Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Chellappan DK, Prasher P, Saravanan V, Vern Yee VS, Wen Chi WC, Wong JW, et al.
    Chem Biol Interact, 2022 Jan 05;351:109706.
    PMID: 34662570 DOI: 10.1016/j.cbi.2021.109706
    The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.
    Matched MeSH terms: Drug Carriers/administration & dosage
  2. Chiu HI, Lim V
    Int J Nanomedicine, 2021;16:2995-3020.
    PMID: 33911862 DOI: 10.2147/IJN.S302238
    PURPOSE: In chemotherapy, oral administration of drug is limited due to lack of drug specificity for localized colon cancer cells. The inability of drugs to differentiate cancer cells from normal cells induces side effects. Colonic targeting with polymeric nanoparticulate drug delivery offers high potential strategies for delivering hydrophobic drugs and fewer side effects to the target site. Disulfide cross-linked polymers have recently acquired high significance due to their potential to degrade in reducing colon conditions while resisting the upper gastrointestinal tract's hostile environment. The goal of this project is, therefore, to develop pH-sensitive and redox-responsive fluorescein-labeled wheat germ agglutinin (fWGA)-mounted disulfide cross-linked alginate nanoparticles (fDTP2) directly targeting docetaxel (DTX) in colon cancer cells.

    METHODS: fDTP2 was prepared by mounting fWGA on DTX-loaded nanoparticles (DTP2) using the two-step carbodiimide method. Morphology of fDTP2 was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Dynamic light scattering (DLS) study was carried out to determine the mean diameter, polydispersity index (PDI) and zeta potential of fDTP2. Cellular uptake efficiency was examined using fluorescence microplate reader. Biocompatibility and active internalization of fDTP2 were conducted on HT-29.

    RESULTS: fDTP2 was found to exhibit a DTX loading efficiency of 19.3%. SEM and TEM tests revealed spherical nanoparticles. The in vitro DTX release test showed a cumulative release of 54.7%. From the DLS study, fDTP2 reported a 277.7 nm mean diameter with PDI below 0.35 and -1.0 mV zeta potential. HT-29 which was fDTP2-treated demonstrated lower viability than L929 with a half maximal inhibitory concentration (IC50) of 34.7 µg/mL. HT-29 (33.4%) internalized fDTP2 efficiently at 2 h incubation. The study on HT-29 active internalization of nanoparticles through fluorescence and confocal imaging indicated such.

    CONCLUSION: In short, fDTP2 demonstrated promise as a colonic drug delivery DTX transporter.

    Matched MeSH terms: Drug Carriers/administration & dosage
  3. Rathore C, Rathbone MJ, Chellappan DK, Tambuwala MM, Pinto TJA, Dureja H, et al.
    Expert Opin Drug Deliv, 2020 04;17(4):479-494.
    PMID: 32077770 DOI: 10.1080/17425247.2020.1730808
    Introduction: Thymoquinone (TQ), 2-isopropyl-5-methylbenzo-1, 4-quinone, the main active constituent of Nigella sativa (NS) plant, has been proven to be of great therapeutic aid in various in vitro and in vivo conditions. Despite the promising therapeutic activities of TQ, this molecule is not yet in the clinical trials, restricted by its poor biopharmaceutical properties including photo-instability.Area covered: This review compiles the different types of polymeric and lipidic nanocarriers (NCs), encapsulating TQ for their improved oral bioavailability, and augmented in vitro and in vivo efficacy, evidenced on various pathologies. Furthermore, we provide a comprehensive overview of TQ in relation to its encapsulation approaches advancing the delivery and improving the efficacy of TQ.Expert opinion: TQ was first identified in the essential oil of Nigella sativa L. black seed. TQ has not been used in formulations because it is a highly hydrophobic drug having poor aqueous solubility. To deal with the poor physicochemical problems associated with TQ, various NCs encapsulating TQ have been tried in the past. Nevertheless, these NCs could be impending in bringing forth this potential molecule to clinical reality. This will also be beneficial for a large research community including pharmaceutical & biological sciences and translational researchers.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  4. Zakarial Ansar FH, Latifah SY, Wan Kamal WHB, Khong KC, Ng Y, Foong JN, et al.
    Int J Nanomedicine, 2020;15:7703-7717.
    PMID: 33116496 DOI: 10.2147/IJN.S262395
    Background: Thymoquinone (TQ), an active compound isolated from Nigella sativa, has been proven to exhibit various biological properties such as antioxidant. Although oral delivery of TQ is valuable, it is limited by poor oral bioavailability and low solubility. Recently, TQ-loaded nanostructured lipid carrier (TQ-NLC) was formulated with the aim of overcoming the limitations. TQ-NLC was successfully synthesized by the high-pressure homogenization method with remarkable physiochemical properties whereby the particle size is less than 100 nm, improved encapsulation efficiency and is stable up to 24 months of storage. Nevertheless, the pharmacokinetics and biodistribution of TQ-NLC have not been studied. This study determined the bioavailability of oral and intravenous administration of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) in rats and its distribution to organs.

    Materials and Methods: TQ-NLC was radiolabeled with technetium-99m before the administration to the rats. The biodistribution and pharmacokinetics parameters were then evaluated at various time points. The rats were imaged at time intervals and the percentage of the injected dose/gram (%ID/g) in blood and each organ was analyzed.

    Results: Oral administration of TQ-NLC exhibited greater relative bioavailability compared to intravenous administration. It is postulated that the movement of TQ-NLC through the intestinal lymphatic system bypasses the first metabolism and therefore enhances the relative bioavailability. However, oral administration has a slower absorption rate compared to intravenous administration where the AUC0-∞ was 4.539 times lower than the latter.

    Conclusion: TQ-NLC had better absorption when administered intravenously compared to oral administration. However, oral administration showed greater bioavailability compared to the intravenous route. This study provides the pharmacokinetics and biodistribution profile of TQ-NLC in vivo which is useful to assist researchers in clinical use.

    Matched MeSH terms: Drug Carriers/administration & dosage
  5. Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ
    Int J Nanomedicine, 2020;15:1437-1456.
    PMID: 32184597 DOI: 10.2147/IJN.S236927
    The development of therapeutics and theranostic nanodrug delivery systems have posed a challenging task for the current researchers due to the requirement of having various nanocarriers and active agents for better therapy, imaging, and controlled release of drugs efficiently in one platform. The conventional liver cancer chemotherapy has many negative effects such as multiple drug resistance (MDR), high clearance rate, severe side effects, unwanted drug distribution to the specific site of liver cancer and low concentration of drug that finally reaches liver cancer cells. Therefore, it is necessary to develop novel strategies and novel nanocarriers that will carry the drug molecules specific to the affected cancerous hepatocytes in an adequate amount and duration within the therapeutic window. Therapeutics and theranostic systems have advantages over conventional chemotherapy due to the high efficacy of drug loading or drug encapsulation efficiency, high cellular uptake, high drug release, and minimum side effects. These nanocarriers possess high drug accumulation in the tumor area while minimizing toxic effects on healthy tissues. This review focuses on the current research on nanocarrier-based therapeutics and theranostic drug delivery systems excluding the negative consequences of nanotechnology in the field of drug delivery systems. However, clinical developments of theranostics nanocarriers for liver cancer are considered outside of the scope of this article. This review discusses only the recent developments of nanocarrier-based drug delivery systems for liver cancer therapy and diagnosis. The negative consequences of individual nanocarrier in the drug delivery system will also not be covered in this review.
    Matched MeSH terms: Drug Carriers/administration & dosage
  6. Chen XY, Butt AM, Mohd Amin MCI
    J Control Release, 2019 10;311-312:50-64.
    PMID: 31465827 DOI: 10.1016/j.jconrel.2019.08.031
    The current conventional injectable vaccines face several drawbacks such as inconvenience and ineffectiveness in mucosal immunization. Therefore, the current development of effective oral vaccines is vital to enable the generation of dual systemic and mucosal immunity. In the present study, we examine the potential of pH-responsive bacterial nanocellulose/polyacrylic acid (BNC/PAA) hydrogel microparticles (MPs) as an oral vaccine carrier. In-vitro entrapment efficiency and release study of Ovalbumin (Ova) demonstrated that as high as 72% of Ova were entrapped in the hydrogel, and the release of loaded Ova was pH-dependent. The released Ova remained structurally conserved as evident by Western blot and circular dichroism. Hydrogel MPs reduced the TEER measurement of HT29MTX/Caco2/Raji B triple co-culture monolayer by reversibly opening the tight junctions (TJs) as shown in the TEM images. The ligated ileal loop assay revealed that hydrogel MPs could facilitate the penetration of FITC-Ova into the Peyer's patches in small intestine. Ova and cholera toxin B (CTB) were utilized in in-vivo oral immunization as model antigen and mucosal adjuvant. The in-vivo immunization revealed mice orally administered with Ova and CTB-loaded hydrogel MPs generated significantly higher level of serum anti-Ova IgG and mucosal anti-Ova IgA in the intestinal washes, compared to intramuscular administrated Ova. These results conclude that BNC/PAA hydrogel MPs is a potential oral vaccine carrier for effective oral immunization.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  7. Chen XY, Butt AM, Mohd Amin MCI
    Mol Pharm, 2019 09 03;16(9):3853-3872.
    PMID: 31398038 DOI: 10.1021/acs.molpharmaceut.9b00483
    The development of oral vaccine formulation is crucial to facilitate an effective mass immunization program for various vaccine-preventable diseases. In this work, the efficacy of hepatitis B antigen delivered by bacterial nanocellulose/poly(acrylic acid) composite hydrogel microparticles (MPs) as oral vaccine carriers was assessed to induce both local and systemic immunity. Optimal pH-responsive swelling, mucoadhesiveness, protein drug loading, and drug permeability were characterized by MPs formulated with minimal irradiation doses and acrylic acid concentration. The composite hydrogel materials of bacterial nanocellulose and poly(acrylic acid) showed significantly greater antigen release in simulated intestinal fluid while ensuring the integrity of antigen. In in vivo study, mice orally vaccinated with antigen-loaded hydrogel MPs showed enhanced vaccine immunogenicity with significantly higher secretion of mucosal immunoglobulin A, compared to intramuscular vaccinated control. The splenocytes from the same group demonstrated lymphoproliferation and significant increased secretion of interleukin-2 cytokines upon stimulation with hepatitis B antigen. Expression of CD69 in CD4+ T lymphocytes and CD19+ B lymphocytes in splenocytes from mice orally vaccinated with antigen-loaded hydrogel MPs was comparable to that of the intramuscular vaccinated control, indicating early activation of lymphocytes elicited by our oral vaccine formulation in just two doses. These results demonstrated the potential of antigen-loaded hydrogel MPs as an oral vaccination method for hepatitis B.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  8. Ling Tan JS, Roberts CJ, Billa N
    Pharm Dev Technol, 2019 Apr;24(4):504-512.
    PMID: 30132723 DOI: 10.1080/10837450.2018.1515225
    This study describes the properties of an amphotericin B-containing mucoadhesive nanostructured lipid carrier (NLC), with the intent to maximize uptake within the gastrointestinal tract. We have reported previously that lipid nanoparticles can significantly improve the oral bioavailability of amphotericin B (AmpB). On the other hand, the aggregation state of AmpB within the NLC has been ascribed to some of the side effects resulting from IV administration. In the undissolved state, AmpB (UAmpB) exhibited the safer monomeric conformation in contrast to AmpB in the dissolved state (DAmpB), which was aggregated. Chitosan-coated NLC (ChiAmpB NLC) presented a slightly slower AmpB release profile as compared to the uncoated formulation, achieving 26.1% release in 5 hours. Furthermore, the ChiAmpB NLC formulation appeared to prevent the expulsion of AmpB upon exposure to simulated gastrointestinal pH media, whereby up to 63.9% of AmpB was retained in the NLC compared to 56.1% in the uncoated formulation. The ChiAmpB NLC demonstrated mucoadhesive properties in pH 5.8 and 6.8. Thus, the ChiAmpB NLC formulation is well-primed for pharmacokinetic studies to investigate whether delayed gastrointestinal transit may be exploited to improve the systemic bioavailability of AmpB, whilst simultaneously addressing the side-effect concerns of AmpB.
    Matched MeSH terms: Drug Carriers/administration & dosage
  9. Ngan CL, Asmawi AA
    Drug Deliv Transl Res, 2018 10;8(5):1527-1544.
    PMID: 29881970 DOI: 10.1007/s13346-018-0550-4
    Inhalation therapy of lipid-based carriers has great potential in direct target towards the root of respiratory diseases, which make them superior over other drug deliveries. With the successful entry of lipid carriers into the target cells, drugs can be absorbed in a sustained release manner and yield extended medicinal effects. Nevertheless, translation of inhalation therapy from laboratory to clinic especially in drug delivery remains a key challenge to the formulators. An ideal drug vehicle should safeguard the drugs from any premature elimination, facilitate cellular uptake, and promote maximum drug absorption with negligible toxicity. Despite knowing that lung treatment can be done via systemic delivery, pulmonary administration is capable of enhancing drug retention within the lungs, while minimizing systemic toxicity with local targeting. Current inhalation therapy of lipid-based carriers can be administered either intratracheally or intranasally to reach deep lung. However, the complex dimensions of lung architectural and natural defense mechanism poise major barriers towards targeted pulmonary delivery. Delivery systems have to be engineered in a way to tackle various diseases according to their biological conditions. This review highlights on the developmental considerations of lipid-based delivery systems cater for the pulmonary intervention of different lung illnesses.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  10. Choudhury H, Pandey M, Chin PX, Phang YL, Cheah JY, Ooi SC, et al.
    Drug Deliv Transl Res, 2018 10;8(5):1545-1563.
    PMID: 29916012 DOI: 10.1007/s13346-018-0552-2
    Treatment of glioblastoma multiforme (GBM) is a predominant challenge in chemotherapy due to the existence of blood-brain barrier (BBB) which restricts delivery of chemotherapeutic agents to the brain together with the problem of drug penetration through hard parenchyma of the GBM. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now viable to target central nervous system (CNS) disorders utilizing the presence of transferrin (Tf) receptors (TfRs). However, overexpression of these TfRs on the GBM cell surface can also help to avoid restrictions of GBM cells to deliver chemotherapeutic agents within the tumor. Therefore, targeting of TfR-mediated delivery could counteract drug delivery issues in GBM and create a delivery system that could cross the BBB effectively to utilize ligand-conjugated drug complexes through receptor-mediated transcytosis. Hence, approach towards successful delivery of antitumor agents to the gliomas has been making possible through targeting these overexpressed TfRs within the CNS and glioma cells. This review article presents a thorough analysis of current understanding on Tf-conjugated nanocarriers as efficient drug delivery system.
    Matched MeSH terms: Drug Carriers/administration & dosage
  11. Jain A, Sharma G, Ghoshal G, Kesharwani P, Singh B, Shivhare US, et al.
    Int J Pharm, 2018 Jul 30;546(1-2):97-105.
    PMID: 29715533 DOI: 10.1016/j.ijpharm.2018.04.061
    The work entails a novel strategy of formulating the lycopene loaded whey protein isolate nanoparticles (LYC-WPI-NPs) solely using the rational blend of biomacromolecule without using equipment-intensive techniques. The LYC-WPI-NPs were fabricated as a substantial drug delivery platform, with maximum entrapment, spatial and controlled release manners, exceptional plasma concentration, and perspective for discrepancy delivery of therapeutics. Prepared nano-formulations were measured in ultra-fine size (100-350 nm) with sphere-shaped. The percent lycopene entrapment of prepared LYC-WPI-NPs was estimated in the range to 50 and 65%. In vitro percent cumulative release study demonstrated deaden and extended release i.e. approximately 75% following 16th h. The in vitro percent cell survival (cytotoxicity study) of prepared nanoparticles was evaluated against MCF-7 breast cancer cells by MTT based colorimetric assay. Sub-cellular localization of lycopene when delivered by LYC-WPI-NPs was assessed by HPLC (high performance liquid chromatography). The WPI-NPs enhance the oral bioavailability of lycopene by controlling its release from nano-formulation and facilitating its absorption through lymphatic pathways. Prophylactic anticancer efficacy of LYC-WPI-NPs was evaluated thereafter on experimentally induced breast cancer animal model. Conclusively, it may quite reasonable that lycopene loaded protein nanoparticles are competent to improve the biopharmaceutical attributes of lycopene and demonstrated prophylactic anticancer activity, decrease tumor proliferation and increase the survival rate of treated animals, thus signifying their feasible usefulness in cancer therapeutic and intervention.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  12. Tan KX, Danquah MK, Sidhu A, Yon LS, Ongkudon CM
    Curr Drug Targets, 2018 02 08;19(3):248-258.
    PMID: 27321771 DOI: 10.2174/1389450117666160617120926
    BACKGROUND: The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability.

    OBJECTIVE: The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release.

    RESULTS: This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects.

    CONCLUSION: A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with stage-wise delivery mechanism is presented to illustrate the potential efficacy of aptamer- polymer cargos for enhanced cell targeting and drug delivery.

    Matched MeSH terms: Drug Carriers/administration & dosage
  13. Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, et al.
    Arch Pharm Res, 2018 Feb;41(2):111-129.
    PMID: 29214601 DOI: 10.1007/s12272-017-0995-x
    The development of novel drug delivery systems based on well-defined polymer therapeutics has led to significant improvements in the treatment of multiple disorders. Advances in material chemistry, nanotechnology, and nanomedicine have revolutionized the practices of drug delivery. Stimulus-responsive material-based nanosized drug delivery systems have remarkable properties that allow them to circumvent biological barriers and achieve targeted intracellular drug delivery. Specifically, the development of novel nanocarrier-based therapeutics is the need of the hour in managing complex diseases. In this review, we have briefly described the fundamentals of drug targeting to diseased tissues, physiological barriers in the human body, and the mechanisms/modes of drug-loaded carrier systems. To that end, this review serves as a comprehensive overview of the recent developments in stimulus-responsive drug delivery systems, with focus on their potential applications and impact on the future of drug delivery.
    Matched MeSH terms: Drug Carriers/administration & dosage
  14. Venugopal V, Krishnan S, Palanimuthu VR, Sankarankutty S, Kalaimani JK, Karupiah S, et al.
    PLoS One, 2018;13(11):e0206109.
    PMID: 30408068 DOI: 10.1371/journal.pone.0206109
    The aim of the present study is to analyze the viability of anti-EGFR anchored immunonanoparticle (INP) bearing Paclitaxel (PTX) to specifically bind the EGFR protein on the TNBC cells. The NP was prepared by nanoprecipitation and characterized the particle size, charge, entrapment of drug and release of it. The anti-EGFR anchored and the integrity was confirmed by SDS-PAGE. Cytotoxicity and NPs cellular uptake was analyzed with MDA-MB-468 type cancer cells and the EGFR expression was confirmed by PCR, qualitatively and quantitatively. The in-vivo antitumor activity of INP was determined by using athymic mice model and targeting efficiency was measured by calculating the PTX accumulation in the tumor plasma. The prepared INP with the size of 336.3 nm and the charge of -3.48 mV showed sustained drug release upto 48 h. The INP showed significant reduction of cancer cell viability of 10.6% for 48 h with 93 fold higher PTX accumulation in the tumor plasma compared with NPs. Based on these reports, we recommend that anti-EGFR anchored PTX loaded NP may have the ability to target the TNBC cells and improve the therapeutic action and subsidize the side effects of PTX for the treatment of TNBC.
    Matched MeSH terms: Drug Carriers/administration & dosage
  15. Noor NM, Sheikh K, Somavarapu S, Taylor KMG
    Eur J Pharm Biopharm, 2017 Aug;117:372-384.
    PMID: 28412472 DOI: 10.1016/j.ejpb.2017.04.012
    Dutasteride, used for treating benign prostate hyperplasia (BPH), promotes hair growth. To enhance delivery to the hair follicles and reduce systemic effects, in this study dutasteride has been formulated for topical application, in a nanostructured lipid carrier (NLC) coated with chitosan oligomer-stearic acid (CSO-SA). CSO-SA has been successfully synthesized, as confirmed using1H NMR and FTIR. Formulation of dutasteride-loaded nanostructured lipid carriers (DST-NLCs) was optimized using a 23full factorial design. This formulation was coated with different concentrations of stearic acid-chitosan solution. Coating DST-NLCs with 5% SA-CSO increased mean size from 187.6±7.0nm to 220.1±11.9nm, and modified surface charge, with zeta potentials being -18.3±0.9mV and +25.8±1.1mV for uncoated and coated DST-NLCs respectively. Transmission electron microscopy showed all formulations comprised approximately spherical particles. DST-NLCs, coated and uncoated with CSO-SA, exhibited particle size stability over 60days, when stored at 4-8°C. However, NLCs coated with CSO (without conjugation) showed aggregation when stored at 4-8°C after 30days. The measured particle size for all formulations stored at 25°C suggested aggregation, which was greatest for DST-NLCs coated with 10% CSO-SA and 5% CSO. All nanoparticle formulations exhibited rapid release in an in vitro release study, with uncoated NLCs exhibiting the fastest release rate. Using a Franz diffusion cell, no dutasteride permeated through pig ear skin after 48h, such that it was not detected in the receptor chamber for all samples. The amount of dutasteride in the skin was significantly different (p<0.05) for DST-NLCs (6.09±1.09μg/cm2) without coating and those coated with 5% CSO-SA (2.82±0.40μg/cm2), 10% CSO-SA (2.70±0.35μg/cm2) and CSO (2.11±0.64μg/cm2). There was a significant difference (p<0.05) in the cytotoxicity (IC50) between dutasteride alone and in the nanoparticles. DST-NLCs coated and uncoated with CSO-SA increased the maximum non-toxic concentration by 20-fold compared to dutasteride alone. These studies indicate that a stearic acid-chitosan conjugate was successfully prepared, and modified the surface charge of DST-NLCs from negative to positive. These stable, less cytotoxic, positively-charged dutasteride-loaded nanostructured lipid carriers, with stearic acid-chitosan oligomer conjugate, are appropriate for topical delivery and have potential for promotion of hair growth.
    Matched MeSH terms: Drug Carriers/administration & dosage
  16. Md S, Haque S, Madheswaran T, Zeeshan F, Meka VS, Radhakrishnan AK, et al.
    Drug Discov Today, 2017 Aug;22(8):1274-1283.
    PMID: 28456749 DOI: 10.1016/j.drudis.2017.04.010
    Topical photodynamic therapy (PDT) is a non-invasive technique used in the treatment of malignant and non-malignant skin diseases. It offers great promise because of its simplicity, enhanced patient compliance, localisation of the photosensitizer, as well as the use of light and oxygen to achieve photocytotoxicity. Despite progress in photosensitizer-mediated topical PDT, its clinical application is limited by poor penetration of photosensitizers through the skin. Therefore, much effort has been made to develop nanocarriers that can tackle the challenges of conventional photosensitizer-mediated PDT for topical delivery. This review discusses recent data on the use of different types of lipid-based nanocarriers in delivering photosensitizer for topical PDT.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  17. Ng SF, Tan LS, Buang F
    Drug Dev Ind Pharm, 2017 Jan;43(1):108-119.
    PMID: 27588411 DOI: 10.1080/03639045.2016.1224893
    Previous studies have shown that hydroxytyrosol (HT) can be a potential alternative therapeutic agent for the treatment of rheumatoid arthritis (RA). However, HT is extensively metabolized following oral administration, which leads to formulating HT in a topical vehicle to prolong drug action as well as to provide a localized effect. Hidrox-6 is a freeze-dried powder derived from fresh olives and contains a high amount of HT (∼3%) and other polyphenols. Alginate bilayer films containing 5% and 10% Hidrox-6 were formulated. The films were characterized with respect to their physical, morphology, rheological properties; drug content uniformity; and in vitro drug release. Acute dermal irritancy tests and a skin sensitization study were carried out in rats. An efficacy study of the bilayer films for RA was conducted using Freund's adjuvant-induced polyarthritis rats. Animal data showed that the bilayer film formulations did not cause skin irritancy. The efficacy in vivo results showed that the Hidrox-6 bilayer films lowered the arthritic scores, paw and ankle circumference, serum IL-6 level and cumulative histological scores compared with those measured for controls. The topical Hidrox-6 bilayer films improve synovitis and inflammatory symptoms in RA and can be a potential alternative to oral RA therapy.
    Matched MeSH terms: Drug Carriers/administration & dosage*
  18. Khan I, Kumar H, Mishra G, Gothwal A, Kesharwani P, Gupta U
    Curr Pharm Des, 2017;23(35):5315-5326.
    PMID: 28875848 DOI: 10.2174/1381612823666170829164828
    BACKGROUND: Delivery of chemotherapeutic drugs for the diagnosis and treatment of cancer is becoming advanced day by day. However, the challenge of the effective delivery system still does exist. In various types of cancers, breast cancer is the most commonly diagnosed cancer among women. Breast cancer is a combination of different diseases. It cannot be considered as only one entity because there are many specific patient factors, which are involved in the development of this disease. Nanotechnology has opened a new area in the effective treatment of breast cancer due to the several benefits offered by this technology.

    METHODS: Polymeric nanocarriers are among one of the effective delivery systems, which has given promising results in the treatment of breast cancers. Nanocarriers does exert their anticancer effect either through active or passive targeting mode.

    RESULTS: The use of nanocarriers has been resolute about the adverse effects of chemotherapeutic drugs such as poor solubility and less penetrability in tumor cells.

    CONCLUSION: The present review is focused on recent developments regarding polymeric nanocarriers, such as polymeric micelles, polymeric nanoparticles, dendrimers, liposomes, nanoshells, fullerenes, carbon nanotubes (CNT) and quantum dots, etc. for their recent advancements in breast cancer therapy.

    Matched MeSH terms: Drug Carriers/administration & dosage*
  19. Shadab M, Haque S, Sheshala R, Meng LW, Meka VS, Ali J
    Curr Pharm Des, 2017;23(3):440-453.
    PMID: 27784250 DOI: 10.2174/1381612822666161026163201
    BACKGROUND: The drug delivery of macromolecules such as proteins and peptides has become an important area of research and represents the fastest expanding share of the market for human medicines. The most common method for delivering macromolecules is parenterally. However parenteral administration of some therapeutic macromolecules has not been effective because of their rapid clearance from the body. As a result, most macromolecules are only therapeutically useful after multiple injections, which causes poor compliance and systemic side effects.

    METHOD: Therefore, there is a need to improve delivery of therapeutic macromolecules to enable non-invasive delivery routes, less frequent dosing through controlled-release drug delivery, and improved drug targeting to increase efficacy and reduce side effects.

    RESULT: Non-invasive administration routes such as intranasal, pulmonary, transdermal, ocular and oral delivery have been attempted intensively by formulating macromolecules into nanoparticulate carriers system such as polymeric and lipidic nanoparticles.

    CONCLUSION: This review discusses barriers to drug delivery and current formulation technologies to overcome the unfavorable properties of macromolecules via non-invasive delivery (mainly intranasal, pulmonary, transdermal oral and ocular) with a focus on nanoparticulate carrier systems. This review also provided a summary and discussion of recent data on non-invasive delivery of macromolecules using nanoparticulate formulations.

    Matched MeSH terms: Drug Carriers/administration & dosage
  20. Shao M, Hussain Z, Thu HE, Khan S, Katas H, Ahmed TA, et al.
    Colloids Surf B Biointerfaces, 2016 Nov 01;147:475-491.
    PMID: 27592075 DOI: 10.1016/j.colsurfb.2016.08.027
    Atopic dermatitis (AD) is a chronically relapsing skin inflammatory disorder characterized by perivascular infiltration of immunoglobulin-E (IgE), T-lymphocytes and mast cells. The key pathophysiological factors causing this disease are immunological disorders and the compromised epidermal barrier integrity. Pruritus, intense itching, psychological stress, deprived physical and mental performance and sleep disturbance are the hallmark features of this dermatological complication. Preventive interventions which include educational programs, avoidance of allergens, exclusive care towards skin, and the rational selection of therapeutic regimen play key roles in the treatment of dermatosis. In last two decades, it is evident from a plethora of studies that scientific focus is being driven from conventional therapies to the advanced nanocarrier-based regimen for an effective management of AD. These nanocarriers which include polymeric nanoparticles (NPs), hydrogel NPs, liposomes, ethosomes, solid lipid nanoparticles (SLNs) and nanoemulsion, provide efficient roles for the target specific delivery of the therapeutic payload. The success of these targeted therapies is due to their pharmaceutical versatility, longer retention time at the target site, avoiding off-target effects and preventing premature degradation of the incorporated drugs. The present review was therefore aimed to summarise convincing evidence for the therapeutic superiority of advanced nanocarrier-mediated strategies over the conventional therapies used in the treatment of AD.
    Matched MeSH terms: Drug Carriers/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links