:372-384.
    PMID: 28412472 DOI: 10.1016/j.ejpb.2017.04.012
    Dutasteride, used for treating benign prostate hyperplasia (BPH), promotes hair growth. To enhance delivery to the hair follicles and reduce systemic effects, in this study dutasteride has been formulated for topical application, in a nanostructured lipid carrier (NLC) coated with chitosan oligomer-stearic acid (CSO-SA). CSO-SA has been successfully synthesized, as confirmed using1H NMR and FTIR. Formulation of dutasteride-loaded nanostructured lipid carriers (DST-NLCs) was optimized using a 23full factorial design. This formulation was coated with different concentrations of stearic acid-chitosan solution. Coating DST-NLCs with 5% SA-CSO increased mean size from 187.6±7.0nm to 220.1±11.9nm, and modified surface charge, with zeta potentials being -18.3±0.9mV and +25.8±1.1mV for uncoated and coated DST-NLCs respectively. Transmission electron microscopy showed all formulations comprised approximately spherical particles. DST-NLCs, coated and uncoated with CSO-SA, exhibited particle size stability over 60days, when stored at 4-8°C. However, NLCs coated with CSO (without conjugation) showed aggregation when stored at 4-8°C after 30days. The measured particle size for all formulations stored at 25°C suggested aggregation, which was greatest for DST-NLCs coated with 10% CSO-SA and 5% CSO. All nanoparticle formulations exhibited rapid release in an in vitro release study, with uncoated NLCs exhibiting the fastest release rate. Using a Franz diffusion cell, no dutasteride permeated through pig ear skin after 48h, such that it was not detected in the receptor chamber for all samples. The amount of dutasteride in the skin was significantly different (p<0.05) for DST-NLCs (6.09±1.09μg/cm2) without coating and those coated with 5% CSO-SA (2.82±0.40μg/cm2), 10% CSO-SA (2.70±0.35μg/cm2) and CSO (2.11±0.64μg/cm2). There was a significant difference (p<0.05) in the cytotoxicity (IC50) between dutasteride alone and in the nanoparticles. DST-NLCs coated and uncoated with CSO-SA increased the maximum non-toxic concentration by 20-fold compared to dutasteride alone. These studies indicate that a stearic acid-chitosan conjugate was successfully prepared, and modified the surface charge of DST-NLCs from negative to positive. These stable, less cytotoxic, positively-charged dutasteride-loaded nanostructured lipid carriers, with stearic acid-chitosan oligomer conjugate, are appropriate for topical delivery and have potential for promotion of hair growth.
    Matched MeSH terms: Drug Carriers/administration & dosage
  17. Md S, Haque S, Madheswaran T, Zeeshan F, Meka VS, Radhakrishnan AK, et al.
    Drug Discov Today, 2017 Aug;22(8):1274-1283.
    PMID: 28456749 DOI: 10.1016/j.drudis.2017.04.010
    Topical photodynamic therapy (PDT) is a non-invasive technique used in the treatment of malignant and non-malignant skin diseases. It offers great promise because of its simplicity, enhanced patient compliance, localisation of the photosensitizer, as well as the use of light and oxygen to achieve photocytotoxicity. Despite progress in photosensitizer-mediated topical PDT, its clinical application is limited by poor penetration of photosensitizers through the skin. Therefore, much effort has been made to develop nanocarriers that can tackle the challenges of conventional photosensitizer-mediated PDT for topical delivery. This review discusses recent data on the use of different types of lipid-based nanocarriers in delivering photosensitizer for topical PDT.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  18. Khan I, Kumar H, Mishra G, Gothwal A, Kesharwani P, Gupta U
    Curr Pharm Des, 2017;23(35):5315-5326.
    PMID: 28875848 DOI: 10.2174/1381612823666170829164828
    BACKGROUND: Delivery of chemotherapeutic drugs for the diagnosis and treatment of cancer is becoming advanced day by day. However, the challenge of the effective delivery system still does exist. In various types of cancers, breast cancer is the most commonly diagnosed cancer among women. Breast cancer is a combination of different diseases. It cannot be considered as only one entity because there are many specific patient factors, which are involved in the development of this disease. Nanotechnology has opened a new area in the effective treatment of breast cancer due to the several benefits offered by this technology.

    METHODS: Polymeric nanocarriers are among one of the effective delivery systems, which has given promising results in the treatment of breast cancers. Nanocarriers does exert their anticancer effect either through active or passive targeting mode.

    RESULTS: The use of nanocarriers has been resolute about the adverse effects of chemotherapeutic drugs such as poor solubility and less penetrability in tumor cells.

    CONCLUSION: The present review is focused on recent developments regarding polymeric nanocarriers, such as polymeric micelles, polymeric nanoparticles, dendrimers, liposomes, nanoshells, fullerenes, carbon nanotubes (CNT) and quantum dots, etc. for their recent advancements in breast cancer therapy.

    Matched MeSH terms: Drug Carriers/administration & dosage*
  19. Shadab M, Haque S, Sheshala R, Meng LW, Meka VS, Ali J
    Curr Pharm Des, 2017;23(3):440-453.
    PMID: 27784250 DOI: 10.2174/1381612822666161026163201
    BACKGROUND: The drug delivery of macromolecules such as proteins and peptides has become an important area of research and represents the fastest expanding share of the market for human medicines. The most common method for delivering macromolecules is parenterally. However parenteral administration of some therapeutic macromolecules has not been effective because of their rapid clearance from the body. As a result, most macromolecules are only therapeutically useful after multiple injections, which causes poor compliance and systemic side effects.

    METHOD: Therefore, there is a need to improve delivery of therapeutic macromolecules to enable non-invasive delivery routes, less frequent dosing through controlled-release drug delivery, and improved drug targeting to increase efficacy and reduce side effects.

    RESULT: Non-invasive administration routes such as intranasal, pulmonary, transdermal, ocular and oral delivery have been attempted intensively by formulating macromolecules into nanoparticulate carriers system such as polymeric and lipidic nanoparticles.

    CONCLUSION: This review discusses barriers to drug delivery and current formulation technologies to overcome the unfavorable properties of macromolecules via non-invasive delivery (mainly intranasal, pulmonary, transdermal oral and ocular) with a focus on nanoparticulate carrier systems. This review also provided a summary and discussion of recent data on non-invasive delivery of macromolecules using nanoparticulate formulations.

    Matched MeSH terms: Drug Carriers/administration & dosage
  20. Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, et al.
    Arch Pharm Res, 2018 Feb;41(2):111-129.
    PMID: 29214601 DOI: 10.1007/s12272-017-0995-x
    The development of novel drug delivery systems based on well-defined polymer therapeutics has led to significant improvements in the treatment of multiple disorders. Advances in material chemistry, nanotechnology, and nanomedicine have revolutionized the practices of drug delivery. Stimulus-responsive material-based nanosized drug delivery systems have remarkable properties that allow them to circumvent biological barriers and achieve targeted intracellular drug delivery. Specifically, the development of novel nanocarrier-based therapeutics is the need of the hour in managing complex diseases. In this review, we have briefly described the fundamentals of drug targeting to diseased tissues, physiological barriers in the human body, and the mechanisms/modes of drug-loaded carrier systems. To that end, this review serves as a comprehensive overview of the recent developments in stimulus-responsive drug delivery systems, with focus on their potential applications and impact on the future of drug delivery.
    Matched MeSH terms: Drug Carriers/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links