Displaying publications 1 - 20 of 245 in total

Abstract:
Sort:
  1. Sartelli M, Weber DG, Ruppé E, Bassetti M, Wright BJ, Ansaloni L, et al.
    World J Emerg Surg, 2016;11:33.
    PMID: 27429642 DOI: 10.1186/s13017-016-0089-y
    Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs.
    Matched MeSH terms: Drug Resistance, Microbial
  2. Sadiq MA, Hassan L, Aziz SA, Zakaria Z, Musa HI, Amin MM
    Vet World, 2018 Nov;11(10):1404-1408.
    PMID: 30532493 DOI: 10.14202/vetworld.2018.1404-1408
    Background: Melioidosis is a fatal emerging infectious disease of both man and animal caused by bacteria Burkholderia pseudomallei. Variations were suggested to have existed among the different B. pseudomallei clinical strains/genotypes which may implicate bacterial susceptibility and resistance toward antibiotics.

    Aim: This study was designed to determine whether the phenotypic antibiotic resistance pattern of B. pseudomallei is associated with the source of isolates and the genotype.

    Materials and Methods: A collection of 111 B. pseudomallei isolates from veterinary cases of melioidosis and the environments (soil and water) were obtained from stock cultures of previous studies and were phylogenetically characterized by multilocus sequence typing (ST). The susceptibility to five antibiotics, namely meropenem (MEM), imipenem, ceftazidime (CAZ), cotrimoxazole (SXT), and co-amoxiclav (AMC), recommended in both acute and eradication phases of melioidosis treatment were tested using minimum inhibitory concentration antibiotics susceptibility test.

    Results: Majority of isolates were susceptible to all antibiotics tested while few resistant strains to MEM, SXT, CAZ, and AMC were observed. Statistically significant association was found between resistance to MEM and the veterinary clinical isolates (p<0.05). The likelihood of resistance to MEM was significantly higher among the novel ST 1130 isolates found in veterinary cases as compared to others.

    Conclusion: The resistance to MEM and SXT appeared to be higher among veterinary isolates, and the novel ST 1130 was more likely to be resistant to MEM as compared to others.

    Matched MeSH terms: Drug Resistance, Microbial
  3. Ismail R, Allaudin ZN, Lila MA
    Vaccine, 2012 Sep 7;30(41):5914-20.
    PMID: 22406276 DOI: 10.1016/j.vaccine.2012.02.061
    Gene therapy and vaccines are rapidly developing field in which recombinant nucleic acids are introduced in mammalian cells for enhancement, restoration, initiation or silencing biochemical function. Beside simplicity in manipulation and rapid manufacture process, plasmid DNA-based vaccines have inherent features that make them promising vaccine candidates in a variety of diseases. This present review focuses on the safety concern of the genetic elements of plasmid such as propagation and expression units as well as their host genome for the production of recombinant plasmid DNA. The highlighted issues will be beneficial in characterizing and manufacturing plasmid DNA for save clinical use. Manipulation of regulatory units of plasmid will have impact towards addressing the safety concerns raised in human vaccine applications. The gene revolution with plasmid DNA by alteration of their plasmid and production host genetics will be promising for safe delivery and obtaining efficient outcomes.
    Matched MeSH terms: Drug Resistance, Microbial/genetics
  4. Snelling MR, Kam CM
    Tubercle, 1968 Jun;49(2):187-91.
    PMID: 5664317
    Matched MeSH terms: Drug Resistance, Microbial
  5. Yap KP, Thong KL
    Trop Med Int Health, 2017 08;22(8):918-925.
    PMID: 28544285 DOI: 10.1111/tmi.12899
    Next-generation whole-genome sequencing has revolutionised the study of infectious diseases in recent years. The availability of genome sequences and its understanding have transformed the field of molecular microbiology, epidemiology, infection treatments and vaccine developments. We review the key findings of the publicly accessible genomes of Salmonella enterica serovar Typhi since the first complete genome to the most recent release of thousands of Salmonella Typhi genomes, which remarkably shape the genomic research of S. Typhi and other pathogens. Important new insights acquired from the genome sequencing of S. Typhi, pertaining to genomic variations, evolution, population structure, antibiotic resistance, virulence, pathogenesis, disease surveillance/investigation and disease control are discussed. As the numbers of sequenced genomes are increasing at an unprecedented rate, fine variations in the gene pool of S. Typhi are captured in high resolution, allowing deeper understanding of the pathogen's evolutionary trends and its pathogenesis, paving the way to bringing us closer to eradication of typhoid through effective vaccine/treatment development.
    Matched MeSH terms: Drug Resistance, Microbial*
  6. Ghazavi N, Rahimi E, Esfandiari Z, Shakerian A
    Trop Biomed, 2018 Dec 01;35(4):880-892.
    PMID: 33601838
    Resistant and enterotoxigenic Staphylococcus aureus strains are considered to be one of the major causes of foodborne diseases due to the consumption of sweet. The present research was done to study the distribution of enterotoxin types, enterotoxigenic genes and antibiotic resistance pattern of S. aureus strains isolated from traditional sweet samples. Eight-hundred and fifteen sweet samples were cultured and S. aureus strains were identified. Antibiotic resistance, enterotoxigenicity and enterotoxigenic gene profile were studied using disk diffusion, Enzyme Link Immunosorbent Assay and PCR, respectively. One-hundred and seven out of 815 (13.12%) sweet samples were positive for S. aureus. Prevalence of S. aureus in dried and semi-dried sweet samples were 15.08% and 11.13%, respectively (P <0.05). Forty-six out of 107 S. aureus strains (42.99%) were determined as enterotoxigenic. A (41.30%) and C (17.39%) were the most commonly detected enterotoxin types. Sea (20.56%), sec (14.95%) and seb (11.21%) were the most commonly detected enterotoxigenic genes. There were no positive sample for the sej enterotoxin gene. S. aureus strains harbored the highest prevalence of resistance against penicillin (88.78%), tetracycline (83.17%), ceftaroline (75.70%) and doxycycline (71.02%). Simultaneous presence of enterotoxins and enterotoxigenic genes in multi-drug resistant S. aureus strains indicates important public health issue regarding the consumption of contaminated traditional sweet samples.
    Matched MeSH terms: Drug Resistance, Microbial
  7. Di KN, Pham DT, Tee TS, Binh QA, Nguyen TC
    Trop Anim Health Prod, 2021 Jun 05;53(3):340.
    PMID: 34089130 DOI: 10.1007/s11250-021-02780-6
    Inappropriate use of antibiotics in animal production system is one of the major factors leading to the antibiotic resistance (ABR) development. In Vietnam, the ABR situation is crucial as antibiotics have been used indiscriminately for disease prevention and as growth promoters in animals. Thus, a thorough understanding on the ABR in veterinary settings would be beneficial to the Vietnam public health authority in formulating timely interventions. This review aimed to provide information on the current status of antibiotic usage in animal husbandry in Vietnam, identified gaps in research, and suggested possible solutions to tackle ABR. To this end, data on ABR in animals were extracted from 3 major electronic databases (PubMed, Web of Science, and ScienceDirect) in the period of January 2013-December 2020. The review findings were reported according to PRISMA, which highlighted the emergence and persistence of ABR in bacterial isolates, including Escherichia coli, Enterococcus spp., and Salmonella species, obtained from pigs and poultry. The lack of awareness of Vietnamese farmers on the antibiotic utilization guidelines was one of the main causes driving the animal ABR. Hence, this paper calls for interventions to restrict antibiotics use in food-producing animals by national action plan and antibiotics control programs. Additionally, studies to evaluate knowledge, attitude, and practice (KAP) of the community are required to promote rational use of antibiotics in all sectors.
    Matched MeSH terms: Drug Resistance, Microbial
  8. Pang T, Levine MM, Ivanoff B, Wain J, Finlay BB
    Trends Microbiol., 1998 Apr;6(4):131-3.
    PMID: 9587187
    Matched MeSH terms: Drug Resistance, Microbial
  9. Pang T, Bhutta ZA, Finlay BB, Altwegg M
    Trends Microbiol., 1995 Jul;3(7):253-5.
    PMID: 7551636
    Matched MeSH terms: Drug Resistance, Microbial
  10. Søgaard Jørgensen P, Folke C, Henriksson PJG, Malmros K, Troell M, Zorzet A, et al.
    Trends Ecol Evol, 2020 Jun;35(6):484-494.
    PMID: 32396815 DOI: 10.1016/j.tree.2020.01.011
    Development of new biocides has dominated human responses to evolution of antibiotic and pesticide resistance. Increasing and uniform biocide use, the spread of resistance genes, and the lack of new classes of compounds indicate the importance of navigating toward more sustainable coevolutionary dynamics between human culture and species that evolve resistance. To inform this challenge, we introduce the concept of coevolutionary governance and propose three priorities for its implementation: (i) new norms and mental models for lowering use, (ii) diversifying practices to reduce directional selection, and (iii) investment in collective action institutions to govern connectivity. We highlight the availability of solutions that facilitate broader sustainable development, which for antibiotic resistance include improved sanitation and hygiene, strong health systems, and decreased meat consumption.
    Matched MeSH terms: Drug Resistance, Microbial
  11. Black F, Bygbjerg I, Effersøe P, Gomme G, Jepsen S, Jensen GA
    Trans R Soc Trop Med Hyg, 1981;75(5):715-6.
    PMID: 7036431
    A case of Plasmodium falciparum malaria resistant to Fansidar (sulphadoxine plus pyrimethamine) at a level corresponding to R III and resistant to chloroquine is reported. The infection was most certainly acquired in Malaysia, but diagnosed and treated in a non-malarious area. Normal resorption and elimination rates of the Fansidar components excludes cure failure due to abnormal drug fate in the host. P. falciparum parasites from the patient have been maintained in vitro cultures. The patient was permanently cured with mefloquine.
    Matched MeSH terms: Drug Resistance, Microbial
  12. Koh CL
    Trans R Soc Trop Med Hyg, 1986;80(1):158-61.
    PMID: 3726978
    Twenty-five strains of enterobacteria, isolated from man in Peninsular Malaysia and consisting of seven Enterobacter spp., five Escherichia coli, five Salmonella spp., four Klebsiella spp., two Shigella spp., one Proteus sp. and and one Providencia sp., were tested for antibiotic resistance and conjugative R plasmids. They were all sensitive to nalidixic acid and resistant to at least three antibiotics. The number of resistances ranged from 3 to 11 antibiotics, including cefoperazone and sisomicin (two) newly released antibiotics), in addition to common drugs of current use. Of the 25 isolates, 19 (76%) conjugally transferred, at varied frequencies, at least two resistance determinants. Results from equilibrium density gradient centrifugation, agarose gel electrophoresis and transformation experiments provided proof that the transferable resistances were plasmid-mediated. Restriction endonuclease cleavage patterns showed that the plasmids from Proteus strain K005 and Providencia strain K001 may be identical.
    Matched MeSH terms: Drug Resistance, Microbial
  13. Clyde DF, DuPont HL, Miller RM, McCarthy VC
    Trans R Soc Trop Med Hyg, 1970;64(6):834-8.
    PMID: 4924648
    Matched MeSH terms: Drug Resistance, Microbial*
  14. Dondero TJ, Parsons RE, Ponnampalam JT
    Trans R Soc Trop Med Hyg, 1976;70(2):145-8.
    PMID: 785725
    In vivo chloroquine resistance surveys, which allowed for detection of late recrudescing RI resistance, were conducted in three regions of Peninsular Malaysia, which were previously not recognized as having appreciable drug resistance. Among the 485 Plasmodium falciparum infections tested resistance rates ranged locally from 20% to 67% in those with parasitaemias over 1,000 per mm3, and 5% to 59% in all parasitaemias. The region found to have the most serious resistance was western Pahang. In one study a combination of chloroquine and pyrimethamine proved no more efficacious than chloroquine alone. Most of the resistance encountered was the late recrudescing RI type. There was no apparent correlation between drug resistance and Anopheles balabacensis as this species was not found despite intensive collections in two of the three main regions. There was no evidence of resistance among the 222 P. vivax and 35 P. malariae infections also tested.
    Matched MeSH terms: Drug Resistance, Microbial*
  15. Lewis AN, Dondero TJ, Ponnampalam JT
    Trans R Soc Trop Med Hyg, 1973;67(2):310-2.
    PMID: 4593652
    Matched MeSH terms: Drug Resistance, Microbial
  16. Clyde DF, Han CM, Huang YS
    Trans R Soc Trop Med Hyg, 1973;67(1):146.
    PMID: 4591211
    Matched MeSH terms: Drug Resistance, Microbial*
  17. McKelvey TP, Lundie AR, Vanreenen RM, Williams ED, Moore HS, Thomas MJ, et al.
    Trans R Soc Trop Med Hyg, 1971;65(3):286-309.
    PMID: 4934534
    Matched MeSH terms: Drug Resistance, Microbial*
  18. CONTACOS PG, LUNN JS, COATNEY GR
    Trans R Soc Trop Med Hyg, 1963 Nov;57:417-24.
    PMID: 14081296
    Matched MeSH terms: Drug Resistance, Microbial*
  19. MONTGOMERY R, EYLES DE
    Trans R Soc Trop Med Hyg, 1963 Nov;57:409-16.
    PMID: 14081295
    Matched MeSH terms: Drug Resistance, Microbial*
  20. Andre RG, Cadigan FC, Fredericks HJ, Fong YL
    Trans R Soc Trop Med Hyg, 1972;66(4):644-52.
    PMID: 4561008
    Matched MeSH terms: Drug Resistance, Microbial*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links