Displaying publications 1 - 20 of 198 in total

Abstract:
Sort:
  1. Amin, M.C.I., Soom, R.M., Ahmad, I., Lian, H.H.
    MyJurnal
    This study was carried out to determine the physicochemical properties of carboxymethyl cellulose (CMC) derived from cellulose of palm oil empty fruit bunch (EFB) and its use asa film-coating agent. Samples were prepared at various concentrations and then their physicochemical properties were studied including the viscosity, pH, tensile strength of films, surface properties of the films and dissolution studies on coated tablets. CMC EFB showed lower viscosity than commercial CMC product at the concentration of 1%, 2% and 3% with the values of 44.0cp, 299.9cp, 358.9cp and 90.0cp, 689.9cp, 5569.0cp respectively. The tensile strength of the films for CMC EFB were 7.85MPa, 14.79MPa, 10.36MPa while the commercial CMC exhibited higher values of 21.72MPa, 35.14MPa and 26.9MPa at similar concentration. The scanning electron microscope showed different surface properties of the films for both of them where the commercial CMC is smoother in texture and very transparent unlike its counterpart. However, dissolution studies on paracetamol tablets coated using the samples showed no significant difference (p>0.05) in drug release profile between the two materials. Hence, CMC EFB has a greater potential to be developed as a competitive tablet-coating agent despite the differences in its physicochemical properties.
    Matched MeSH terms: Drug Liberation
  2. Wan Md Zin Wan Yunus, Tajau, Rida, Khairul Zaman Mohd Dahlan, Mohd Hilmi Mahmood, Kamaruddin Hashim, Mohd Yusof Hamzah
    MyJurnal
    The use of microemulsion in the development of nanoparticle based on acrylated palm oil product is demonstrated. Acr ylated palm oil microemulsions were prepared using ionic surfactant. Combination methods of emulsion polymerization and radiation crosslinking were applied to the microemulsion system for synthesizing nanoparticle. The ionizing radiat ion technique was introduced to generate a crosslinking reaction in the development of nanoparticle. The nanoparticle was evaluated in terms of particle diameter, surface charge, pH and conductance. Their image was captured using Tra nsmission electron microscopy (TEM). Results show that the size, charge and shape of the particles are influenced by c oncentration of surfactants, monomer concentration, radiation dose and time of storage. The study showed a promising method to produced nanoparticle. This nano-sized product has the potential to be utilized as controlled-drug-release-carrier.
    Matched MeSH terms: Drug Liberation
  3. Hezaveh H, Muhamad II
    Carbohydr Polym, 2012 Jun 5;89(1):138-45.
    PMID: 24750615 DOI: 10.1016/j.carbpol.2012.02.062
    In this article, silver and magnetite nanofillers were synthesized in modified κ-carrageenan hydrogels using the in situ method. The effect of metallic nanoparticles in gastro-intestinal tract (GIT) release of a model drug (methylene blue) has been investigated. The effect of nanoparticles loading and genipin cross-linking on GIT release of nanocomposite is also studied to finally provide the most suitable drug carrier system. In vitro release studies revealed that using metallic nanocomposites hydrogels in GIT studies can improve the drug release in intestine and minimize it in the stomach. It was found that cross-linking and nanofiller loading can significantly improve the targeted release. Therefore, applying metallic nanoparticles seems to be a promising strategy to develop GIT controlled drug delivery.
    Matched MeSH terms: Drug Liberation
  4. Amjad MW, Amin MC, Katas H, Butt AM
    Nanoscale Res Lett, 2012;7(1):687.
    PMID: 23270381 DOI: 10.1186/1556-276X-7-687
    Doxorubicin-loaded micelles were prepared from a copolymer comprising cholic acid (CA) and polyethyleneimine (PEI) for the delivery of antitumor drugs. The CA-PEI copolymer was synthesized via pairing mediated by N,N'-dicyclohexylcarbodiimide and N-hydroxysuccinimide using dichloromethane as a solvent. Fourier transform infrared and nuclear magnetic resonance analyses were performed to verify the formation of an amide linkage between CA and PEI and doxorubicin localization into the copolymer. Dynamic light scattering and transmission electron microscopy studies revealed that the copolymer could self-assemble into micelles with a spherical morphology and an average diameter of <200 nm. The CA-PEI copolymer was also characterized by X-ray diffraction and differential scanning calorimetry. Doxorubicin-loaded micelles were prepared by dialysis method. A drug release study showed reduced drug release with escalating drug content. In a cytotoxicity assay using human colorectal adenocarcinoma (DLD-1) cells, the doxorubicin-loaded CA-PEI micelles exhibited better antitumor activity than that shown by doxorubicin. This is the first study on CA-PEI micelles as doxorubicin carriers, and this study demonstrated that they are promising candidates as carriers for sustained targeted antitumor drug delivery system.
    Matched MeSH terms: Drug Liberation
  5. Mohd Cairul Iqbal Mohd Amin, Abadi Gumah Abadi, Naveed Ahmad, Haliza Katas, Jamia Azdina Jamal
    Sains Malaysiana, 2012;41:561-568.
    There has been an increasing interest in the use of natural materials as drug delivery vehicles due to their biodegradability, biocompatibility and ready availability. These properties make bacterial cellulose (BC), from nata de coco, a promising biopolymer for drug delivery applications. The aim of this study was to investigate the film-coating and drug release properties of this biopolymer. Physicochemical, morphological and thermal properties of BC films were studied. Model tablets were film coated with BC, using a spray coating technique, and in vitro drug release studies of these tablets were investigated. It was found that BC exhibited excellent ability to form soft, flexible and foldable films without the addition
    of any plasticizer. They were comparable to Aquacoat ECD (with plasticizer) in tensile strength, percentage elongation and elasticity modulus. Differential scanning calorimetry (DSC) BC showed a high Tg value indicating thermally stability of films. These results suggest that BC can be used as novel aqueous film-coating agent with lower cost and better film forming properties than existing film-coating agents.
    Matched MeSH terms: Drug Liberation
  6. Bose A, Wong TW, Singh N
    Saudi Pharm J, 2013 Apr;21(2):201-13.
    PMID: 23960836 DOI: 10.1016/j.jsps.2012.03.006
    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.
    Matched MeSH terms: Drug Liberation
  7. Koh PT, Chuah JN, Talekar M, Gorajana A, Garg S
    Indian J Pharm Sci, 2013 May;75(3):291-301.
    PMID: 24082345 DOI: 10.4103/0250-474X.117434
    The aim of this study was to enhance the dissolution rate of efavirenz using solid dispersion systems (binary and ternary). A comparison between solvent and fusion method was also investigated. Solid dispersions of efavirenz were prepared using polyethylene glycol 8000, polyvinylpyrrolidone K30 alone and combination of both. Tween 80 was incorporated to obtain a ternary solid dispersion system. Dissolution tests were conducted and evaluated on the basis of cumulative percentage drug release and dissolution efficiency. Physicochemical characterizations of the solid dispersions were carried out using differential scanning calorimetric, powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Dissolution was remarkably improved in both systems compared to pure efavirenz (P<0.05). An optimum ratio was identified at a drug:polymer of 1:10. Incorporation of Tween 80 to 1:10 formulations formed using solvent method showed further improvement in the dissolution rate. Physicochemical characterization results suggested that efavirenz existed in the amorphous form in all the solid dispersion systems providing evidence of improvement in dissolution. No statistically significant difference (P>0.05) in dissolution was observed between the two methods. Binary and ternary solid dispersion systems both have showed a significant improvement in the dissolution rate of efavirenz. Formulations with only polyvinylpyrrolidone K30 showed best dissolution profile and 1:10 was identified as an optimum drug-polymer weight ratio.
    Matched MeSH terms: Drug Liberation
  8. Rida Tajau, Siti Farhana Fathy, Mek Zah Salleh, Nor Azowa Ibrahim, Maznah Ismail, Kamaruddin Hashim
    MyJurnal
    The acrylated palm oil (APO) nanoparticle is a potential product that can be used as carriers in
    medical field. The main focus of the present study was to study the potential of the APO
    nanoparticles for used in a controlled drug delivery system. The microemulsion system is used as a
    medium to incorporate an active substance such as Thymoquinone (TQ) into the APO polymeric
    micelle and then the radiation technique is used as a tool for the synthesis of TQ-loaded APO
    nanoparticle. The nano-size TQ-loaded APO particles resulted the particle size of less than 150 nm
    with spherical in shape. The TQ release profile was carried out in potassium buffer saline (PBS)
    solutions (pH 7.4) at 37
    oC. And, the zero-order model has been used to determine the mechanism
    of the drug release from the corresponding nanoparticles, respectively. The TQ release was found
    to be sustained and controlled in pH 7.4. At pH 7.4, the release of TQ followed the zero-order
    model. The in-vitro drug release study showed a good prospect of the APO nanoparticle on being a
    potential drug carrier as there are toxic against colon cancer cells and not toxic towards normal
    cells. This suggested that the APO product produce using this radiation technique can be
    developed into different type of carrier systems for controlled drug release applications.
    Matched MeSH terms: Drug Liberation
  9. Kumar GP, Phani AR, Prasad RG, Sanganal JS, Manali N, Gupta R, et al.
    Int J Pharm, 2014 Aug 25;471(1-2):146-52.
    PMID: 24858388 DOI: 10.1016/j.ijpharm.2014.05.033
    Enrofloxacin is a fluoroquinolone derivative used for treating urinary tract, respiratory and skin infections in animals. However, low solubility and low bioavailability prevented it from using on humans. Polyvinylpyrrolidone (PVP) is an inert, non toxic polymer with excellent hydrophilic properties, besides it can enhance bioavailability by forming drug polymer conjugates. With the aim of increasing solubility and bioavailability, enrofloxacin thin films were prepared using PVP as a polymer matrix. The obtained oral thin films exhibited excellent uniformity and mechanical properties. Swelling properties of the oral thin films revealed that the water uptake was enhanced by 21%. The surface pH has been found to be 6.8±0.1 indicating that these films will not cause any irritation to oral mucosa. FTIR data of the oral thin films indicated physical interaction between drug and polymer. SEM analysis revealed uniform distribution of drug in polymer matrix. In vitro drug release profiles showed enhanced release profiles (which are also pH dependant) for thin films compared to pure drug. Antibacterial activity was found to be dose dependent and maximum susceptibility was found on Klebsiella pneumonia making this preparation more suitable for respiratory infections.
    Matched MeSH terms: Drug Liberation
  10. Rahman MR, Rahman MM, Wan Khadijah WE, Abdullah RB
    Asian-Australas J Anim Sci, 2014 Sep;27(9):1270-4.
    PMID: 25178370 DOI: 10.5713/ajas.2013.13786
    An experiment was conducted to evaluate the efficacy of porcine follicle stimulating hormone (pFSH) dosage based on body weight (BW) on ovarian responses of crossbred does. Thirty donor does were divided into 3 groups getting pFSH dosages of 3, 5, and 8 mg pFSH per kg BW, respectively, and were named as pFSH-3, pFSH-5 and pFSH-8, respectively. Estrus was synchronized by inserting a controlled internal drug release (CIDR) device and a single injection of prostaglandin F2α (PGF2α). The pFSH treatments were administered twice a day through 6 decreasing dosages (25, 25, 15, 15, 10, and 10% of total pFSH amount; decreasing daily). Ovarian responses were evaluated on Day 7 after CIDR removal. After CIDR removal, estrus was observed 3 times in a day and pFSH treatments were initiated at 2 days before the CIDR removal. All does in pFSH-5 and pFSH-8 showed estrus signs while half of the does in pFSH-3 showed estrus signs. No differences (p>0.05) were observed on the corpus luteum and total ovarian stimulation among the treatment groups, while total and transferable embryos were higher (p<0.05) in pFSH-5 (7.00 and 6.71) than pFSH-3 (3.00 and 2.80) and pFSH-8 (2.00 and 1.50), respectively. In conclusion, 5 mg pFSH per kg BW dosage gave a higher number of embryos than 3 and 8 mg pFSH per kg BW dosages. The results indicated that the dosage of pFSH based on BW is an important consideration for superovulation in goats.
    Matched MeSH terms: Drug Liberation
  11. Halib N, Mohd Amin MC, Ahmad I, Abrami M, Fiorentino S, Farra R, et al.
    Eur J Pharm Sci, 2014 Oct 1;62:326-33.
    PMID: 24932712 DOI: 10.1016/j.ejps.2014.06.004
    This paper focuses on the micro- and nano-topological organization of a hydrogel, constituted by a mixture of bacterial cellulose and acrylic acid, and intended for biomedical applications. The presence of acrylic acid promotes the formation of two interpenetrated continuous phases: the primary "pores phase" (PP) containing only water and the secondary "polymeric network phase" (PNP) constituted by the polymeric network swollen by the water. Low field Nuclear Magnetic Resonance (LF NMR), rheology, Scanning Electron Microscopy (SEM) and release tests were used to determine the characteristics of the two phases. In particular, we found that this system is a strong hydrogel constituted by 81% (v/v) of PP phase the remaining part being occupied by the PNP phase. Pores diameters span in the range 10-100 μm, the majority of them (85%) falling in the range 30-90 μm. The high PP phase tortuosity indicates that big pores are not directly connected to each other, but their connection is realized by a series of interconnected small pores that rend the drug path tortuous. The PNP is characterized by a polymer volume fraction around 0.73 while mesh size is around 3 nm. The theoretical interpretation of the experimental data coming from the techniques panel adopted, yielded to the micro- and nano-organization of our hydrogel.
    Matched MeSH terms: Drug Liberation
  12. Razavi M, Nyamathulla S, Karimian H, Noordin MI
    Drug Des Devel Ther, 2014;8:1315-29.
    PMID: 25246773 DOI: 10.2147/DDDT.S68517
    This study aimed to develop hydrophilic, gastroretentive matrix tablets of famotidine with good floating and swelling properties. A novel gastroretentive drug delivery formulation was designed using salep, also known as salepi, a flour obtained from grinding dried palmate tubers of Orchis morio var mascula (Orchidaceae family). The main polysaccharide content of salep is glucomannan, highly soluble in cold and hot water, which forms a viscous solution. Salep was characterized for physicochemical properties, thermal stability, chemical interaction, and surface morphology using X-ray diffraction analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Ten different formulations (S1-S10) were prepared using famotidine to salep ratios from 1:0.5 to 1:5. Results demonstrated that all formulations were able to sustain the drug release for more than 24 hours. The S5 formulation, with a famotidine to salep ratio of 1:2.5, had the shortest floating lag time of 35 seconds and 100% drug release within 24 hours. The dissolution data were fitted into popular mathematical models to assess the mechanism of drug release. S5 showed Zero order release (R=0.9746) with Higuchi diffusion (R=0.9428). We conclude that salep, a novel polymer, can be used in controlled release formulations to sustain release for 24 hours, due to inherent swelling and gelling properties.
    Matched MeSH terms: Drug Liberation
  13. Liew KB, Tan YT, Peh KK
    Drug Dev Ind Pharm, 2015 Apr;41(4):583-93.
    PMID: 24495273 DOI: 10.3109/03639045.2014.884130
    Manufacturing process and superdisintegrants used in orally disintegrating tablet (ODT) formulation are often time discussed. However, the effect of suitable filler for ODT formulation is not explored thoroughly.
    Matched MeSH terms: Drug Liberation
  14. Dabbagh A, Abdullah BJ, Abu Kasim NH, Abdullah H, Hamdi M
    Int J Hyperthermia, 2015 Jun;31(4):375-85.
    PMID: 25716769 DOI: 10.3109/02656736.2015.1006268
    The aim of this paper was to introduce a new mechanism of thermal sensitivity in nanocarriers that results in a relatively low drug release at physiological temperature and rapid release of the encapsulated drug at hyperthermia and thermal ablation temperature range (40-60 °C).
    Matched MeSH terms: Drug Liberation*
  15. Ma Y, Fuchs AV, Boase NR, Rolfe BE, Coombes AG, Thurecht KJ
    Eur J Pharm Biopharm, 2015 Aug;94:393-403.
    PMID: 26117186 DOI: 10.1016/j.ejpb.2015.06.014
    Anti-cancer drug loaded-nanoparticles (NPs) or encapsulation of NPs in colon-targeted delivery systems shows potential for increasing the local drug concentration in the colon leading to improved treatment of colorectal cancer. To investigate the potential of the NP-based strategies for colon-specific delivery, two formulations, free Eudragit® NPs and enteric-coated NP-loaded chitosan-hypromellose microcapsules (MCs) were fluorescently-labelled and their tissue distribution in mice after oral administration was monitored by multispectral small animal imaging. The free NPs showed a shorter transit time throughout the mouse digestive tract than the MCs, with extensive excretion of NPs in faeces at 5h. Conversely, the MCs showed complete NP release in the lower region of the mouse small intestine at 8h post-administration. Overall, the encapsulation of NPs in MCs resulted in a higher colonic NP intensity from 8h to 24h post-administration compared to the free NPs, due to a NP 'guarding' effect of MCs during their transit along mouse gastrointestinal tract which decreased NP excretion in faeces. These imaging data revealed that this widely-utilised colon-targeting MC formulation lacked site-precision for releasing its NP load in the colon, but the increased residence time of the NPs in the lower gastrointestinal tract suggests that it is still useful for localised release of chemotherapeutics, compared to NP administration alone. In addition, both formulations resided in the stomach of mice at considerable concentrations over 24h. Thus, adhesion of NP- or MC-based oral delivery systems to gastric mucosa may be problematic for colon-specific delivery of the cargo to the colon and should be carefully investigated for a full evaluation of particulate delivery systems.
    Matched MeSH terms: Drug Liberation
  16. Kumar GP, Sanganal JS, Phani AR, Manohara C, Tripathi SM, Raghavendra HL, et al.
    Pharmacol Res, 2015 Oct;100:47-57.
    PMID: 26232590 DOI: 10.1016/j.phrs.2015.07.025
    6-Mercaptopurine is a cytotoxic and immunosuppressant drug. The use of this drug is limited due to its poor bioavailability and short plasma half-life. In order to nullify these drawbacks, 6-mercaptopurine-chitosan nanoparticles (6-MP-CNPs) were prepared and evaluated to study the influence of preparation conditions on the physicochemical properties by using DLS, SEM, XRD and FTIR. The in vitro drug release profile at pH 4.8 and 7.4 revealed sustained release patterns for a period of 2 days. The nanoformulations showed enhanced in vitro anti-cancer activities (MTT assay, apoptosis assay, cell cycle arrest and ROS indices) on HT-1080 and MCF-7 cells. In vivo pharmacokinetics profiles of 6-MP-CNPs showed improved bioavailability. Thus, the results of the present study revealed that, the prepared 6-MP-CNPs have a significant role in increasing anti-cancer efficacy, bioavailability and in vivo pharmacokinetics profiles.
    Matched MeSH terms: Drug Liberation
  17. Ng SF, Tan SL
    Int J Pharm, 2015 Nov 30;495(2):798-806.
    PMID: 26434999 DOI: 10.1016/j.ijpharm.2015.09.057
    Topical chemotherapy is the application of cancer drugs directly onto the skin, which has become a standard treatment for basal cell carcinoma. Due to the promising results in the treatment of skin cancer, topical chemotherapy has recently been applied to breast cancer patients because some breast cancer tissues are only superficial. Hydroxytyrosol, a phenolic compound from olives that is present in high amounts in Hidrox(®) olive extract, has been shown to have a protective effect on normal cells and selective antitumor activities on cancerous cells. The aims of the present study were to develop an alginate bilayer film containing Hidrox(®) and to investigate its potential use as a topical chemotherapeutic agent. Alginate films were characterized for swelling and for physical, thermal, rheological, and mechanical properties. Drug content uniformity and in vitro drug release tests were also investigated. The alginate bilayer films containing Hidrox(®), HB2, showed controlled release of hydroxytyrosol at a flux of 0.094±0.009 mg/cm(2)/h. The results of the cytotoxic assay showed that the HB2 films were dose-dependent and could significantly reduce the growth of breast cancer cells (MCF-7) at 150 μg/mL for a cell viability of 29.34±4.64%. In conclusion, an alginate bilayer film containing Hidrox(®) can be a potential alternative for topical chemotherapeutic agent for skin and breast cancer treatment.
    Matched MeSH terms: Drug Liberation
  18. Selvakumaran S, Muhamad II
    Int J Pharm, 2015 Dec 30;496(2):323-31.
    PMID: 26453788 DOI: 10.1016/j.ijpharm.2015.10.005
    Genipin, a natural and non-toxic cross linker, was used to prepare cross linked floating kappa carrageenan/sodium carboxymethyl cellulose hydrogels and the effect of genipin on hydrogels characterization was investigated. Calcium carbonates were employed as gas forming agents. Ranitidine hydrochloride was used as drug. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were carried out to study the changes in the characteristics of hydrogels. Furthermore, scanning electron microscope (SEM) was performed to study microstructure of hydrogels. The result showed that all formulated hydrogels had excellent floating behavior. It was discovered that the cross linking reaction showed significant effect on gel strength, porosity and swelling ratio compared to non-cross linked hydrogels. It was found that the drug release was slower and lesser after being cross linked. Microstructure study shows that cross linked hydrogels exhibited hard and rough surface. Therefore, genipin can be an interesting cross linking agent for controlled drug delivery in gastrointestinal tract.
    Matched MeSH terms: Drug Liberation
  19. Dabbagh A, Mahmoodian R, Abdullah BJ, Abdullah H, Hamdi M, Abu Kasim NH
    Int J Hyperthermia, 2015;31(8):920-9.
    PMID: 26670340 DOI: 10.3109/02656736.2015.1094147
    The aim of this paper was to synthesise core-shell nanostructures comprised of mesoporous silica core and a low melting-point polyethylene glycol (PEG) nanoshell with a sharp gel-liquid phase transition for rapid drug release at hyperthermia temperature range.
    Matched MeSH terms: Drug Liberation
  20. Ahmad A, Othman I, Md Zain AZ, Chowdhury EH
    Curr Drug Deliv, 2015;12(2):210-22.
    PMID: 22452407
    Diabetes mellitus is a chronic disease accompanied by a multitude of problems worldwide with subcutaneously administered insulin being the most common therapy currently. Controlledrelease insulin is assumed to be of high importance for long-term glycaemic control by reducing the number of daily injections. Long-acting insulin also mimics the basal insulin levels in normal individuals that may be lacking in diabetic patients. Nanoparticles of carbonate apatite as established for efficient intracellular transport of DNA and siRNA have the potential to be used for sustained release of insulin as responsive nano-carriers. The flexibility in the synthesis of the particles over a wide range of pHs with eventual adjustment of pH-dependent particle dissolution and the manageable variability of particle-integrity by incorporating selective ions into the apatite structure are the promising features that could help in the development of sustained release formulations for insulin. In particular strontium-incorporated carbonate apatite particles were formulated and compared with those of unsubstituted apatite in the context of insulin binding and subsequent release kinetics in DMEM, simulated buffer and finally human blood over a period of 20 hours. Clearly, the former demonstated to have a stronger electrostatic affinity towards the acidic insulin molecules and facilitate to some extent sustained release of insulin by preventing the initial burst effect at physiological pH in comparison with the latter. Thus, our findings suggest that optimization of the carbonate apatite particle composition and structure would serve to design an ideal insulin nano-carrier with a controlled release profile.
    Matched MeSH terms: Drug Liberation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links