Displaying publications 1 - 20 of 511 in total

Abstract:
Sort:
  1. Hussain Z, Khan S, Imran M, Sohail M, Shah SWA, de Matas M
    Drug Deliv Transl Res, 2019 06;9(3):721-734.
    PMID: 30895453 DOI: 10.1007/s13346-019-00631-4
    On account of heterogeneity, intrinsic ability of drug resistance, and the potential to invade to other parts of the body (malignancy), the development of a rational anticancer regimen is dynamically challenging. Chemotherapy is considered the gold standard for eradication of malignancy and mitigation of its reoccurrence; nevertheless, it has also been associated with detrimental effects to normal tissues owing to its nonselectivity and nominal penetration into the tumor tissues. In recent decades, nanotechnology-guided interventions have been well-acclaimed due to their ability to facilitate target-specific delivery of drugs, avoidance of nontarget distribution, alleviated systemic toxicity, and maximized drug internalization into cancer cells. Despite their numerous biomedical advantages, clinical translation of nanotechnology-mediated regimens is challenging due to their short plasma half-life and early clearance. PEGylation of nanomedicines has been adapted as an efficient strategy to extend plasma half-life and diminished early plasma clearance via alleviating the opsonization (uptake by monocytes and macrophages) of drug nanocarriers. PEGylation provides "stealth" properties to nanocarrier's surfaces which diminished their recognition or uptake by cellular immune system, leading to longer circulation time, reduced dosage and frequency, and superior site-selective delivery of drugs. Therefore, this review aims to present a comprehensive overview of the pharmaceutical advantages and therapeutic feasibility of PEGylation of nanocarriers in improving tumor-specific targetability, reversing drug resistance, and improving pharmacokinetic profile of drugs and anticancer efficacy. Challenges to PEGylated cancer nanomedicines, possible adaptations to resolve those challenges, and pivotal requirement for interdisciplinary research for development of rational anticancer regimen have also been pondered.
    Matched MeSH terms: Drug Delivery Systems*
  2. Rehman K, Mohd Amin MC, Zulfakar MH
    J Oleo Sci, 2014;63(10):961-70.
    PMID: 25252741
    Polymer-Fish oil bigel (hydrogel/oleogel colloidal mixture) was developed by using fish oil and natural (sodium alginate) and synthetic (hydroxypropyl methylcellulose) polymer for pharmaceutical purposes. The bigels were closely monitored and thermal, rheological and mechanical properties were compared with the conventional hydrogels for their potential use as an effective transdermal drug delivery vehicle. Stability of the fish oil fatty acids (especially eicosapentanoic acid, EPA and docosahexanoic acid, DHA) was determined by gas chromatography and the drug content (imiquimod) was assessed with liquid chromatography. Furthermore, in vitro permeation study was conducted to determine the capability of the fish oil-bigels as transdermal drug delivery vehicle. The bigels showed pseudoplastic rheological features, with excellent mechanical properties (adhesiveness, peak stress and hardness), which indicated their excellent spreadability for application on the skin. Bigels prepared with mixture of sodium alginate and fish oil (SB1 and SB2), and the bigels prepared with the mixture of hydroxypropyl methylcellulose and fish oil (HB1-HB3) showed high cumulative permeation and drug flux compared to hydrogels. Addition of fish oil proved to be beneficial in increasing the drug permeation and the results were statistically significant (p < 0.05, one-way Anova, SPSS 20.0). Thus, it can be concluded that bigel formulations could be used as an effective topical and transdermal drug delivery vehicle for pharmaceutical purposes.
    Matched MeSH terms: Drug Delivery Systems*
  3. Rehman K, Tan CM, Zulfakar MH
    Drug Res (Stuttg), 2014 Mar;64(3):159-65.
    PMID: 24026957 DOI: 10.1055/s-0033-1355351
    Topical keratolytic agents such as benzoyl peroxide (BP) and salicylic acid (SA) are one of the common treatments for inflammatory skin diseases. However, the amount of drug delivery through the skin is limited due to the stratum corneum. The purposes of this study were to investigate the ability of fish oil to act as penetration enhancer for topical keratolytic agents and to determine the suitable gelator for formulating stable fish oil oleogels. 2 types of gelling agents, beeswax and sorbitan monostearate (Span 60), were used to formulate oleogels. To investigate the efficacy of fish oil oleogel permeation, commercial hydrogels of benzoyl peroxide (BP) and salicylic acid (SA) were used as control, and comparative analysis was performed using Franz diffusion cell. Stability of oleogels was determined by physical assessments at 20°C and 40°C storage. Benzoyl peroxide (BP) fish oil oleogels containing beeswax were considered as better formulations in terms of drug permeation and cumulative drug release. All the results were found to be statistically significant (p<0.05, ANOVA) and it was concluded that the beeswax-fish oil combination in oleogel can prove to be beneficial in terms of permeation across the skin and stability.
    Matched MeSH terms: Drug Delivery Systems
  4. Rehman K, Zulfakar MH
    Pharm Res, 2017 01;34(1):36-48.
    PMID: 27620176 DOI: 10.1007/s11095-016-2036-8
    PURPOSE: To characterize bigel system as a topical drug delivery vehicle and to establish the immunomodulatory role of imiquimod-fish oil combination against skin cancer and inflammation resulting from chemical carcinogenesis.

    METHODS: Imiquimod-loaded fish oil bigel colloidal system was prepared using a blend of carbopol hydrogel and fish oil oleogel. Bigels were first characterized for their mechanical properties and compared to conventional gel systems. Ex vivo permeation studies were performed on murine skin to analyze the ability of the bigels to transport drug across skin and to predict the release mechanism via mathematical modelling. Furthermore, to analyze pharmacological effectiveness in skin cancer and controlling imiquimod-induced inflammatory side effects, imiquimod-fish oil combination was tested in vitro on epidermoid carcinoma cells and in vivo in Swiss albino mice cancer model.

    RESULTS: Imiquimod-loaded fish oil bigels exhibited higher drug availability inside the skin as compared to individual imiquimod hydrogel and oleogel controls through quasi-Fickian diffusion mechanism. Imiquimod-fish oil combination in bigel enhanced the antitumor effects and significantly reduced serum pro-inflammatory cytokine levels such as tumor necrosis factor-alpha and interleukin-6, and reducing tumor progression via inhibition of vascular endothelial growth factor. Imiquimod-fish oil combination also resulted in increased expression of interleukin-10, an anti-inflammatory cytokine, which could also aid anti-tumor activity against skin cancer.

    CONCLUSION: Imiquimod administration through a bigel vehicle along with fish oil could be beneficial for controlling imiquimod-induced inflammatory side effects and in the treatment of skin cancer.

    Matched MeSH terms: Drug Delivery Systems/methods
  5. Rehman K, Zulfakar MH
    Drug Dev Ind Pharm, 2014 Apr;40(4):433-40.
    PMID: 23937582 DOI: 10.3109/03639045.2013.828219
    Transdermal drug delivery systems are a constant source of interest because of the benefits that they afford in overcoming many drawbacks associated with other modes of drug delivery (i.e. oral, intravenous). Because of the impermeable nature of the skin, designing a suitable drug delivery vehicle that penetrates the skin barrier is challenging. Gels are semisolid formulations, which have an external solvent phase, may be hydrophobic or hydrophilic in nature, and are immobilized within the spaces of a three-dimensional network structure. Gels have a broad range of applications in food, cosmetics, biotechnology, pharmatechnology, etc. Typically, gels can be distinguished according to the nature of the liquid phase, for example, organogels (oleogels) contain an organic solvent, and hydrogels contain water. Recent studies have reported other types of gels for dermal drug application, such as proniosomal gels, emulgels, bigels and aerogels. This review aims to introduce the latest trends in transdermal drug delivery via traditional hydrogels and organogels and to provide insight into the latest gel types (proniosomal gels, emulgels, bigels and aerogels) as well as recent technologies for topical and transdermal drug delivery.
    Matched MeSH terms: Drug Delivery Systems*
  6. Shamsuddin NAM, Zulfakar MH
    Curr Drug Deliv, 2023;20(2):127-143.
    PMID: 35331113 DOI: 10.2174/1567201819666220324094234
    Natural products contain bioactive compounds that are produced naturally via synthetic or semisynthetic processes. These bioactive compounds play significant biological roles, especially for growth as well as in defense mechanisms against pathogens. Bioactive compounds in natural products have been extensively studied in recent decades for their pharmacological activities, such as anticancer, wound healing, anti-microbial, anti-inflammatory, and anti-oxidative properties. However, their pharmaceutical significance has always been hindered by their low bioavailability and instability with variations in pH, temperature, and exposure to light. Nanotechnology paves the way for the development of drug delivery systems by enhancing therapeutic efficacy. Nanostructured lipid carriers, a lipidbased drug delivery system, are recently being studied to improve the biocompatibility, biodegradability, bioavailability, solubility, permeability, and shelf life of bioactive compounds in the pharmaceutical industry. The ideal component and preparation method for bioactive compounds in nanostructured lipid carrier development is necessary for their physicochemical properties and therapeutic efficiency. Therefore, this review seeks to highlight recent developments, preparation, and application of nanostructured lipid carriers as carriers for natural bioactive compounds in improving their therapeutic potential in drug delivery systems.
    Matched MeSH terms: Drug Delivery Systems
  7. Rizwan M, Yahya R, Hassan A, Yar M, Abd Halim AA, Rageh Al-Maleki A, et al.
    J Mater Sci Mater Med, 2019 Jun 11;30(6):72.
    PMID: 31187295 DOI: 10.1007/s10856-019-6273-3
    The success of wound healing depends upon the proper growth of vascular system in time in the damaged tissues. Poor blood supply to wounded tissues or tissue engineered grafts leads to the failure of wound healing or rejection of grafts. In present paper, we report the synthesis of novel organosoluble and pro-angiogenic chitosan derivative (CSD) by the reaction of chitosan with 1,3-dimethylbarbituric acid and triethylorthoformate (TEOF). The synthesized material was characterized by FTIR and 13C-NMR to confirm the incorporated functional groups and new covalent connectivities. Biodegradability of the synthesized chitosan derivative was tested in the presence of lysozyme and was found to be comparable with CS. The cytotoxicity and apoptosis effect of new derivative was determined against gastric adenocarcinoma (AGS) cells and was found to be non-toxic. The CSD was found to be soluble in majority of organic solvents. It was blended with polycaprolactone (PCL) to form composite scaffolds. From an ex ovo CAM assay, it was noted that CSD stimulated the angiogenesis.
    Matched MeSH terms: Drug Delivery Systems*
  8. Almalki WH, Alghamdi S, Alzahrani A, Zhang W
    Drug Discov Today, 2021 03;26(3):826-835.
    PMID: 33383212 DOI: 10.1016/j.drudis.2020.12.018
    Interest is increasing in the use of nanotheranostics as diagnosis, imaging and therapeutic tools for stroke management, but movement to the clinic remains challenging.
    Matched MeSH terms: Drug Delivery Systems
  9. Mahomoodally MF, Aumeeruddy MZ, Rengasamy KRR, Roshan S, Hammad S, Pandohee J, et al.
    Semin Cancer Biol, 2021 Feb;69:140-149.
    PMID: 31412298 DOI: 10.1016/j.semcancer.2019.08.009
    Ginger is a spice that is renowned for its characteristic aromatic fragrance and pungent taste, with documented healing properties. Field studies conducted in several Asian and African countries revealed that ginger is used traditionally in the management of cancer. The scientific community has probed into the biological validation of its extracts and isolated compounds including the gingerols, shogaols, zingiberene, and zingerone, through in-vitro and in-vivo studies. Nonetheless, an updated compilation of these data together with a deep mechanistic approach is yet to be provided. Accordingly, this review highlights the mechanisms and therapeutics of ginger and its bioactive compounds focused on a cancer context and these evidence are based on the (i) cytotoxic effect against cancer cell lines, (ii) enzyme inhibitory action, (iii) combination therapy with chemotherapeutic and phenolic compounds, (iv) possible links to the microbiome and (v) the use of nano-formulations of ginger bioactive compounds as a more effective drug delivery strategy in cancer therapy.
    Matched MeSH terms: Drug Delivery Systems*
  10. Hammadi NI, Abba Y, Hezmee MNM, Razak ISA, Kura AU, Zakaria ZAB
    In Vitro Cell Dev Biol Anim, 2017 Dec;53(10):896-907.
    PMID: 28916966 DOI: 10.1007/s11626-017-0197-3
    Cockle shell-derived calcium carbonate nanoparticles have shown promising potentials as slow drug-releasing compounds in cancer chemotherapy. In this study, we evaluated the in vitro efficacy of docetaxel (DTX)-loaded CaCO3NP on 4T1 cell line. This was achieved by evaluating the following: cytotoxicity using MTT assay, fluorescence imaging, apoptosis with Annexin V assay, cell cycle analysis, scanning (SEM) and transmission electron microscopy (TEM), and scratch assay. Based on the results, DTX-CaCO3NP with a DTX concentration of 0.5 μg/mL and above had comparable cytotoxic effects with free DTX at 24 h, while all concentrations had similar cytotoxic effect on 4T1 cells at 48 and 72 h. Fluorescence and apoptosis assay showed a higher (p 
    Matched MeSH terms: Drug Delivery Systems/methods
  11. Kamba AS, Ismail M, Ibrahim TA, Zakaria ZA
    PMID: 25392577
    BACKGROUND: Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance before use as delivery carrier. In this study we examine the biocompatibility of CaCO3 nanocrystal on NIH 3T3 cell line.

    MATERIAL AND METHODS: Transmission and field emission scanning electron microscopy (TEM and FESEM) were used for the characterisation of CaCO3 nanocrystals. Cytotoxicity and genotoxic effect of calcium carbonate nanocrystals in cultured mouse embryonic fibroblast NIH 3T3 cell line using various bioassays including MTT, and Neutral red/Trypan blue double-staining assays. LDH, BrdU and reactive oxygen species were used for toxicity analysis. Cellular morphology was examined by scanning electron microscopy (SEM) and confocal fluorescence microscope.

    RESULTS: The outcome of the analyses revealed a clear rod-shaped aragonite polymorph of calcium carbonate nanocrystal. The analysed cytotoxic and genotoxicity of CaCO3 nanocrystal on NIH 3T3 cells using different bioassays revealed no significance differences as compared to control. A slight decrease in cell viability was noticed when the cells were exposed to higher concentrations of 200 to 400 µg/ml, while increase in ROS generation and LDH released at 200 and 400 µg/ml was observed.

    CONCLUSIONS: The study has shown that CaCO3 nanocrystal is biocompatible and non toxic to NIH 3T3 fibroblast cells. The analysed results offer a promising potential of CaCO3 nanocrystal for the development of intracellular drugs, genes and other macromolecule delivery systems.

    Matched MeSH terms: Drug Delivery Systems*
  12. Shafiu Kamba A, Ismail M, Tengku Ibrahim TA, Zakaria ZA
    Biomed Res Int, 2013;2013:587451.
    PMID: 24324966 DOI: 10.1155/2013/587451
    The synthesised biobased calcium carbonate nanocrystals had demonstrated to be an effective carrier for delivery of anticancer drug doxorubicin (DOX). The use of these nanocrystals displayed high levels of selectivity and specificity in achieving effective cancer cell death without nonspecific toxicity. These results confirmed that DOX was intercalated into calcium carbonate nanocrystals at high loading and encapsulation efficiency (4.8 and 96%, resp.). The CaCO₃/DOX nanocrystals are relatively stable at neutral pH (7.4), resulting in slow release, but the nanocrystals progressively dissociated in acidic pH (4.8) regimes, triggering faster release of DOX. The CaCO₃/DOX nanocrystals exhibited high uptake by MDA MB231 breast cancer cells and a promising potential delivery of DOX to target cells. In vitro chemosensitivity using MTT, modified neutral red/trypan blue assay, and LDH on MDA MB231 breast cancer cells revealed that CaCO₃/DOX nanocrystals are more sensitive and gave a greater reduction in cell growth than free DOX. Our findings suggest that CaCO₃ nanocrystals hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy.
    Matched MeSH terms: Drug Delivery Systems*
  13. Thent ZC, Das S, Zaidun NH
    Curr Drug Deliv, 2018;15(4):453-460.
    PMID: 28545355 DOI: 10.2174/1567201814666170525122224
    BACKGROUND: The incidence of diabetes mellitus has increased drastically over the past few decades. This oxidant-antioxidant imbalance resulting in complication of diabetes mellitus includes macro- and microvascular complications. Resistance to conventional treatment and patient compliance has paved the way to the usage of effective natural products and supplements. Momordica charantia (bitter gourd) is widely consumed in many parts of Malaysia as a vegetable. Momordica charantia (MC) is mainly used in the management of diabetes mellitus.

    OBJECTIVE: The present review discusses the literature concerning the antidiabetic and antioxidant properties of MC focusing on the complication of diabetes mellitus along with its mode of delivery. We found that among the whole part of MC, its fruit extract has been widely studied, therapeutically. The evidence based analysis of the beneficiary effects of MC on the different organs involved in diabetes complication is also highlighted. This review elucidated an essential understanding of MC based drug delivery system in both clinical and experimental studies and appraised the great potential of the protein based MC extract against diabetes mellitus.

    CONCLUSION: The review paper is believed to assist the researchers and medical personnel in treating diabetic associated complications.

    Matched MeSH terms: Drug Delivery Systems/methods*; Drug Delivery Systems/trends
  14. Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AAA, et al.
    Acta Pharm Sin B, 2020 Nov;10(11):2075-2109.
    PMID: 33304780 DOI: 10.1016/j.apsb.2020.10.005
    In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.
    Matched MeSH terms: Drug Delivery Systems
  15. Nasir S, Hussein MZ, Zainal Z, Yusof NA
    Materials (Basel), 2018 Feb 13;11(2).
    PMID: 29438327 DOI: 10.3390/ma11020295
    Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. Carbon nanomaterials are believed to be appropriate and promising (when used as energy materials) to cushion the threat. Consequently, the amazing properties of these materials and greatest potentials towards greener and environment friendly synthesis methods and industrial scale production of carbon nanostructured materials is undoubtedly necessary and can therefore be glimpsed as the focal point of many researchers in science and technology in the 21st century. This is based on the incredible future that lies ahead with these smart carbon-based materials. This review is determined to give a synopsis of new advances towards their synthesis, properties, and some applications as reported in the existing literatures.
    Matched MeSH terms: Drug Delivery Systems
  16. Aziz MS, Jukgoljan B, Daud S, Tan TS, Ali J, Yupapin PP
    Artif Cells Nanomed Biotechnol, 2013 Jun;41(3):178-83.
    PMID: 22991944 DOI: 10.3109/10731199.2012.715087
    This paper presents the use of a modified add/drop optical filter incorporating with microring resonators known as a PANDA microring resonator system which can fabricate on small chip. By using an optical tweezer, the required molecules can be trapped and moved to the required destinations at the add/drop ports. The novelty is that the stored molecules in the designed chip can transport via the optical waveguide and can also be used to form molecular filter, which is an important technique for drug delivery, drug targeting, and molecular electronics. Results have shown that the multivariable filter can be obtained by tunable trapping control.
    Matched MeSH terms: Drug Delivery Systems/instrumentation; Drug Delivery Systems/methods
  17. Aziz MS, Jalil MA, Suwanpayak N, Ali J, Yupapin PP
    PMID: 22409282 DOI: 10.3109/10731199.2012.658470
    Optical vorticesare generated and controlled to form trapping tools in the same way as optical tweezers. By using the intense optical vortices generated within the PANDA ring resonator, the required atoms/molecules can be trapped and moved (transported) dynamically within the wavelength router or network. The advantage of the proposed system is that a transmitter and receiver can be formed within the same system, which is available for atoms/molecules storage and transportation based on methods that have been proposed to deliver drugs into cells for specific diagnosis.
    Matched MeSH terms: Drug Delivery Systems
  18. Jalil MA, Suwanpayak N, Kulsirirat K, Suttirak S, Ali J, Yupapin PP
    Int J Nanomedicine, 2011;6:2925-32.
    PMID: 22131837 DOI: 10.2147/IJN.S26266
    A novel nanomicro syringe system was proposed for drug storage and delivery using a PANDA ring resonator and atomic buffer. A PANDA ring is a modified optical add/drop filter, named after the well known Chinese bear. In principle, the molecule/drug is trapped by the force generated by different combinations of gradient fields and scattering photons within the PANDA ring. A nanomicro needle system can be formed by optical vortices in the liquid core waveguide which can be embedded on a chip, and can be used for long-term treatment. By using intense optical vortices, the required genes/molecules can be trapped and transported dynamically to the intended destinations via the nanomicro syringe, which is available for drug delivery to target tissues, in particular tumors. The advantage of the proposed system is that by confining the treatment area, the effect can be decreased. The use of different optical vortices for therapeutic efficiency is also discussed.
    Matched MeSH terms: Drug Delivery Systems/instrumentation*; Drug Delivery Systems/methods
  19. Jalil MA, Tasakorn M, Suwanpayak N, Ali J, Yupapin PP
    IEEE Trans Nanobioscience, 2011 Jun;10(2):106-12.
    PMID: 21518667 DOI: 10.1109/TNB.2011.2142421
    A novel design of nanoscopic volume transmitter and receiver for drug delivery system using a PANDA ring resonator is proposed. By controlling some suitable parameters, the optical vortices (gradient optical fields/wells) can be generated and used to form the trapping tools in the same way as the optical tweezers. By using the intense optical vortices generated within the PANDA ring resonator, the nanoscopic volumes (drug) can be trapped and moved (transport) dynamically within the wavelength router or network. In principle, the trapping force is formed by the combination between the gradient field and scattering photons, which is reviewed. The advantage of the proposed system is that a transmitter and receiver can be formed within the same system (device), which is called a transceiver, which is available for nanoscopic volume (drug volume) trapping and transportation (delivery).
    Matched MeSH terms: Drug Delivery Systems/methods*
  20. Kalani M, Yunus R
    Int J Nanomedicine, 2011;6:1429-42.
    PMID: 21796245 DOI: 10.2147/IJN.S19021
    The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer), nozzle geometry, CO(2) flow rate, and the liquid phase flow rate on particle size and its distribution.
    Matched MeSH terms: Drug Delivery Systems/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links