Displaying publications 1 - 20 of 119 in total

Abstract:
Sort:
  1. Aroosa M, Malik JA, Ahmed S, Bender O, Ahemad N, Anwar S
    Mol Biol Rep, 2023 Sep;50(9):7667-7680.
    PMID: 37418080 DOI: 10.1007/s11033-023-08568-1
    Antiepileptic drugs are versatile drugs with the potential to be used in functional drug formulations with drug repurposing approaches. In the present review, we investigated the anticancer properties of antiepileptic drugs and interlinked cancer and epileptic pathways. Our focus was primarily on those drugs that have entered clinical trials with positive results and those that provided good results in preclinical studies. Many contributing factors make cancer therapy fail, like drug resistance, tumor heterogeneity, and cost; exploring all alternatives for efficient treatment is important. It is crucial to find new drug targets to find out new antitumor molecules from the already clinically validated and approved drugs utilizing drug repurposing methods. The advancements in genomics, proteomics, and other computational approaches speed up drug repurposing. This review summarizes the potential of antiepileptic drugs in different cancers and tumor progression in the brain. Valproic acid, oxcarbazepine, lacosamide, lamotrigine, and levetiracetam are the drugs that showed potential beneficial outcomes against different cancers. Antiepileptic drugs might be a good option for adjuvant cancer therapy, but there is a need to investigate further their efficacy in cancer therapy clinical trials.
    Matched MeSH terms: Drug Resistance, Neoplasm
  2. Rezaee A, Tehrany PM, Tirabadi FJ, Sanadgol N, Karimi AS, Ajdari A, et al.
    Biomed Pharmacother, 2023 Sep;165:115187.
    PMID: 37499452 DOI: 10.1016/j.biopha.2023.115187
    Brain tumors, which are highly malignant, pose a significant threat to health and often result in substantial rates of mortality and morbidity worldwide. The brain cancer therapy has been challenging due to obstacles such as the BBB, which hinders effective delivery of therapeutic agents. Additionally, the emergence of drug resistance further complicates the management of brain tumors. TMZ is utilized in brain cancer removal, but resistance is a drawback. ncRNAs are implicated in various diseases, and their involvement in the cancer is particularly noteworthy. The focus of the current manuscript is to explore the involvement of ncRNAs in controlling drug resistance, specifically in the context of resistance to the chemotherapy drug TMZ. The review emphasizes the function of ncRNAs, particularly miRNAs, in modulating the growth and invasion of brain tumors, which significantly influences their response to TMZ treatment. Through their interactions with various molecular pathways, miRNAs are modulators of TMZ response. Similarly, lncRNAs also associate with molecular pathways and miRNAs, affecting the efficacy of TMZ chemotherapy. Given their functional properties, lncRNAs can either induce or suppress TMZ resistance in brain tumors. Furthermore, circRNAs, which are cancer controllers, regulate miRNAs by acting as sponges, thereby impacting the response to TMZ chemotherapy. The review explores the correlation between ncRNAs and TMZ chemotherapy, shedding light on the underlying molecular pathways involved in this process.
    Matched MeSH terms: Drug Resistance, Neoplasm/genetics
  3. Lim YY, Zaidi AMA, Miskon A
    Molecules, 2023 Mar 24;28(7).
    PMID: 37049685 DOI: 10.3390/molecules28072920
    Due to its built-up chemoresistance after prolonged usage, the demand for replacing platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no significant improvement in osteosarcoma (OS) therapy. In fact, many MBD have been developed, but the chemoresistance problem raised by platinum remains unresolved. This motivates us to elucidate the possibilities of the copper and zinc (CuZn) combination to replace platinum in MBD. Thus, the anti-chemoresistance properties of CuZn and their physiological functions for OS therapy are highlighted. Herein, we summarise their chelators, main organic solvents, and ligand functions in their structures that are involved in anti-chemoresistance properties. Through this review, it is rational to discuss their ligands' roles as biosensors in drug delivery systems. Hereafter, an in-depth understanding of their redox and photoactive function relationships is provided. The disadvantage is that the other functions of biosensors cannot be elaborated on here. As a result, this review is being developed, which is expected to intensify OS drugs with higher cure rates. Nonetheless, this advancement intends to solve the major chemoresistance obstacle towards clinical efficacy.
    Matched MeSH terms: Drug Resistance, Neoplasm
  4. Abdel-Sattar OE, Allam RM, Al-Abd AM, Avula B, Katragunta K, Khan IA, et al.
    Sci Rep, 2023 Feb 15;13(1):2683.
    PMID: 36792619 DOI: 10.1038/s41598-023-29566-0
    The members of the genus Phyllanthus have long been used in the treatment of a broad spectrum of diseases. They exhibited antiproliferative activity against various human cancer cell lines. Breast cancer is the most diagnosed cancer and a leading cause of cancer death among women. Doxorubicin (DOX) is an anticancer agent used to treat breast cancer despite its significant cardiotoxicity along with resistance development. Therefore, this study was designed to assess the potential cytotoxicity of P. niruri extracts (and fractions) alone and in combination with DOX against naïve (MCF-7) and doxorubicin-resistant breast cancer cell lines (MCF-7ADR). The methylene chloride fraction (CH2Cl2) showed the most cytotoxic activity among all tested fractions. Interestingly, the CH2Cl2-fraction was more cytotoxic against MCF-7ADR than MCF-7 at 100 µg/mL. At sub-cytotoxic concentrations, this fraction enhanced the cytotoxic effect of DOX against the both cell lines under investigation (IC50 values of 0.054 µg/mL and 0.14 µg/mL vs. 0.2 µg/mL for DOX alone against MCF-7) and (1.2 µg/mL and 0.23 µg/mL vs. 9.9 µg/mL for DOX alone against MCF-7ADR), respectively. Further, TLC fractionation showed that B2 subfraction in equitoxic combination with DOX exerted a powerful synergism (IC50 values of 0.03 µg/mL vs. 9.9 µg/mL for DOX alone) within MCF-7ADR. Untargeted metabolite profiling of the crude methanolic extract (MeOH) and CH2Cl2 fraction exhibiting potential cytotoxicity was conducted using liquid chromatography diode array detector-quadrupole time-of-flight mass spectrometry (LC-DAD-QTOF). Further studies are needed to separate the active compounds from the CH2Cl2 fraction and elucidate their mechanism(s) of action.
    Matched MeSH terms: Drug Resistance, Neoplasm
  5. Madden SF, Cremona M, Farrelly AM, Low WH, McBryan J
    Cancer Gene Ther, 2023 Feb;30(2):324-334.
    PMID: 36266450 DOI: 10.1038/s41417-022-00548-0
    To prevent the development of endocrine-resistant breast cancer, additional targeted therapies are increasingly being trialled in combination with endocrine therapy. The molecular mechanisms facilitating cancer cell survival during endocrine treatment remain unknown but could help direct selection of additional targeted therapies. We present a novel proteomic timecourse dataset, profiling potential drug targets in a population of MCF7 cells during 1 year of tamoxifen treatment. Reverse phase protein arrays profiled >70 proteins across 30 timepoints. A biphasic response to tamoxifen was evident, which coincided with changes in growth rate. Tamoxifen strongly impeded cell growth for the first 160 days, followed by gradual growth recovery and eventual resistance development. The growth-impeded phase was distinguished by the phosphorylation of Stat3 (y705) and Src (y527). Tumour tissue from patients treated with neo-adjuvant endocrine therapy (<4 months) also displayed increased Stat3 and Src signalling. Inhibitors of Stat3 (napabucasin) and Src (dasatinib), were effective at killing tamoxifen-treated MCF7 and T47D cells. Sensitivity to both drugs was significantly enhanced once tamoxifen had induced the growth-impeded phase. This novel proteomic resource identifies key mechanisms enabling cell survival during tamoxifen treatment. It provides valuable insight into potential drug combinations and timing that may prevent the development of endocrine resistance.
    Matched MeSH terms: Drug Resistance, Neoplasm
  6. Tippett VL, Tattersall L, Ab Latif NB, Shah KM, Lawson MA, Gartland A
    Oncogene, 2023 Jan;42(4):259-277.
    PMID: 36434179 DOI: 10.1038/s41388-022-02529-x
    Over the last 40 years osteosarcoma (OS) survival has stagnated with patients commonly resistant to neoadjuvant MAP chemotherapy involving high dose methotrexate, adriamycin (doxorubicin) and platinum (cisplatin). Due to the rarity of OS, the generation of relevant cell models as tools for drug discovery is paramount to tackling this issue. Four literature databases were systematically searched using pre-determined search terms to identify MAP resistant OS cell lines and patients. Drug exposure strategies used to develop cell models of resistance and the impact of these on the differential expression of resistance associated genes, proteins and non-coding RNAs are reported. A comparison to clinical studies in relation to chemotherapy response, relapse and metastasis was then made. The search retrieved 1891 papers of which 52 were relevant. Commonly, cell lines were derived from Caucasian patients with epithelial or fibroblastic subtypes. The strategy for model development varied with most opting for continuous over pulsed chemotherapy exposure. A diverse resistance level was observed between models (2.2-338 fold) with 63% of models exceeding clinically reported resistance levels which may affect the expression of chemoresistance factors. In vitro p-glycoprotein overexpression is a key resistance mechanism; however, from the available literature to date this does not translate to innate resistance in patients. The selection of models with a lower fold resistance may better reflect the clinical situation. A comparison of standardised strategies in models and variants should be performed to determine their impact on resistance markers. Clinical studies are required to determine the impact of resistance markers identified in vitro in poor responders to MAP treatment, specifically with respect to innate and acquired resistance. A shift from seeking disputed and undruggable mechanisms to clinically relevant resistance mechanisms may identify key resistance markers that can be targeted for patient benefit after a 40-year wait.
    Matched MeSH terms: Drug Resistance, Neoplasm*
  7. Varshney P, Sharma V, Yadav D, Kumar Y, Singh A, Kagithala NR, et al.
    Curr Drug Metab, 2023;24(12):787-802.
    PMID: 38141188 DOI: 10.2174/0113892002266408231207150547
    BACKGROUND: Cancer drug resistance remains a difficult barrier to effective treatment, necessitating a thorough understanding of its multi-layered mechanism.

    OBJECTIVE: This study aims to comprehensively explore the diverse mechanisms of cancer drug resistance, assess the evolution of resistance detection methods, and identify strategies for overcoming this challenge. The evolution of resistance detection methods and identification strategies for overcoming the challenge.

    METHODS: A comprehensive literature review was conducted to analyze intrinsic and acquired drug resistance mechanisms, including altered drug efflux, reduced uptake, inactivation, target mutations, signaling pathway changes, apoptotic defects, and cellular plasticity. The evolution of mutation detection techniques, encompassing clinical predictions, experimental approaches, and computational methods, was investigated. Strategies to enhance drug efficacy, modify pharmacokinetics, optimizoptimizee binding modes, and explore alternate protein folding states were examined.

    RESULTS: The study comprehensively overviews the intricate mechanisms contributing to cancer drug resistance. It outlines the progression of mutation detection methods and underscores the importance of interdisciplinary approaches. Strategies to overcome drug resistance challenges, such as modulating ATP-binding cassette transporters and developing multidrug resistance inhibitors, are discussed. The study underscores the critical need for continued research to enhance cancer treatment efficacy.

    CONCLUSION: This study provides valuable insights into the complexity of cancer drug resistance mechanisms, highlights evolving detection methods, and offers potential strategies to enhance treatment outcomes.

    Matched MeSH terms: Drug Resistance, Neoplasm
  8. Ahn MJ, Mendoza MJL, Pavlakis N, Kato T, Soo RA, Kim DW, et al.
    Clin Lung Cancer, 2022 Dec;23(8):670-685.
    PMID: 36151006 DOI: 10.1016/j.cllc.2022.07.012
    Non-small cell lung cancer (NSCLC) is a heterogeneous disease, with many oncogenic driver mutations, including de novo mutations in the Mesenchymal Epithelial Transition (MET) gene (specifically in Exon 14 [ex14]), that lead to tumourigenesis. Acquired alterations in the MET gene, specifically MET amplification is also associated with the development of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance in patients with EGFR-mutant NSCLC. Although MET has become an actionable biomarker with the availability of MET-specific inhibitors in selected countries, there is differential accessibility to diagnostic platforms and targeted therapies across countries in Asia-Pacific (APAC). The Asian Thoracic Oncology Research Group (ATORG), an interdisciplinary group of experts from Australia, Hong Kong, Japan, Korea, Mainland China, Malaysia, the Philippines, Singapore, Taiwan, Thailand and Vietnam, discussed testing for MET alterations and considerations for using MET-specific inhibitors at a consensus meeting in January 2022, and in subsequent offline consultation. Consensus recommendations are provided by the ATORG group to address the unmet need for standardised approaches to diagnosing MET alterations in NSCLC and for using these therapies. MET inhibitors may be considered for first-line or second or subsequent lines of treatment for patients with advanced and metastatic NSCLC harbouring MET ex14 skipping mutations; MET ex14 testing is preferred within multi-gene panels for detecting targetable driver mutations in NSCLC. For patients with EGFR-mutant NSCLC and MET amplification leading to EGFR TKI resistance, enrolment in combination trials of EGFR TKIs and MET inhibitors is encouraged.
    Matched MeSH terms: Drug Resistance, Neoplasm/genetics
  9. Huang TT, Chen CM, Lan YW, Lin SS, Choo KB, Chong KY
    Int J Mol Sci, 2022 Nov 28;23(23).
    PMID: 36499211 DOI: 10.3390/ijms232314884
    E7050 is a potent inhibitor of c-Met receptor tyrosine kinase and has potential for cancer therapy. However, the underlying molecular mechanism involved in the anti-cancer property of E7050 has not been fully elucidated. The main objective of this study was to investigate the anti-tumor activity of E7050 in multidrug-resistant human uterine sarcoma MES-SA/Dx5 cells in vitro and in vivo, and to define its mechanisms. Our results revealed that E7050 reduced cell viability of MES-SA/Dx5 cells, which was associated with the induction of apoptosis and S phase cell cycle arrest. Additionally, E7050 treatment significantly upregulated the expression of Bax, cleaved PARP, cleaved caspase-3, p21, p53 and cyclin D1, while it downregulated the expression of survivin and cyclin A. On the other hand, the mechanistic study demonstrated that E7050 inhibited the phosphorylation of c-Met, Src, Akt and p38 in HGF-stimulated MES-SA/Dx5 cells. Further in vivo experiments showed that treatment of athymic nude mice carrying MES-SA/Dx5 xenograft tumors with E7050 remarkably suppressed tumor growth. E7050 treatment also decreased the expression of Ki-67 and p-Met, and increased the expression of cleaved caspase-3 in MES-SA/Dx5 tumor sections. Therefore, E7050 is a promising drug that can be developed for the treatment of multidrug-resistant uterine sarcoma.
    Matched MeSH terms: Drug Resistance, Neoplasm
  10. Dzul Keflee R, Leong KH, Ogawa S, Bignon J, Chan MC, Kong KW
    Biochem Pharmacol, 2022 Nov;205:115262.
    PMID: 36191627 DOI: 10.1016/j.bcp.2022.115262
    The role of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) has been vastly studied over the last decade. This has led to the rapid development of many generations of EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, patients treated with third-generation TKIs (osimertinib, avitinib and rociletinib) targeting the EGFR T790M mutation have shown emerging resistances and relapses. Therefore, further molecular understanding of NSCLC mutations, bypass signalling, tumour microenvironment and the existence of cancer stem cells to overcome such resistances is warranted. This will pave the way for designing novel and effective chemotherapies to improve patients' overall survival. In this review, we provide an overview of the multifaceted mechanisms of resistance towards EGFR-TKIs, as well as the challenges and perspectives that should be addressed in strategising chemotherapeutic treatments to overcome the ever-evolving and adaptive nature of NSCLC.
    Matched MeSH terms: Drug Resistance, Neoplasm
  11. Liu CY, Lin HF, Lai WY, Lin YY, Lin TW, Yang YP, et al.
    J Chin Med Assoc, 2022 Apr 01;85(4):409-413.
    PMID: 35383703 DOI: 10.1097/JCMA.0000000000000703
    Lung carcinoma (LC) is the third most common cancer diagnosis and accounted for the most cancer-related mortality worldwide in 2018. Based on the type of cells from which it originates, LC is commonly classified into non-small cell lung cancers (NSCLC) and small cell lung cancers (SCLC). NSCLC account for the majority of LC and can be further categories into adenocarcinoma, large cell carcinoma, and squamous cell carcinoma. Accurate classification of LC is critical for its adequate treatment and therapeutic outcome. Since NSCLC express more epidermal growth factor receptor (EGFR) with activation mutations, targeted therapy EGFR-tyrosine kinase inhibitors (TKIs) have been considered as primary option of NSCLC patients with activation EGFR mutation. In this review, we present the genetic alterations, reported mutations in EGFR, and TKIs treatment in NSCLC patients with an emphasis on the downstream signaling pathways in NSCLC progression. Among the signaling pathways identified, mitogen activation protein kinase (MAPK), known also as extracellular signal-regulated protein kinase (Erk) pathway, is the most investigated among the related pathways. EGFR activation leads to the autophosphorylation of its kinase domain and subsequent activation of Ras, phosphorylation of Raf and MEK1/2, and the activation of ERK1/2. Phosphatidylinositol 3-kinase (PI3K)/Akt is another signal pathway that regulates cell cycle and has been linked to NSCLC progression. Currently, three generations of EGFR TKIs have been developed as a first-line treatment of NSCLC patients with EGFR activation and mutation in which these treatment options will be further discussed in this review. The Supplementary Appendix for this article is available at http://links.lww.com/JCMA/A138.
    Matched MeSH terms: Drug Resistance, Neoplasm/genetics
  12. F Smit E, Dooms C, Raskin J, Nadal E, Tho LM, Le X, et al.
    Future Oncol, 2022 Mar;18(9):1039-1054.
    PMID: 34918545 DOI: 10.2217/fon-2021-1406
    MET amplification (METamp), a mechanism of acquired resistance to EGFR tyrosine kinase inhibitors, occurs in up to 30% of patients with non-small-cell lung cancer (NSCLC) progressing on first-line osimertinib. Combining osimertinib with a MET inhibitor, such as tepotinib, an oral, highly selective, potent MET tyrosine kinase inhibitor, may overcome METamp-driven resistance. INSIGHT 2 (NCT03940703), an international, open-label, multicenter phase II trial, assesses tepotinib plus osimertinib in patients with advanced/metastatic EGFR-mutant NSCLC and acquired resistance to first-line osimertinib and METamp, determined centrally by fluorescence in situ hybridization (gene copy number ≥5 and/or MET/CEP7 ≥2) at time of progression. Patients will receive tepotinib 500 mg (450 mg active moiety) plus osimertinib 80 mg once-a-day. The primary end point is objective response, and secondary end points include duration of response, progression-free survival, overall survival and safety. Trial registration number: NCT03940703 (clinicaltrials.gov).
    Matched MeSH terms: Drug Resistance, Neoplasm*
  13. Shaw P, Raymond G, Senthilnathan R, Kumarasamy C, Baxi S, Suresh D, et al.
    Genes (Basel), 2021 Dec 20;12(12).
    PMID: 34946979 DOI: 10.3390/genes12122029
    Background: The microRNAs (miRNAs) are small noncoding single-stranded RNAs typically 19-25 nucleotides long and regulated by cellular and epigenetic factors. These miRNAs plays important part in several pathways necessary for cancer development, an altered miRNA expression can be oncogenic or tumor-suppressive. Recent experimental results on miRNA have illuminated a different perspective of the molecular pathogenesis of head and neck cancers. Regulation of miRNA can have a detrimental effect on the efficacy of chemotherapeutic drugs in both neoadjuvant and adjuvant settings. This miRNA-induced chemoresistance can influence the prognosis and survival rate. The focus of the study is on how regulations of various miRNA levels contribute to chemoresistance in head and neck cancer (HNC). Recent findings suggest that up or down-regulation of miRNAs may lead to resistance towards various chemotherapeutic drugs, which may influence the prognosis. Methods: Studies on miRNA-specific chemoresistance in HNC were collected through literary (bibliographic) databases, including SCOPUS, PubMed, Nature, Elsevier, etc., and were systematically reviewed following PRISMA-P guidelines (Preferred Reporting Items for Systematic Review and Meta-analysis Protocol). We evaluated various miRNAs, their up and downregulation, the effect of altered regulation on the patient's prognosis, resistant cell lines, etc. The data evaluated will be represented in the form of a review and meta-analysis. Discussion: This meta-analysis aims to explore the miRNA-induced chemoresistance in HNC and thus to aid further researches on this topic. PROSPERO registration: CRD42018104657.
    Matched MeSH terms: Drug Resistance, Neoplasm*
  14. Abdullah NA, Inman M, Moody CJ, Storr SJ, Martin SG
    Invest New Drugs, 2021 10;39(5):1232-1241.
    PMID: 33768386 DOI: 10.1007/s10637-021-01106-5
    Radiotherapy is an effective treatment modality for breast cancer but, unfortunately, not all patients respond fully with a significant number experiencing local recurrences. Overexpression of thioredoxin and thioredoxin reductase has been reported to cause multidrug and radiation resistance - their inhibition may therefore improve therapeutic efficacy. Novel indolequinone compounds have been shown, in pancreatic cancer models, to inhibit thioredoxin reductase activity and exhibit potent anticancer activity. The present study evaluates, using in vitro breast cancer models, the efficacy of a novel indolequinone compound (IQ9) as a single agent and in combination with ionising radiation using a variety of endpoint assays including cell proliferation, clonogenic survival, enzyme activity, and western blotting. Three triple-negative breast cancer (MDA-MB-231, MDA-MB-468, and MDA-MB-436) and two luminal (MCF-7 and T47D) breast cancer cell lines were used. Results show that treatment with IQ9 significantly inhibited thioredoxin reductase activity, and inhibited cell growth and colony formation of breast cancer cells with IC50 values in the low micromolar ranges. Enhanced radiosensitivity of triple-negative breast cancer cells was observed, with sensitiser enhancement ratios of 1.20-1.43, but with no evident radiosensitisation of luminal breast cancer cell lines. IQ9 upregulated protein expression of thioredoxin reductase in luminal but not in triple-negative breast cancer cells which may explain the observed differential radiosensitisation. This study provides important evidence of the roles of the thioredoxin system as an exploitable radiobiological target in breast cancer cells and highlights the potential therapeutic value of indolequinones as radiosensitisers.***This study was not part of a clinical trial. Clinical trial registration number: N/A.
    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects*
  15. Nalairndran G, Chung I, Abdul Razack AH, Chung FF, Hii LW, Lim WM, et al.
    J Cell Mol Med, 2021 Sep;25(17):8187-8200.
    PMID: 34322995 DOI: 10.1111/jcmm.16684
    Prostate cancer (PCa) is the second most common malignancy and is the fifth leading cause of cancer mortality among men globally. Docetaxel-based therapy remains the first-line treatment for metastatic castration-resistant prostate cancer. However, dose-limiting toxicity including neutropenia, myelosuppression and neurotoxicity is the major reason for docetaxel dose reductions and fewer cycles administered, despite a recent study showing a clear survival benefit with increased total number of docetaxel cycles in PCa patients. Although previous studies have attempted to improve the efficacy and reduce docetaxel toxicity through drug combination, no drug has yet demonstrated improved overall survival in clinical trial, highlighting the challenges of improving the activity of docetaxel monotherapy in PCa. Herein, we identified 15 lethality hits for which inhibition could enhance docetaxel sensitivity in PCa cells via a high-throughput kinome-wide loss-of-function screen. Further drug-gene interactions analyses identified Janus kinase 1 (JAK1) as a viable druggable target with existing experimental inhibitors and FDA-approved drugs. We demonstrated that depletion of endogenous JAK1 enhanced docetaxel-induced apoptosis in PCa cells. Furthermore, inhibition of JAK1/2 by baricitinib and ruxolitinib synergizes docetaxel sensitivity in both androgen receptor (AR)-negative DU145 and PC3 cells, but not in the AR-positive LNCaP cells. In contrast, no synergistic effects were observed in cells treated with JAK2-specific inhibitor, fedratinib, suggesting that the synergistic effects are mainly mediated through JAK1 inhibition. In conclusion, the combination therapy with JAK1 inhibitors and docetaxel could be a useful therapeutic strategy in the treatment of prostate cancers.
    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects
  16. Quah SY, Wong CC, Wong HC, Ho KL, Abdul Manan N, Deb PK, et al.
    Toxicol Appl Pharmacol, 2021 08 15;425:115605.
    PMID: 34087331 DOI: 10.1016/j.taap.2021.115605
    Chemoresistance poses a major hurdle to cancer treatments. Andrographolide-derived SRJ09 and SRJ23 were reported to exhibit potent, selective inhibitory activities against colon and prostate cancer cells, respectively. In this study, previously developed resistant colon (HCT-116rst09) and prostate (PC-3rst23) cancer cell lines were used to elucidate the molecular mechanisms contributing to chemoresistance. Cytotoxic effects of SRJ09 and SRJ23 on both parental and resistant cells were investigated. Cell cycle distributions in HCT-116rst09 cells following SRJ09 treatment were analysed using flow cytometry. Whole-genome microarray analysis was performed on both parental and resistant cells to obtain differential gene expression profiles. Microarray data were subjected to protein-protein interaction network, functional enrichment, and pathway analyses. Reverse transcription-polymerase chain reaction (RT-PCR) was used to validate the changes in expression levels of selected genes. Besides morphological changes, HCT-116rst09 cells showed 7.0-fold resistance to SRJ09 while PC-3rst23 cells displayed a 5.5-fold resistance to SRJ23, as compared with their respective parental cells. G0/G1-phase cell cycle arrest was observed in HCT-116rst09 cells upon SRJ09 treatment. Collectively, 77 and 21 genes were found differentially modulated in HCT-116rst09 and PC-3rst23 cells, respectively. Subsequent bioinformatics analysis revealed several genes associated with FGFR4 and PI3K pathways, and cancer stemness, were chemoresistance mediators in HCT-116rst09 cells. RT-PCR confirmed the HMOX1 upregulation and ATG12 downregulation protected the PC-3rst23 cells from SRJ23 cytotoxicity. In conclusion, acquired chemoresistance to SRJ09 and SRJ23 in colon and prostate cancer cells, respectively, could be attributed to the alterations in the expression of genes such as those related to PI3K and autophagy pathways.
    Matched MeSH terms: Drug Resistance, Neoplasm*
  17. Veerasamy T, Eugin Simon S, Tan KO
    Int J Biochem Cell Biol, 2021 08;137:106016.
    PMID: 34082133 DOI: 10.1016/j.biocel.2021.106016
    Conventional chemotherapy relies on the cytotoxicity of chemo-drugs to inflict destructive effects on tumor cells. However, as most tumor cells develop resistance to chemo-drugs, small doses of chemo-drugs are unlikely to provide significant clinical benefits in cancer treatment while high doses of chemo-drugs have been shown to impact normal human cells negatively due to the non-specific nature and cytotoxicity associated with chemo-drugs. To overcome this challenge, sensitizations of tumor cells with bioactive molecules that specifically target the pro-survival and pro-apoptosis signaling pathways of the tumor cells are likely to increase the therapeutic impacts and improve the clinical outcomes by reducing the dependency and adverse effects associated with using high doses of chemo-drugs in cancer treatment. This review focuses on emerging strategies to enhance the sensitization of tumor cells toward cancer therapies based on our understanding of tumor cell biology and underlying signaling pathways.
    Matched MeSH terms: Drug Resistance, Neoplasm*
  18. Almoustafa HA, Alshawsh MA, Chik Z
    Anticancer Drugs, 2021 Aug 01;32(7):745-754.
    PMID: 33675612 DOI: 10.1097/CAD.0000000000001065
    Poly lactic-co-glycolic acid (PLGA) nanoparticles are intensively studied nanocarriers in drug delivery because of their biodegradability and biochemical characteristics. Polyethylene glycol (PEG) coating for nanocarriers gives them long circulation time in blood and makes them invisible to the reticuloendothelial system. Breast cancer cells have greater uptake of hyaluronic acid compared to normal cells as it binds to their overexpressed CD44 receptors. Since hypoxia plays an important role in cancer metastasis; we formulated PEG-PLGA nanoparticles coated with hyaluronic acid as targeted delivery system for doxorubicin (DOX) using nanoprecipitation method, and characterized them for chemical composition, size, surface charge, shape, and encapsulation efficiency. Then we tested them in vitro on hypoxia-optimized metastatic breast cancer cells. The nanoparticles were spherical with an average size of about 106 ± 53 nm, a negative surface charge (-15 ± 3 mV), and high encapsulation efficiency (73.3 ± 4.1%). In vitro investigation with hypoxia-elevated CD44 MDA-MB-231 cells showed that hyaluronic acid-targeted nanoparticles maintained their efficacy despite hypoxia-induced drug resistance unlike free DOX and nontargeted nanoparticles. In conclusion, this study revealed a simple third generation nanoparticle formulation for targeted treatment of hypoxia-induced drug resistance in breast cancer metastatic cells. Further, optimization is needed including In vivo efficacy and nanoparticle-specific pharmacokinetic studies.
    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects*
  19. Liew K, Yu GQS, Wei Pua LJ, Wong LZ, Tham SY, Hii LW, et al.
    Cancer Lett, 2021 Apr 28;504:81-90.
    PMID: 33587980 DOI: 10.1016/j.canlet.2021.02.006
    Despite recent in advances in the management of nasopharyngeal carcinoma (NPC), development of targeted therapy remains challenging particularly in patients with recurrent or metastatic disease. To search for clinically relevant targets for the treatment of NPC, we carried out parallel genome-wide functional screens to identified essential genes that are required for NPC cells proliferation and cisplatin resistance. We identified lymphocyte-specific protein tyrosine kinase (LCK) as a key vulnerability of both proliferation and cisplatin resistance. Depletion of endogenous LCK or treatment of cells with LCK inhibitor induced tumor-specific cell death and synergized cisplatin sensitivity in EBV-positive C666-1 and EBV-negative SUNE1 cells. Further analyses demonstrated that LCK is regulating the proliferation and cisplatin resistance through activation of signal transducer and activator of transcription 5 (STAT5). Taken together, our study provides a molecular basis for targeting LCK and STAT5 signaling as potential druggable targets for the management of NPC.
    Matched MeSH terms: Drug Resistance, Neoplasm/genetics*
  20. Verusingam ND, Chen YC, Lin HF, Liu CY, Lee MC, Lu KH, et al.
    J Chin Med Assoc, 2021 03 01;84(3):248-254.
    PMID: 33009209 DOI: 10.1097/JCMA.0000000000000438
    BACKGROUND: Lung cancer contributes to high cancer mortality worldwide with 80% of total cases diagnosed as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain serves as a druggable target in NSCLC patients with exon 19 deletion and L858R mutation. However, patients eventually succumbed to resistance to first- and second-generation EGFR-TK inhibitors through activation of T790M mutation. Third-generation EGFR-TKI, Osimertinib exhibits high efficacy in patients with exon 19 deletion/L858R/T790M mutation but they experienced acquired resistance thereafter. Available treatment options in NSCLC patients remains a challenge due to unknown molecular heterogeneity responsible for acquired resistance to EGFR-TKI. In this study, we aim to generate Osimertinib-resistant (OR) cells from H1975 carrying L858R/T790M double mutation which can be used as a model to elucidate mechanism of resistance.

    METHODS: OR cells were established via stepwise-dose escalation and limiting single-cell dilution method. We then evaluated Osimertinib resistance potential via cell viability assay. Proteins expression related to EGFR-signalling, epithelial to mesenchymal transition (EMT), and autophagy were analyzed via western blot.

    RESULTS: OR cell lines exhibited increased drug resistance potential compared to H1975. Distinguishable mesenchymal-like features were observed in OR cells. Protein expression analysis revealed EGFR-independent signaling involved in the derived OR cells as well as EMT and autophagy activity.

    CONCLUSION: We generated OR cell lines in-vitro as evidenced by increased drug resistance potential, increased mesenchymal features, and enhanced autophagy activity. Development of Osimertinib resistance cells may serve as in-vitro model facilitating discovery of molecular aberration present during acquired mechanism of resistance.

    Matched MeSH terms: Drug Resistance, Neoplasm*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links