Displaying publications 1 - 20 of 305 in total

Abstract:
Sort:
  1. Stegger M, Wirth T, Andersen PS, Skov RL, De Grassi A, Simões PM, et al.
    mBio, 2014 Aug 26;5(5):e01044-14.
    PMID: 25161186 DOI: 10.1128/mBio.01044-14
    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and worldwide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid. CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa, the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are extremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases of cross-continent imports likely driven by human migrations.

    IMPORTANCE: With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection of strains of the S. aureus CC80 lineage. Our study determined that a single descendant of a PVL-positive methicillin-sensitive ancestor circulating in sub-Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East, and North Africa. In the transition from a methicillin-susceptible lineage to a successful CA-MRSA clone, it simultaneously became resistant to fusidic acid, a widely used antibiotic for skin and soft tissue infections, thus demonstrating the importance of antibiotic selection in the success of this clone. This finding furthermore highlights the significance of horizontal gene acquisitions and underscores the combined importance of these factors for the success of CA-MRSA.

    Matched MeSH terms: Drug Resistance, Bacterial
  2. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al.
    mBio, 2017 06 27;8(3).
    PMID: 28655818 DOI: 10.1128/mBio.00543-17
    The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3 The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia colimcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ΔTnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3IMPORTANCE The emergence of the plasmid-mediated colistin resistance gene mcr-1 has attracted substantial attention worldwide. Here, we examined a colistin-resistant Escherichia coli isolate that was negative for both mcr-1 and mcr-2 and discovered a novel mobile colistin resistance gene, mcr-3 The amino acid sequence of MCR-3 aligned closely with phosphoethanolamine transferases from Enterobacteriaceae and Aeromonas species originating from both clinical infections and environmental samples collected in 12 countries on four continents. Due to the ubiquitous profile of aeromonads in the environment and the potential transfer of mcr-3 between Enterobacteriaceae and Aeromonas species, the wide spread of mcr-3 may be largely underestimated. As colistin has been and still is widely used in veterinary medicine and used at increasing frequencies in human medicine, the continuous monitoring of mobile colistin resistance determinants in colistin-resistant Gram-negative bacteria is imperative for understanding and tackling the dissemination of mcr genes in both the agricultural and health care sectors.
    Matched MeSH terms: Drug Resistance, Bacterial*
  3. D'Aeth JC, van der Linden MP, McGee L, de Lencastre H, Turner P, Song JH, et al.
    Elife, 2021 Jul 14;10.
    PMID: 34259624 DOI: 10.7554/eLife.67113
    Multidrug-resistant Streptococcus pneumoniae emerge through the modification of core genome loci by interspecies homologous recombinations, and acquisition of gene cassettes. Both occurred in the otherwise contrasting histories of the antibiotic-resistant S. pneumoniae lineages PMEN3 and PMEN9. A single PMEN3 clade spread globally, evading vaccine-induced immunity through frequent serotype switching, whereas locally circulating PMEN9 clades independently gained resistance. Both lineages repeatedly integrated Tn916-type and Tn1207.1-type elements, conferring tetracycline and macrolide resistance, respectively, through homologous recombination importing sequences originating in other species. A species-wide dataset found over 100 instances of such interspecific acquisitions of resistance cassettes and flanking homologous arms. Phylodynamic analysis of the most commonly sampled Tn1207.1-type insertion in PMEN9, originating from a commensal and disrupting a competence gene, suggested its expansion across Germany was driven by a high ratio of macrolide-to-β-lactam consumption. Hence, selection from antibiotic consumption was sufficient for these atypically large recombinations to overcome species boundaries across the pneumococcal chromosome.
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects*; Drug Resistance, Bacterial/genetics*
  4. Abu Taha A, Abu-Zaydeh AH, Ardah RA, Al-Jabi SW, Sweileh WM, Awang R, et al.
    Zoonoses Public Health, 2016 09;63(6):449-57.
    PMID: 26752329 DOI: 10.1111/zph.12249
    Antibiotics are considered to be among the most commonly sold drug classes in Palestine. Resistance to antibiotics has increased for reasons relating to the use and misuse of antibiotics. The aim of this study was to evaluate the knowledge, and attitudes regarding antibiotic use and awareness about resistance among adults visiting the emergency departments at hospitals in North Palestine. A self-administered cross-sectional questionnaire survey involving participants aged 18 or over was conducted from June 2012 to February 2013. Adults who visited the emergency departments at hospitals in North Palestine were included. Demographic characteristics, knowledge and attitudes towards antibiotic use were included in the questionnaire. Poor and good knowledge were defined as a total knowledge score of 0-7 and 8-15 of 15 questions, respectively. Attitude scores of 0-3 and 4-7 of 7 questions were considered poor and good, respectively. A total of 375 questionnaires were included in the study. A response rate of 83.3% was attained. About 55.0% of the participants had a good knowledge and 56.5% had a good attitude towards rational antibiotic use. A significant positive correlation was shown between participants' knowledge scores and participants' attitude scores towards antibiotic use (R = 0.344, P = 0.001. Participants with a high family income were more likely to be aware of appropriate antibiotic use than participants with a low family income (P-value <0.001). Participants with a higher educational level (university) had a good attitude towards rational antibiotic use than those with a lower education level (P-value <0.001). This study has documented important knowledge and attitude gaps in antibiotic use. These findings will help health policymakers in Palestine to implement intervention programmes to rationalize antibiotic use. Continuing medical education, professional development and training workshops for healthcare professionals regarding rational use of antibiotics and health risks associated with the spread of antibiotic resistance are needed. In addition, minimizing non-prescription use of antibiotics and increasing the public awareness about the health and economic hazards of antibiotic resistance are also required.
    Matched MeSH terms: Drug Resistance, Bacterial*
  5. Gunasekara YD, Kottawatta SA, Nisansala T, Wijewickrama IJB, Basnayake YI, Silva-Fletcher A, et al.
    Zoonoses Public Health, 2024 Feb;71(1):84-97.
    PMID: 37880923 DOI: 10.1111/zph.13087
    This study aimed to investigate and compare the proportion of AMR Escherichia coli (E. coli) between urban (Dompe in the Western province) and rural (Dambana in the Sabaragamuwa province) areas in Sri Lanka. The overall hypothesis of the study is that there is a difference in the proportion of AMR E. coli between the urban and the rural areas. Faecal samples were collected from healthy humans (n = 109), dairy animals (n = 103), poultry (n = 35), wild mammals (n = 81), wild birds (n = 76), soil (n = 80) and water (n = 80) from both areas. A total of 908 E. coli isolates were tested for susceptibility to 12 antimicrobials. Overall, E. coli isolated from urban area was significantly more likely to be resistant than those isolated from rural area. The human domain of the area had a significantly higher prevalence of AMR E. coli, but it was not significantly different in urban (98%) and rural (97%) areas. AMR E. coli isolated from dairy animals, wild animals and water was significantly higher in the urban area compared with the rural area. There was no significant difference in the proportion of multidrug resistance (MDR) E. coli isolated from humans, wild animals and water between the two study sites. Resistant isolates found from water and wild animals suggest contamination of the environment. A multi-sectorial One Health approach is urgently needed to control the spread of AMR and prevent the occurrences of AMR in Sri Lanka.
    Matched MeSH terms: Drug Resistance, Bacterial
  6. Sahilah AM, Laila RA, Sallehuddin HM, Osman H, Aminah A, Ahmad Azuhairi A
    World J Microbiol Biotechnol, 2014 Feb;30(2):649-59.
    PMID: 24068534 DOI: 10.1007/s11274-013-1494-y
    Genomic DNA of Vibrio parahaemolyticus were characterized by antibiotic resistance, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) analysis. These isolates originated from 3 distantly locations of Selangor, Negeri Sembilan and Melaka (East coastal areas), Malaysia. A total of 44 (n = 44) of tentatively V. parahaemolyticus were also examined for the presence of toxR, tdh and trh gene. Of 44 isolates, 37 were positive towards toxR gene; while, none were positive to tdh and trh gene. Antibiotic resistance analysis showed the V. parahaemolyticus isolates were highly resistant to bacitracin (92%, 34/37) and penicillin (89%, 33/37) followed by resistance towards ampicillin (68%, 25/37), cefuroxime (38%, 14/37), amikacin (6%, 2/37) and ceftazidime (14%, 5/37). None of the V. parahaemolyticus isolates were resistant towards chloramphenicol, ciprofloxacin, ceftriaxone, enrofloxacin, norfloxacin, streptomycin and vancomycin. Antibiogram patterns exhibited, 9 patterns and phenotypically less heterogenous when compared to PCR-based techniques using ERIC- and RAPD-PCR. The results of the ERIC- and RAPD-PCR were analyzed using GelCompare software. ERIC-PCR with primers ERIC1R and ERIC2 discriminated the V. parahaemolyticus isolates into 6 clusters and 21 single isolates at a similarity level of 80%. While, RAPD-PCR with primer Gen8 discriminated the V. parahaemolyticus isolates into 11 clusters and 10 single isolates and Gen9 into 8 clusters and 16 single isolates at the same similarity level examined. Results in the presence study demonstrated combination of phenotypically and genotypically methods show a wide heterogeneity among cockle isolates of V. parahaemolyticus.
    Matched MeSH terms: Drug Resistance, Bacterial*
  7. Ahmad N, Zakaria WR, Abdullah SA, Mohamed R
    World J Gastroenterol, 2009 Jul 07;15(25):3161-5.
    PMID: 19575497
    AIM: To characterize the types of mutations present in the 23S rRNA genes of Malaysian isolates of clarithromycin-resistant Helicobacter pylori (H pylori).

    METHODS: Clarithromycin susceptibility of H pylori isolates was determined by E test. Analyses for point mutations in the domain V of 23S rRNA genes in clarithromycin-resistant and -sensitive strains were performed by sequence analysis of amplified polymerase chain reaction products. Restriction fragment length polymorphism was performed using BsaI and MboII enzymes to detect restriction sites that correspond to the mutations in the clarithromycin-resistant strains.

    RESULTS: Of 187 isolates from 120 patients, four were resistant to clarithromycin, while 183 were sensitive. The MIC of the resistant strains ranged from 1.5 to 24 microg/mL. Two isolates had an A2142G mutation and another two had A2143G mutations. A T2182C mutation was detected in two out of four clarithromycin-resistant isolates and in 13 of 14 clarithromycin-sensitive isolates. Restriction enzyme analyses with BsaI and MboII were able to detect the mutations.

    CONCLUSION: Clarithromycin resistance is an uncommon occurrence among Malaysian isolates of H pylori strains and the mutations A2142G and A2143G detected were associated with low-level resistance.

    Matched MeSH terms: Drug Resistance, Bacterial/genetics*
  8. Iskandar K, Sartelli M, Tabbal M, Ansaloni L, Baiocchi GL, Catena F, et al.
    World J Emerg Surg, 2019;14:50.
    PMID: 31832084 DOI: 10.1186/s13017-019-0266-x
    Antibiotics are the pillar of surgery from prophylaxis to treatment; any failure is potentially a leading cause for increased morbidity and mortality. Robust data on the burden of SSI especially those due to antimicrobial resistance (AMR) show variable rates between countries and geographical regions but accurate estimates of the incidence of surgical site infections (SSI) due to AMR and its related global economic impact are yet to be determined. Quantifying the burden of SSI treatment is an incentive to sensitize governments, healthcare systems, and the society to invest in quality improvement and sustainable development. However in the absence of a unified epidemiologically sound infection definition of SSI and a well-designed global surveillance system, the end result is a lack of accurate and reliable data that limits the comparability of estimates between countries and the possibility of tracking changes to inform healthcare professionals about the appropriateness of implemented infection prevention and control strategies. This review aims to highlight the reported gaps in surveillance methods, epidemiologic data, and evidence-based SSI prevention practices and in the methodologies undertaken for the evaluation of the economic burden of SSI associated with AMR bacteria. If efforts to tackle this problem are taken in isolation without a global alliance and data is still lacking generalizability and comparability, we may see the future as a race between the global research efforts for the advancement in surgery and the global alarming reports of the increased incidence of antimicrobial-resistant pathogens threatening to undermine any achievement.
    Matched MeSH terms: Drug Resistance, Bacterial*
  9. Chelliapan S, Wilby T, Sallis PJ, Yuzir A
    Water Sci Technol, 2011;63(8):1599-606.
    PMID: 21866757
    Tylosin has been considered inhibiting COD removal in anaerobic digestion. In this study it is proven that this is not always the case. Accordingly, elevated concentrations of Tylosin (100-800mgL-1) could be tolerated by the anaerobic system. The influence of Tylosin concentrations on an up-flow anaerobic stage reactor (UASR) was assessed using additions of Tylosin phosphate concentrate. Results showed high efficiency for COD removal (average 93%) when Tylosin was present at concentrations ranging from 0 to 400 mg L-1. However, at Tylosin concentrations of 600 and 800 mg L-1 treatment efficiency declined to 85% and 75% removal respectively. The impact of Tylosin concentrations on archaeal activity were investigated and the analysis revealed that archaeal cells dominated the reactor, confirming that there was no detectable inhibition of the methanogens at Tylosin levels between 100 and 400mg L-1. Nevertheless, the investigation showed a slight reduction in the number of methanogens at Tylosin levels of 600 and 800 mg L-1. These results demonstrated that the methanogens were well adapted to Tylosin. It would not be expected that the process performance of the UASR would be affected, not even at a level well in excess of those appearing in real wastewater from a Tylosin production site.
    Matched MeSH terms: Drug Resistance, Bacterial*
  10. Jamali H, Radmehr B
    Vet J, 2013 Nov;198(2):541-2.
    PMID: 23880504 DOI: 10.1016/j.tvjl.2013.06.012
    The aims of this study were to determine the prevalence, characteristics and antimicrobial resistance of Listeria spp. isolated from bovine clinical mastitis in Iran. Listeria spp. were detected in 21/207 bovine mastitic milk samples from dairy farms in Iran, comprising L. monocytogenes (n=17), L. innocua (n=3) and L. ivanovii (n=1). L. monocytogenes isolates were grouped into serogroups '4b, 4d, 4e', '1/2a, 3a', '1/2b, 3b, 7' and '1/2c, 3c'; all harboured inlA, inlC and inlJ virulence genes. Listeria spp. were most frequently resistant to penicillin G (14/21 isolates, 66.7%) and tetracyclines (11/21 isolates, 52.4%).
    Matched MeSH terms: Drug Resistance, Bacterial*
  11. Jamali H, Rezagholipour M, Fallah S, Dadrasnia A, Chelliah S, Velappan RD, et al.
    Vet J, 2014 Nov;202(2):381-3.
    PMID: 25201254 DOI: 10.1016/j.tvjl.2014.07.024
    The objectives of this study were to determine the prevalence, characterization and antibiotic resistance of Pasteurella multocida isolated from calves with respiratory infection in Iran. P. multocida was detected in 141/169 bovine respiratory infection cases on Iranian dairy and beef farms. P. multocida were grouped into serogroups A (126/141), D (12/141), and B (3/141). Of the P.  multocida isolates, all harboured the psl, ompH, oma87, fimA, ptfA, nanB, and nanH genes, 139/141 had hsf-2, and 115/141 pfhA, and tadD. The isolates were most frequently resistant to penicillin G (43/141 resistant isolates; 30.5%) and streptomycin (31/141; 22%).
    Matched MeSH terms: Drug Resistance, Bacterial*
  12. Chan WY, Hickey EE, Khazandi M, Page SW, Trott DJ, Hill PB
    Vet Dermatol, 2020 Apr;31(2):138-145.
    PMID: 31710159 DOI: 10.1111/vde.12803
    BACKGROUND: The emergence of antimicrobial resistance represents a serious human and animal health risk. Good antimicrobial stewardship is essential to prolong the lifespan of existing antibiotics, and new strategies are required to combat infections in man and animals.

    HYPOTHESIS/OBJECTIVES: To determine the in vitro interaction of ionophores (narasin or monensin) with antimicrobial adjuvants (N-acetylcysteine (NAC), Tris-EDTA or disodium EDTA) against bacterial strains representing pathogens associated with canine otitis externa (OE).

    ANIMAL/ISOLATES: American Type Culture Collection (ATCC) strains Staphylococcus aureus 29213, Pseudomonas aeruginosa 27853 and P. aeruginosa biofilm producer PAO1, and a clinical isolate of Proteus mirabilis from a case of canine OE were tested.

    METHODS AND MATERIALS: A 2D microdilution checkerboard method was used, allowing calculation of fractional inhibitory concentration index (FICI), dose reduction index (DRI) and plotting of isobolograms.

    RESULTS: The combination of narasin with either Tris-EDTA or disodium EDTA produced additive effects (FICI = 0.75) against P. aeruginosa ATCC 27853 and P. aeruginosa biofilm producer ATCC PAO1. An additive effect (FICI = 0.53-0.75) was found against S. aureus ATCC 29213 when narasin or monensin were combined with NAC. The highest DRI (32-fold) was found with monensin/NAC where the MIC of monensin was reduced from 4 to 0.125 μg/mL.

    CONCLUSIONS AND CLINICAL IMPORTANCE: The combination of narasin with Tris-EDTA or disodium EDTA is a promising strategy to inhibit the intrinsic resistance elements of Gram-negative bacteria. These novel combinations potentially could be useful as a multimodal approach to treat mixed infections in canine OE.

    Matched MeSH terms: Drug Resistance, Bacterial
  13. Yasin RM, Zin NM, Hussin A, Nawi SH, Hanapiah SM, Wahab ZA, et al.
    Vaccine, 2011 Aug 5;29(34):5688-93.
    PMID: 21723357 DOI: 10.1016/j.vaccine.2011.06.004
    From January 2008 to December 2009, 433 Streptococcus pneumoniae strains were examined to determine the serotype distribution and susceptibility to selected antibiotics. About 50% of them were invasive isolates. The strains were isolated from patients of all age groups and 33.55% were isolated from children below 5 years. The majority was isolated from blood (48.53%) and other sterile specimens (6.30%). Community acquired pneumonia (41.70%) is the most common diagnosis followed by sepsis (9.54%). Serotyping was done using Pneumotest Plus-Kit and antibiotic susceptibility pattern was determined by modified Kirby-Bauer disk diffusion method and measurement of minimum inhibitory concentration (MIC) using E-test strip. Ten most common serotypes were 19F (15.02%), 6B (10.62%), 19A (6.93%), 14 (6.70%), 1 (5.08%), 6A (5.08%), 23F (4.85%), 18C (3.93%), 3 (2.08%) and 5 (1.85%). Penicillin MIC ranged between ≤ 0.012-4 μg/ml with MIC₉₀ of 1 μg/ml. Penicillin resistant rate is 31.78%. The majority of penicillin less-susceptible strains belonged to serotype 19F followed by 19A and 6B. Based on the serotypes distribution 22 (44.00%), 28 (56.00%) and 39 (78.00%) of the invasive isolates from children ≤ 2 years were belonged to serotypes included in the PCV7, PCV10 and PCV13, respectively.
    Matched MeSH terms: Drug Resistance, Bacterial*
  14. Bravo LC, Asian Strategic Alliance for Pneumococcal Disease Prevention (ASAP) Working Group
    Vaccine, 2009 Dec 9;27(52):7282-91.
    PMID: 19393708 DOI: 10.1016/j.vaccine.2009.04.046
    This paper represents a collaborative effort by the Asian Strategic Alliance for Pneumococcal Disease Prevention (ASAP) Working Group to collate data on the disease burden due to invasive pneumococcal disease (IPD) in participating Asian countries and territories; namely, Hong Kong, India, Indonesia, Korea, Macau, Malaysia, Pakistan, the Philippines, Singapore, Sri Lanka, Taiwan and Thailand. A review of both published and unpublished data revealed that the incidence of IPD in some countries is well documented by way of large, long-duration studies, while in other countries, much of the available data have been extrapolated from international studies or have come from small population studies of limited geographical coverage. This paper confirms that data regarding the incidence of IPD in Asia are grossly lacking and reinforces the need for urgent and more substantial studies.
    Matched MeSH terms: Drug Resistance, Bacterial
  15. Kim SH, Chung DR, Song JH, Baek JY, Thamlikitkul V, Wang H, et al.
    Vaccine, 2020 08 27;38(38):6065-6073.
    PMID: 31590932 DOI: 10.1016/j.vaccine.2019.09.065
    This study was performed to investigate the serotype distribution and antimicrobial susceptibility of Streptococcus pneumoniae in Asian countries. A prospective surveillance study on S. pneumoniae collected from adult patients (≥50 years old) with invasive pneumococcal disease or community-acquired pneumonia was performed at 66 hospitals in Asian countries (Korea, China, Malaysia, Singapore, the Philippines, and Thailand) in 2012-2017. Serotyping and antimicrobial susceptibility tests of 850 pneumococcal isolates were performed. The proportions of isolates with serotypes covered by 13-valent pneumococcal conjugate vaccine (PCV13) were 37.0% in Korea, 53.4% in China, 77.2% in Malaysia, 35.9% in the Philippines, 68.7% in Singapore, and 60.2% in Thailand. Major serotypes were 19F (10.4%), 19A (10.1%), and 3 (8.5%) in 2012-2017, with different serotype distributions in each country. Macrolide resistance in pneumococci was high (66.8%) and prevalence of multidrug resistance (MDR) also remained high (50.8%). MDR non-PCV13 serotypes such as 11A, 15A, 35B, and 23A have emerged in Asian countries. This study showed the persistent prevalence of 19F and 19A with a noteworthy increase of certain non-PCV13 serotypes in Asian countries. High prevalence of macrolide resistance and MDR was also found in pneumococcal isolates. These data emphasize the need for continued surveillance of pneumococcal epidemiology in Asia in the post-pneumococcal vaccine era.
    Matched MeSH terms: Drug Resistance, Bacterial
  16. Chin KL, Sarmiento ME, Norazmi MN, Acosta A
    Tuberculosis (Edinb), 2018 12;113:139-152.
    PMID: 30514496 DOI: 10.1016/j.tube.2018.09.008
    Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (MTBC), is an infectious disease with more than 10.4 million cases and 1.7 million deaths reported worldwide in 2016. The classical methods for detection and differentiation of mycobacteria are: acid-fast microscopy (Ziehl-Neelsen staining), culture, and biochemical methods. However, the microbial phenotypic characterization is time-consuming and laborious. Thus, fast, easy, and sensitive nucleic acid amplification tests (NAATs) have been developed based on specific DNA markers, which are commercially available for TB diagnosis. Despite these developments, the disease remains uncontrollable. The identification and differentiation among MTBC members with the use of NAATs remains challenging due, among other factors, to the high degree of homology within the members and mutations, which hinders the identification of specific target sequences in the genome with potential impact in the diagnosis and treatment outcomes. In silico methods provide predictive identification of many new target genes/fragments/regions that can specifically be used to identify species/strains, which have not been fully explored. This review focused on DNA markers useful for MTBC detection, species identification and antibiotic resistance determination. The use of DNA targets with new technological approaches will help to develop NAATs applicable to all levels of the health system, mainly in low resource areas, which urgently need customized methods to their specific conditions.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  17. Danjuma L, Ling MP, Hamat RA, Higuchi A, Alarfaj AA, Marlina, et al.
    Tuberculosis (Edinb), 2017 12;107:38-47.
    PMID: 29050770 DOI: 10.1016/j.tube.2017.03.006
    Mycobacterium tuberculosis has a remarkable ability of long-term persistence despite vigorous host immunity and prolonged therapy. The bacteria persist in secure niches such as the mesenchymal stem cells in the bone marrow and reactivate the disease, leading to therapeutic failure. Many bacterial cells can remain latent within a diseased tissue so that their genetic material can be incorporated into the genetic material of the host tissue. This incorporated genetic material reproduces in a manner similar to that of cellular DNA. After the cell division, the incorporated gene is reproduced normally and distributed proportionately between the two progeny. This inherent adoption of long-term persistence and incorporating the bacterial genetic material into that of the host tissue remains and is considered imperative for microbial advancement and chemotherapeutic resistance; moreover, new evidence indicates that the bacteria might pass on genetic material to the host DNA sequence. Several studies focused on the survival mechanism of M. tuberculosis in the host immune system with the aim of helping the efforts to discover new drugs and vaccines against tuberculosis. This review explored the mechanisms through which this bacterium affects the expression of human genes. The first part of the review summarizes the current knowledge about the interactions between microbes and host microenvironment, with special reference to the M. tuberculosis neglected persistence in immune cells and stem cells. Then, we focused on how bacteria can affect human genes and their expression. Furthermore, we analyzed the literature base on the process of cell death during tuberculosis infection, giving particular emphasis to gene methylation as an inherited process in the neutralization of possibly injurious gene components in the genome. The final section discusses recent advances related to the M. tuberculosis interaction with host epigenetic circuitry.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  18. Kumar Y, Sharma A, Mani KR
    Trop Life Sci Res, 2013 Aug;24(1):45-54.
    PMID: 24575241
    Typhoid fever continues to remain a major health problem in the developing world, and the emergence of multidrug-resistant (MDR) strains has further reduced therapeutic options for treatment of the disease. The National Salmonella and Escherichia Centre in Kasauli, India received 128 Salmonella Typhi isolates during 2008-2009. These were evaluated for antimicrobial resistance, prevalent resistotypes and the proportion of MDR strains, using standard methods for 11 antimicrobials. An abrupt decrease in the proportion of MDR strains was observed. Only 4.7% of the isolates were found to be MDR with resistotypes chloramphenicol-ampicillin-streptomycin-nalidixic acid-trimethoprim (C-AS-Na-Tr) and chloramphenicol-ampicillin-nalidixic acid-trimethoprim (C-A-Na-Tr), which is very low compared to other studies from India. Nalidixic acid resistance was found to be present in 93.8% of the isolates. Moreover, the difference in the mean minimum inhibitory concentration (MIC) of ciprofloxacin for nalidixic acid-resistant and nalidixic acid-sensitive strains was found to be statistically significant (p<0.001), which calls into question the further use of ciprofloxacin for the treatment of typhoid fever because of potential treatment failures. The low proportion of MDR strains increases the possibility of first-line drugs for the treatment of typhoid fever.
    Matched MeSH terms: Drug Resistance, Bacterial
  19. Mohd-Zain Z, Kamsani NH, Ahmad N
    Trop Biomed, 2013 Dec;30(4):584-90.
    PMID: 24522126 MyJurnal
    In the last few decades, co-trimoxazole (SXT), an antibacterial combination of trimethoprim and sulfamethoxazole, has been used for treatment of upper respiratory tract infection due to Haemophilus influenzae. The usage of this antibiotic has become less important due to emergence of SXT-resistant strains worldwide. Most reports associate SXT resistance to the presence of variants of dihydrofolate reductase (DHFR) dfrA genes which are responsible for trimethoprim resistance; while the sulfamethoxazole (SMX) resistance are due to sulfonamide (SUL) genes sul1 and sul2 and/or mutation in the chromosomal (folP) gene encoding dihydropteroate synthetase (DHPS). This study aims to detect and analyse the genes that are involved in SXT resistance in H. influenzae strains that were isolated in Malaysia. Primers targeting for variants of dfrA, fol and sul genes were used to amplify the genes in nine SXT-resistant strains. The products of amplification were sequenced and multiple alignments of the assembled sequences of the local strains were compared to the sequences of other H. influenzae strains in the Genbank. Of the five variants of the dhfA genes, dfrA1 was detected in three out of the nine strains. In contrast to intermediate strains, at least one variant of folP genes was detected in the resistant strains. Multiple nucleotide alignment of this gene revealed that strain H152 was genetically different from the others due to a 15-bp nucleotide insert in folP gene. The sequence of the insert was similar to the insert in folP of H. influenzae strain A12, a strain isolated in United Kingdom. None of the strains had sul1 gene but sul2 gene was detected in four strains. Preliminary study on the limited number of samples shows that the TMP resistance was attributed to mainly to dfrA1 and the SMX was due to folP genes. Presence of sul2 in addition to folP in seven strains apparently had increased their level of resistance. A strain that lacked sul1 or sul2 gene, its resistance to sulfonamide was attributed to a 15-bp DNA insert in the folP gene.
    Matched MeSH terms: Drug Resistance, Bacterial*
  20. Liew FY, Tay ST, Puthucheary SD
    Trop Biomed, 2011 Dec;28(3):646-50.
    PMID: 22433895 MyJurnal
    Ciprofloxacin, a quinolone with good intracellular penetration may possibly be used for treatment of melioidosis caused by Burkholderia pseudomallei, but problems with resistance may be encountered. Amino acid substitutions in gyrA/gyrB have given rise to fluoroquinolone resistance in various microorganisms. Using published primers for gyrA and gyrB, PCR was performed on 11 isolates of B. pseudomallei with varying degrees of sensitivity to ciprofloxacin, followed by DNA sequencing to detect possible mutations. Results showed an absence of any point mutation in either gene. Local isolates have yet to develop full resistance to ciprofloxacin and probably other mechanisms of resistance may have been involved in the decreased sensitivity to ciprofloxacin.
    Matched MeSH terms: Drug Resistance, Bacterial*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links