Displaying publications 1 - 20 of 516 in total

Abstract:
Sort:
  1. Zulfakar MH, Pubadi H, Ibrahim SI, Hairul NM
    J Oleo Sci, 2024;73(3):293-310.
    PMID: 38432994 DOI: 10.5650/jos.ess23204
    Medium-chain triacylglycerol (MCT) is a type of triacylglycerol that has six or seven to twelve carbon chains. It consists of three molecules of fatty acids attached to one molecule of glycerol. Drug delivery system (DDS) is defined as a formulation to distribute drugs into the human body. The unique properties of MCTs have garnered interest in using them as excipients in DDS. Even though there are many significant effects attributed to the use of MCTs, especially in modulating the rate of drug delivery in various DDS, they are all limited and intermittent. This warrants a detailed summary of the previous studies on the use of MCTs in various DDS. Therefore, this review focuses on presenting a systematic review of previous studies on the use of MCTs in the last six years and explores the types and effects of MCTs on DDS that employ various types of delivery routes. A systematic search through PubMed, Science Direct and Scopus was performed. Keywords like "medium-chain triglycerides", "medium-chain fatty acids", "medium-chain triglycerides and their fractions", "medium-chain fatty acids and their fractions", "MCTs", "MCFA", "in drug delivery", "in drug delivery system" and their combinations were used. The synonyms of the words were also used to extend the search. A total of 17 articles that met the inclusion criteria were identified. Findings from this review have identified the several MCTs and their fractions used in DDS that employed the oral/enteral, topical, transdermal, parenteral, and pulmonary routes of drug delivery. The review also highlights that the usage of MCTs in DDS results in a better transportation of drugs into the human body.
    Matched MeSH terms: Drug Delivery Systems*
  2. Zhuo F, Abourehab MAS, Hussain Z
    Carbohydr Polym, 2018 Oct 01;197:478-489.
    PMID: 30007638 DOI: 10.1016/j.carbpol.2018.06.023
    Nano-delivery systems have gained remarkable recognition for targeted delivery of therapeutic payload, reduced off-target effects, and improved biopharmaceutical profiles of drugs. Therefore, we aimed to fabricate polymeric nanoparticles (NPs) to deliver tacrolimus (TCS) to deeper layers of the skin in order to alleviate its systemic toxicity and improved therapeutic efficacy against atopic dermatitis (AD). To further optimize the targeting efficiency, TCS-loaded NPs were coated with hyaluronic acid (HA). Following the various physicochemical optimizations, the prepared HA-TCS-CS-NPs were tested for in vitro drug release kinetics, drug permeation across the stratum corneum, percentage of drug retained in the epidermis and dermis, and anti-AD efficacy. Results revealed that HA-TCS-CS-NPs exhibit sustained release profile, promising drug permeation ability, improved skin retention, and pronounced anti-AD efficacy. Conclusively, we anticipated that HA-based modification of TCS-CS-NPs could be a promising therapeutic approach for rationalized management of AD, particularly in children as well as in adults having steroid phobia.
    Matched MeSH terms: Drug Delivery Systems
  3. Zheng B, Xing G, Bi Y, Yan G, Wang J, Cheng Y, et al.
    Saudi J Biol Sci, 2016 Jan;23(1):54-65.
    PMID: 26858539 DOI: 10.1016/j.sjbs.2015.08.009
    As a novel oral drug delivery system, proliposome was applied to improve the solubility of active components of Ginkgo biloba extract (GbE). There are currently few reports focusing on the pharmacokinetic characteristics of proliposome of GbE (GbP). A rapid and sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification of active components of GbP and a commercial tablet product (Ginaton) in rat plasma was developed and successfully validated. The method was applied to the comparative pharmacokinetic evaluation of GbP and Ginaton in rat plasma. The results indicated that GbP has a significant effect on absorption, elimination and bioavailability of flavonoids and terpenoid lactones in comparison with Ginaton. The obtained results would be helpful for evaluating the absorption mechanism in the gastrointestinal tract in pharmacokinetic level and guiding the development of the novel oral drug delivery system.
    Matched MeSH terms: Drug Delivery Systems
  4. Zhang W, Lv Z, Zhang Y, Gopinath SCB, Yuan Y, Huang D, et al.
    Oxid Med Cell Longev, 2022;2022:6006601.
    PMID: 36211824 DOI: 10.1155/2022/6006601
    OBJECTIVE: The off-target effects and severe side effects of PPARα and LXRα agonists greatly limit their application in atherosclerosis (AS). Therefore, this study intended to use mesoporous silica nanoparticles as carriers to generate MnO nanoparticles in situ with T1WI-MRI in mesoporous pores and simultaneously load PPARα and LXRα agonists. Afterward, cRGD-chelated platelet membranes can be used for coating to construct a new nanotheranostic agent.

    METHODS: cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles were synthesized by a chemical method. Dynamic light scattering (DLS) was utilized to detect the size distribution and polydispersity index (PDI) of the nanoparticles. The safety of the nanoparticles was detected by CCK8 in vitro and HE staining and kidney function in vivo. Cell apoptosis was detected by flow cytometry detection and TUNEL staining. Oxidative stress responses (ROS, SOD, MDA, and NOX levels) were tested via a DCFH-DA assay and commercial kits. Immunofluorescence and phagocytosis experiments were used to detect the targeting of nanoparticles. Magnetic resonance imaging (MRI) was used to detect the imaging performance of cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles. Using western blotting, the expression changes in LXRα and ABCA1 were identified.

    RESULTS: cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles were successfully established, with a particle size of approximately 150 nm and PDI less than 0.3, and showed high safety both in vitro and in vivo. cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles showed good targeting properties and better MRI imaging performance in AS. cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles showed better antioxidative capacities, MRI imaging performance, and diagnostic and therapeutic effects on AS by regulating the expression of LXRα and ABCA1.

    CONCLUSION: In the present study, cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles with high safety and the capacity to target vulnerable plaques of AS were successfully established. They showed better performance on MRI images and treatment effects on AS by promoting cholesterol efflux through the regulation of ABCA1. These findings might address the problems of off-target effects and side effects of nanoparticle-mediated drug delivery, which will enhance the efficiency of AS treatment and provide new ideas for the clinical treatment of AS.

    Matched MeSH terms: Drug Delivery Systems
  5. Zeeshan F, Madheswaran T, Pandey M, Gorain B
    Curr Pharm Des, 2018;24(42):5019-5028.
    PMID: 30621558 DOI: 10.2174/1381612825666190101111525
    BACKGROUND: The conventional dosage forms cannot be administered to all patients because of interindividual variability found among people of different race coupled with different metabolism and cultural necessities. Therefore, to address this global issue there is a growing focus on the fabrication of new drug delivery systems customised to individual needs. Medicinal products printed using 3-D technology are transforming the current medicine business to a plausible alternative of conventional medicines.

    METHODS: The PubMed database and Google scholar were browsed by keywords of 3-D printing, drug delivery, and personalised medicine. The data about techniques employed in the manufacturing of 3-D printed medicines and the application of 3-D printing technology in the fabrication of individualised medicine were collected, analysed and discussed.

    RESULTS: Numerous techniques can fabricate 3-D printed medicines however, printing-based inkjet, nozzle-based deposition and laser-based writing systems are the most popular 3-D printing methods which have been employed successfully in the development of tablets, polypills, implants, solutions, nanoparticles, targeted and topical dug delivery. In addition, the approval of Spritam® containing levetiracetam by FDA as the primary 3-D printed drug product has boosted its importance. However, some drawbacks such as suitability of manufacturing techniques and the available excipients for 3-D printing need to be addressed to ensure simple, feasible, reliable and reproducible 3-D printed fabrication.

    CONCLUSION: 3-D printing is a revolutionary in pharmaceutical technology to cater the present and future needs of individualised medicines. Nonetheless, more investigations are required on its manufacturing aspects in terms cost effectiveness, reproducibility and bio-equivalence.

    Matched MeSH terms: Drug Delivery Systems*
  6. Zare-Zardini H, Taheri-Kafrani A, Amiri A, Bordbar AK
    Sci Rep, 2018 01 12;8(1):586.
    PMID: 29330486 DOI: 10.1038/s41598-017-18938-y
    In this study, Rh2-treated graphene oxide (GO-Rh2), lysine-treated highly porous graphene (Gr-Lys), arginine-treated Gr (Gr-Arg), Rh2-treated Gr-Lys (Gr-Lys-Rh2) and Rh2-treated Gr-Arg (Gr-Arg-Rh2) were synthesized. MTT assay was used for evaluation of cytotoxicity of samples on ovarian cancer (OVCAR3), breast cancer (MDA-MB), Human melanoma (A375) and human mesenchymal stem cells (MSCs) cell lines. The percentage of apoptotic cells was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. The hemolysis and blood coagulation activity of nanostructures were performed. Interestingly, Gr-Arg, Gr-Lys, Gr-Arg-Rh2, and Gr-Lys-Rh2 were more active against cancer cell lines in comparison with their cytotoxic activity against normal cell lines (MSCs) with IC50 values higher than 100 μg/ml. The results of TUNEL assay indicates a significant increase in the rates of TUNEL positive cells by increasing the concentrations of nanomaterials. Results were also shown that aggregation and changes of RBCs morphology were occurred in the presence of GO, GO-Rh2, Gr-Arg, Gr-Lys, Gr-Arg-Rh2, and Gr-Lys-Rh2. Note that all the samples had effect on blood coagulation system, especially on PTT. All nanostrucure act as antitumor drug so that binding of drugs to a nostructures is irresolvable and the whole structure enter to the cell as a drug.
    Matched MeSH terms: Drug Delivery Systems
  7. Zamhuri A, Lim GP, Ma NL, Tee KS, Soon CF
    Biomed Eng Online, 2021 Apr 01;20(1):33.
    PMID: 33794899 DOI: 10.1186/s12938-021-00873-9
    MXene is a recently emerged multifaceted two-dimensional (2D) material that is made up of surface-modified carbide, providing its flexibility and variable composition. They consist of layers of early transition metals (M), interleaved with n layers of carbon or nitrogen (denoted as X) and terminated with surface functional groups (denoted as Tx/Tz) with a general formula of Mn+1XnTx, where n = 1-3. In general, MXenes possess an exclusive combination of properties, which include, high electrical conductivity, good mechanical stability, and excellent optical properties. MXenes also exhibit good biological properties, with high surface area for drug loading/delivery, good hydrophilicity for biocompatibility, and other electronic-related properties for computed tomography (CT) scans and magnetic resonance imaging (MRI). Due to the attractive physicochemical and biocompatibility properties, the novel 2D materials have enticed an uprising research interest for application in biomedicine and biotechnology. Although some potential applications of MXenes in biomedicine have been explored recently, the types of MXene applied in the perspective of biomedical engineering and biomedicine are limited to a few, titanium carbide and tantalum carbide families of MXenes. This review paper aims to provide an overview of the structural organization of MXenes, different top-down and bottom-up approaches for synthesis of MXenes, whether they are fluorine-based or fluorine-free etching methods to produce biocompatible MXenes. MXenes can be further modified to enhance the biodegradability and reduce the cytotoxicity of the material for biosensing, cancer theranostics, drug delivery and bio-imaging applications. The antimicrobial activity of MXene and the mechanism of MXenes in damaging the cell membrane were also discussed. Some challenges for in vivo applications, pitfalls, and future outlooks for the deployment of MXene in biomedical devices were demystified. Overall, this review puts into perspective the current advancements and prospects of MXenes in realizing this 2D nanomaterial as a versatile biological tool.
    Matched MeSH terms: Drug Delivery Systems
  8. Zambri NDS, Taib NI, Abdul Latif F, Mohamed Z
    Molecules, 2019 Oct 22;24(20).
    PMID: 31652583 DOI: 10.3390/molecules24203803
    The present work reports the successful synthesis of biosynthesized iron oxide nanoparticles (Fe3O4-NPs) with the use of non-toxic leaf extract of Neem (Azadirachta indica) as a reducing and stabilizing agent. The successful synthesis was confirmed by infrared spectra analysis with strong peak observed between 400-600 cm-1 that corresponds to magnetite nanoparticles characteristics. X-ray diffraction (XRD) analysis revealed that iron oxide nanoparticles were of high purity with crystalline cubic structure phases in nature. Besides, the average size of magnetite nanoparticles was observed to be 9-12 nm with mostly irregular shapes using a transmission electron microscope (TEM) and was supported by field emission scanning electron microscope (FESEM). Energy dispersive X-ray analysis shown that the elements iron (Fe) and oxygen (O) were present with atomic percentages of 33.29% and 66.71%, respectively. From the vibrating sample magnetometer (VSM) analysis it was proven that the nanoparticles exhibited superparamagnetic properties with a magnetization value of 73 emu/g and the results showed superparamagnetic behavior at room temperature, suggesting potential applications for a magnetic targeting drug delivery system.
    Matched MeSH terms: Drug Delivery Systems
  9. Zaman R, Karim ME, Othman I, Zaini A, Chowdhury EH
    Pharmaceutics, 2020 Jul 29;12(8).
    PMID: 32751231 DOI: 10.3390/pharmaceutics12080710
    Oral delivery is considered as the most preferred and yet most challenging mode of drug administration; especially a fragile and sensitive peptide like insulin that shows extremely low bioavailability through the gastro-intestinal (GIT) route. To address this problem, we have designed a novel drug delivery system (DDS) using precipitation-induced Barium (Ba) salt particles. The DDS can load insulin molecules and transport them through the GIT route. There were several in vitro simulation tests carried out to prove the efficiency of Ba salt particles as oral delivery candidates. All three Ba salt particles (BaSO4, BaSO3, and BaCO3) showed very good loading of insulin (>70% in all formulations) and a degree of resistance throughout a wide range of pHs from basic to acidic conditions when assessed by spectrophotometry. Particles and insulin-associated particles were morphologically assessed and characterized using FE-SEM and FT-IR. A set of tests were designed and carried out with mucin to predict whether the particles are potentially capable of overcoming one of the barriers for crossing intestinal epithelium. The mucin binding experiment demonstrated 60-100% of mucin adhesion to the three different particles. FT-IR identifies the characteristic peaks for mucin protein, particles, and particle-mucin complex re-confirming mucin adhesion to the particles. Finally, the effectiveness of nano-insulin was tested on streptozotocin (STZ) induced diabetic rats. A short acting human insulin analog, insulin aspart, was loaded into Ba salt particles at a dose of 100 IU/Kg prior to oral administration. Among the three formulations, insulin aspart-loaded BaSO4 and BaCO3 particles dramatically reduced the existing hyperglycemia. BaSO4 with loaded Insulin showed an onset of glucose-lowering action within 1 hr, with blood glucose level measured significantly lower compared to the 2nd and 3rd h (p < 0.05). Insulin-loaded BaCO3 particles showed a significant decrease in blood glucose level at 1-2 h, although the glucose level started to show a slight rise at 3rd h and by 4th h, it was back to baseline level. However, although BaSO3 particles with loaded insulin showed a trend of reduction in blood glucose level, the reduction was not found to be significant (p < 0.05) at any point in time. Therefore, oral formulations of insulin/BaSO4 and insulin/BaCO3 particles were observed as effective as native insulin aspart subcutaneous formulation in terms of onset and duration of action. Further investigation will be needed to reveal bioavailability and mechanism of action of this novel Nano-Insulin formulations.
    Matched MeSH terms: Drug Delivery Systems
  10. Zaman R, Islam RA, Ibnat N, Othman I, Zaini A, Lee CY, et al.
    J Control Release, 2019 05 10;301:176-189.
    PMID: 30849445 DOI: 10.1016/j.jconrel.2019.02.016
    Macromolecular protein and peptide therapeutics have been proven to be effective in treating critical human diseases precisely. Thanks to biotechnological advancement, a huge number of proteins and peptide therapeutics were made their way to pharmaceutical market in past few decades. However, one of the biggest challenges to be addressed for protein therapeutics during clinical application is their fast degradation in serum and quick elimination owing to enzymatic degradation, renal clearance, liver metabolism and immunogenicity, attributing to the short half-lives. Size and hydrophobicity of protein molecules make them prone to kidney filtration and liver metabolism. On the other hand, proteasomes responsible for protein destruction possess the capability of specifically recognizing almost all kinds of foreign proteins while avoiding any unwanted destruction of cellular components. At present almost all protein-based drug formulations available in market are administered intravenously (IV) or subcutaneously (SC) with high dosing at frequent interval, eventually creating dose-fluctuation-related complications and reducing patient compliance vastly. Therefore, artificially increasing the therapeutic half-life of a protein by attaching to it a molecule that increases the overall size (eg, PEG) or helps with receptor mediated recycling (eg, albumin), or manipulating amino acid chain in a way that makes it more prone towards aggregate formation, are some of the revolutionary approaches to avoid the fast degradation in vivo. Half-life extension technologies that are capable of dramatically enhancing half-lives of proteins in circulation (2-100 folds) and thus improving their overall pharmacokinetic (PK) parameters have been successfully applied on a wide range of protein therapeutics from hormones and enzymes, growth factor, clotting factor to interferon. The focus of the review is to assess the technological advancements made so far in enhancing circulatory half-lives and improving therapeutic potency of proteins.
    Matched MeSH terms: Drug Delivery Systems
  11. Zakarial Ansar FH, Latifah SY, Wan Kamal WHB, Khong KC, Ng Y, Foong JN, et al.
    Int J Nanomedicine, 2020;15:7703-7717.
    PMID: 33116496 DOI: 10.2147/IJN.S262395
    Background: Thymoquinone (TQ), an active compound isolated from Nigella sativa, has been proven to exhibit various biological properties such as antioxidant. Although oral delivery of TQ is valuable, it is limited by poor oral bioavailability and low solubility. Recently, TQ-loaded nanostructured lipid carrier (TQ-NLC) was formulated with the aim of overcoming the limitations. TQ-NLC was successfully synthesized by the high-pressure homogenization method with remarkable physiochemical properties whereby the particle size is less than 100 nm, improved encapsulation efficiency and is stable up to 24 months of storage. Nevertheless, the pharmacokinetics and biodistribution of TQ-NLC have not been studied. This study determined the bioavailability of oral and intravenous administration of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) in rats and its distribution to organs.

    Materials and Methods: TQ-NLC was radiolabeled with technetium-99m before the administration to the rats. The biodistribution and pharmacokinetics parameters were then evaluated at various time points. The rats were imaged at time intervals and the percentage of the injected dose/gram (%ID/g) in blood and each organ was analyzed.

    Results: Oral administration of TQ-NLC exhibited greater relative bioavailability compared to intravenous administration. It is postulated that the movement of TQ-NLC through the intestinal lymphatic system bypasses the first metabolism and therefore enhances the relative bioavailability. However, oral administration has a slower absorption rate compared to intravenous administration where the AUC0-∞ was 4.539 times lower than the latter.

    Conclusion: TQ-NLC had better absorption when administered intravenously compared to oral administration. However, oral administration showed greater bioavailability compared to the intravenous route. This study provides the pharmacokinetics and biodistribution profile of TQ-NLC in vivo which is useful to assist researchers in clinical use.

    Matched MeSH terms: Drug Delivery Systems/methods
  12. Zainuddin N, Ahmad I, Kargarzadeh H, Ramli S
    Carbohydr Polym, 2017 May 01;163:261-269.
    PMID: 28267505 DOI: 10.1016/j.carbpol.2017.01.036
    Nanocrystalline cellulose (NCC) extracted from lignocellulosic materials has been actively investigated as a drug delivery excipients due to its large surface area, high aspect ratio, and biodegradability. In this study, the hydrophobically modified NCC was used as a drug delivery excipient of hydrophobic drug curcumin. The modification of NCC with a cationic surfactant, cetyl trimethylammonium bromide (CTAB) was used to modulate the loading of hydrophobic drugs that would not normally bind to NCC. The FTIR, Elemental analysis, XRD, TGA, and TEM were used to confirm the modification of NCC with CTAB. The effect of concentration of CTAB on the binding efficiency of hydrophobic drug curcumin was investigated. The amounts of curcumin bound onto the CTAB-NCC nanoparticles were analyzed by UV-vis Spectrophotometric. The result showed that the modified CTAB-NCC bound a significant amount of curcumin, in a range from 80% to 96% curcumin added. Nevertheless, at higher concentration of CTAB resulted in lower binding efficiency.
    Matched MeSH terms: Drug Delivery Systems*
  13. Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF, Looi CY
    J Control Release, 2019 12 28;316:168-195.
    PMID: 31669211 DOI: 10.1016/j.jconrel.2019.09.019
    The applications of eutectic systems, including deep eutectic solvents (DESs), in diverse sectors have drawn significant interest from researchers, academicians, engineers, medical scientists, and pharmacists. Eutecticity increases drug dissolution, improves drug penetration, and acts as a synthesis route for drug carriers. To date, DESs have been extensively explored as potential drug delivery systems on account of their unique properties such as tunability and chemical and thermal stability. This review discusses two major topics: first, the application of eutectic mixtures (before and after the introduction of DES) in the field of drug delivery systems, and second, the most promising examples of DES pharmaceutical activity. It also considers future prospects in the medical and biotechnological fields. In addition to the application of DESs in drug delivery systems, they show greatly promising pharmaceutical activities, including anti-fungal, anti-bacterial, anti-viral, and anti-cancer activities. Eutecticity is a valid strategy for overcoming many obstacles inherently associated with either introducing new drugs or enhancing drug delivery systems.
    Matched MeSH terms: Drug Delivery Systems*
  14. Zainal MA, Ahmad A, Mohamed Ali MS
    Biomed Microdevices, 2017 Mar;19(1):8.
    PMID: 28124762 DOI: 10.1007/s10544-017-0148-5
    This paper reports the wireless Shape-Memory-Polymer actuator operated by external radio frequency magnetic fields and its application in a drug delivery device. The actuator is driven by a frequency-sensitive wireless resonant heater which is bonded directly to the Shape-Memory-Polymer and is activated only when the field frequency is tuned to the resonant frequency of heater. The heater is fabricated using a double-sided Cu-clad Polyimide with much simpler fabrication steps compared to previously reported methods. The actuation range of 140 μm as the tip opening distance is achieved at device temperature 44 °C in 30 s using 0.05 W RF power. A repeatability test shows that the actuator's average maximum displacement is 110 μm and standard deviation of 12 μm. An experiment is conducted to demonstrate drug release with 5 μL of an acidic solution loaded in the reservoir and the device is immersed in DI water. The actuator is successfully operated in water through wireless activation. The acidic solution is released and diffused in water with an average release rate of 0.172 μL/min.
    Matched MeSH terms: Drug Delivery Systems/instrumentation*
  15. Zaiki Y, Iskandar A, Wong TW
    Biotechnol Adv, 2023 Oct;67:108200.
    PMID: 37331671 DOI: 10.1016/j.biotechadv.2023.108200
    Chitosan is a biotechnological derivative of chitin receiving a widespread pharmaceutical and biomedical applications. It can be used to encapsulate and deliver cancer therapeutics with inherent pH-dependent solubility to confer drug targeting at tumour microenvironment and anti-cancer activity synergizing cancer cytotoxic drug actions. To further reduce the off-target and by-stander adverse effects of drugs, a high targeted drug delivery efficiency at the lowest possible drug doses is clinically required. The chitosan has been functionalized with covalent conjugates or complexes and processed into nanoparticles to encapsulate and control drug release, to avoid premature drug clearance, to deliver drugs passively and actively to cancer site at tissue, cell or subcellular levels, and to promote cancer cell uptake of nanoparticles through membrane permeabilization at higher specificity and scale. Nanomedicine developed using functionalized chitosan translates to significant preclinical improvements. Future challenges related to nanotoxicity, manufacturability, selection precision of conjugates and complexes as a function of cancer omics and their biological responses from administration site to cancer target need critical assessments.
    Matched MeSH terms: Drug Delivery Systems
  16. Zahoor I, Singh S, Behl T, Sharma N, Naved T, Subramaniyan V, et al.
    Environ Sci Pollut Res Int, 2022 Jan;29(3):3302-3322.
    PMID: 34755300 DOI: 10.1007/s11356-021-17346-0
    Diabetes mellitus is a severe condition in which the pancreas produces inadequate insulin or the insulin generated is ineffective for utilisation by the body; as a result, insulin therapy is required for control blood sugar levels in patients having type 1 diabetes and is widely recommended in advanced type 2 diabetes patients with uncontrolled diabetes despite dual oral therapy, while subcutaneous insulin administration using hypodermic injection or pump-mediated infusion is the traditional route of insulin delivery and causes discomfort, needle phobia, reduced adherence, and risk of infection. Therefore, transdermal insulin delivery has been extensively explored as an appealing alternative to subcutaneous approaches for diabetes management which not only is non-invasive and easy, but also avoids first-pass metabolism and prevents gastrointestinal degradation. Microneedles have been commonly investigated in human subjects for transdermal insulin administration because they are minimally invasive and painless. The different types of microneedles developed for the transdermal delivery of anti-diabetic drugs are discussed in this review, including solid, dissolving, hydrogel, coated, and hollow microneedles. Numerous microneedle products have entered the market in recent years. But, before the microneedles can be effectively launched into the market, a significant amount of investigation is required to address the numerous challenges. In conclusion, the use of microneedles in the transdermal system is an area worth investigating because of its significant benefits over the oral route in the delivery of anti-diabetic medications and biosensing of blood sugar levels to assure improved clinical outcomes in diabetes management.
    Matched MeSH terms: Drug Delivery Systems
  17. Yusefi M, Shameli K, Lee-Kiun MS, Teow SY, Moeini H, Ali RR, et al.
    Int J Biol Macromol, 2023 Apr 01;233:123388.
    PMID: 36706873 DOI: 10.1016/j.ijbiomac.2023.123388
    Polysaccharide-based magnetic nanocomposites can eminently illuminate several attractive features as anticancer drug carriers. In this study, rice straw-based cellulose nanowhisker (CNW) was used as solid support for Fe3O4 nanofillers to synthesize magnetic CNW. Then, cross-linked chitosan-coated magnetic CNW for 5-fluorouracil carrier abbreviated as CH/MCNW/5FU. Fourier-transform infrared, X-Ray diffraction, and X-ray photoelectron spectroscopy analysis indicated successful fabrication and multifunctional properties of the CH/MCNW/5FU nanocomposites. In addition, CH/MCNW/5FU nanocomposites showed hydrodynamic diameter and zeta potential value of 181.31 ± 3.46 nm and +23 ± 1.8 mV, respectively. Based on images of transmission electron microscopy, magnetic CNW as reinforcement was coated with chitosan to obtain almost spherical CH/MCNW/5FU nanocomposites with an average diameter of 37.16 ± 3.08. The nanocomposites indicated desired saturation magnetization and thermal stability, high drug encapsulation efficiency, and pH-dependent swelling and drug release performance. CH/MCNW/5FU nanocomposites showed potent killing effects against colorectal cancer cells in both 2D monolayer and 3D spheroid models. These findings suggest CH/MCNW as a potential carrier for anticancer drugs with high tumour-penetrating capacity.
    Matched MeSH terms: Drug Delivery Systems
  18. Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, et al.
    Int J Nanomedicine, 2023;18:3535-3575.
    PMID: 37409027 DOI: 10.2147/IJN.S375964
    Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
    Matched MeSH terms: Drug Delivery Systems/methods
  19. Yunus U, Zulfiqar MA, Ajmal M, Bhatti MH, Chaudhry GE, Muhammad TST, et al.
    Biomed Mater, 2020 09 26;15(6):065004.
    PMID: 32442994 DOI: 10.1088/1748-605X/ab95e1
    Gemcitabine (GEM) is used to treat various cancers such as breast, pancreatic, non-small lung, ovarian, bladder, and cervical cancers. GEM, however, has the problem of non-selectivity. Water-soluble, fluorescent, and mono-dispersed carbon dots (CDs) were fabricated by ultrasonication of sucrose. The CDs were further conjugated with GEM through amide linkage. The physical and morphological properties of these carbon dot-gemcitabine (CD-GEM) conjugates were determined using different analytical techniques. In vitro cytotoxicity and apoptosis studies of CD-GEM conjugates were evaluated by various bioactivity assays on human cell lines, MCF-7 (human breast adenocarcinoma), and HeLa (cervical cancer) cell lines. The results of kinetic studies have shown a maximum drug loading efficacy of 17.0 mg of GEM per 50.0 mg of CDs. The CDs were found biocompatible, and the CD-GEM conjugates exhibited excellent bioactivity and exerted potent cytotoxicity against tumor cells with an IC50 value of 19.50 μg ml-1 in HeLa cells, which is lower than the IC50 value of pure GEM (∼20.10 μg ml-1). In vitro studies on CD-GEM conjugates demonstrated the potential to replace the conventional administration of GEM. CD-GEM conjugates are more stable, have a higher aqueous solubility, and are more cytotoxic as compared to GEM alone. The CD-GEM conjugates show reduced side effects in the normal cells along with excellent cellular uptake. Hence, CD-GEM conjugates are more selective toward cancerous cell lines as compared to non-cancerous cells. Also, the CD-GEM conjugates successfully induced early and late apoptosis in cancer cell lines and might be effective and safe to use for in vivo applications.
    Matched MeSH terms: Drug Delivery Systems*
  20. Youssef Z, Vanderesse R, Colombeau L, Baros F, Roques-Carmes T, Frochot C, et al.
    Cancer Nanotechnol, 2017;8(1):6.
    PMID: 29104699 DOI: 10.1186/s12645-017-0032-2
    Nanoparticles (NPs) have been shown to have good ability to improve the targeting and delivery of therapeutics. In the field of photodynamic therapy (PDT), this targeting advantage of NPs could help ensure drug delivery at specific sites. Among the commonly reported NPs for PDT applications, NPs from zinc oxide, titanium dioxide, and fullerene are commonly reported. In addition, graphene has also been reported to be used as NPs albeit being relatively new to this field. In this context, the present review is organized by these different NPs and contains numerous research works related to PDT applications. The effectiveness of these NPs for PDT is discussed in detail by collecting all essential information described in the literature. The information thus assembled could be useful in designing new NPs specific for PDT and/or PTT applications in the future.
    Matched MeSH terms: Drug Delivery Systems
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links