Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, et al.
    Colloids Surf B Biointerfaces, 2016 Mar 1;139:68-78.
    PMID: 26700235 DOI: 10.1016/j.colsurfb.2015.11.053
    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering.
    Matched MeSH terms: Durapatite/chemistry
  2. Lee WH, Loo CY, Rohanizadeh R
    Mater Sci Eng C Mater Biol Appl, 2019 Jun;99:929-939.
    PMID: 30889767 DOI: 10.1016/j.msec.2019.02.030
    This study has evaluated the effect of functionalizing surface charges of hydroxyapatite on the modulation of loading and release of curcumin nanoparticles. The increase in loading and release of curcumin nanoparticles indirectly translates to enhanced anti-cancer effect. Owing to the hydrophobic characteristics of curcumin which have resulted in low bioavailability in cancer cells, the engineering curcumin into nanoparticles is therefore a viable solution to overcomes its limitation. In order to maintain a sustained release profile of curcumin nanoparticles, curcumin nanoparticles were loaded (Cur-NPs) onto hydroxyapatite (HA) via physical adsorption. To regulate the adsorption capacity of Cur-NPs onto HA, we functionalized HA with different carboxylic acids (lactic acid, tartaric acid and citric acid). The presence of carboxylic groups on HA significantly affected the binding and the release profile of Cur-NPs. The effects of Cur-NPs loaded HA were evaluated on breast cancer cell line (MCF-7), which included cell proliferation, cellular uptake of Cur-NPs, apoptosis and cell cycle analysis. The results showed that carboxylic acid-functionalized HA demonstrated higher anti-proliferating activity and time dependent cytoplasmic uptake of Cur-NPs in MCF-7 cells compared to unmodified HA. In addition, Cur-NPs loaded on functionalized HA induced higher apoptosis and cell cycle arrest in MCF-7 cells compared to unmodified HA. The present study indicates that the delivery of Cur-NPs to breast cancer using carboxylic acid-functionalized HA carrier could improve their anti-cancer activities.
    Matched MeSH terms: Durapatite/chemistry*
  3. Gopinath VK, Musa M, Samsudin AR, Sosroseno W
    PMID: 16997796
    The role of protein kinase C (PKC) in hydroxyapatite (HA)-induced phagocytosis by RAW 264.7 cells was investigated. The cells were incubated with HA particles at various incubation time and the levels of PKC activity were determined from the cell lysate. To determine the role of PKC, particles were incubated with the cells pretreated with the various concentrations of bisindolylmaleimide, a PKC inhibitor, and phagocytosis was then assessed at 60 min. Latex beads were used as a control. Our results showed that following incubation with HA particles, the levels of PKC activity in RAW264.7 cells was highest at 7 min and then decreased to reach the baseline levels of the controls at 30 min. Pretreatment of the cells with bisindolylmaleimide significantly reduced phagocytosis of HA particles in a dose-dependent pattern. The results of our present study suggest therefore that ingestion of HA by RAW264.7 cells may depend on PKC activity that may act in the early stages of phagocytosis.
    Matched MeSH terms: Durapatite/chemistry
  4. Bee SL, Bustami Y, Ul-Hamid A, Lim K, Abdul Hamid ZA
    J Mater Sci Mater Med, 2021 Aug 23;32(9):106.
    PMID: 34426879 DOI: 10.1007/s10856-021-06590-y
    Combination of bioactive material such as hydroxyapatite (HAp) with antibacterial agents would have great potential to be used as bone implant materials to avert possible bacterial infection that can lead to implant-associated diseases. The present study aimed to develop an antibacterial silver nanoparticle-decorated hydroxyapatite (HAp/AgNPs) nanocomposite using chemical reduction and thermal calcination approaches. In this work, natural HAp that was extracted from chicken bone wastes is used as support matrix for the deposition of silver nanoparticles (AgNPs) to produce HAp/AgNPs nanocomposite. XRD, FESEM-EDX, HRTEM, and XPS analyses confirmed that spherical AgNPs were successfully synthesized and deposited on the surface of HAp particles, and the amount of AgNPs adhered on the HAp surface increased with increasing AgNO3 concentration used. The synthesized HAp/AgNPs nanocomposites demonstrated strong antibacterial activity against Staphylococcus aureus bacteria, where the antibacterial efficiency is relied on the amount and size of deposited AgNPs. In addition, the in vitro bioactivity examination in Hank's balanced salt solution showed that more apatite were grown on the surface of HAp/AgNPs nanocomposite when AgNO3 concentration used >1 wt.%. Such nanocomposite with enhanced bioactivity and antibacterial properties emerged as a promising biomaterial to be applied for dentistry and orthopedic implantology.
    Matched MeSH terms: Durapatite/chemistry
  5. Aslam Khan MU, Haider A, Abd Razak SI, Abdul Kadir MR, Haider S, Shah SA, et al.
    J Tissue Eng Regen Med, 2021 04;15(4):322-335.
    PMID: 33432773 DOI: 10.1002/term.3168
    The importance of bone scaffolds has increased many folds in the last few years; however, during bone implantation, bacterial infections compromise the implantation and tissue regeneration. This work is focused on this issue while not compromising on the properties of a scaffold for bone regeneration. Biocomposite scaffolds (BS) were fabricated via the freeze-drying technique. The samples were characterized for structural changes, surface morphology, porosity, and mechanical properties through spectroscopic (Fourier transform-infrared [FT-IR]), microscopic (scanning electron microscope [SEM]), X-ray (powder X-ray diffraction and energy-dispersive X-ray), and other analytical (Brunauer-Emmett-Teller, universal testing machine Instron) techniques. Antibacterial, cellular, and hemocompatibility assays were performed using standard protocols. FT-IR confirmed the interactions of all the components. SEM illustrated porous and interconnected porous morphology. The percentage porosity was in the range of 49.75%-67.28%, and the pore size was 215.65-470.87 µm. The pore size was perfect for cellular penetration. Thus, cells showed significant proliferation onto these scaffolds. X-ray studies confirmed the presence of nanohydroxyapatite and graphene oxide (GO). The cell viability was 85%-98% (BS1-BS3), which shows no significant toxicity of the biocomposite. Furthermore, the biocomposites exhibited better antibacterial activity, no effect on the blood clotting (normal in vitro blood clotting), and less than 5% hemolysis. The ultimate compression strength for the biocomposites increased from 4.05 to 7.94 with an increase in the GO content. These exciting results revealed that this material has the potential for possible application in bone tissue engineering.
    Matched MeSH terms: Durapatite/chemistry*
  6. Khalajabadi SZ, Abu ABH, Ahmad N, Yajid MAM, Hj Redzuan NB, Nasiri R, et al.
    J Mech Behav Biomed Mater, 2018 Jan;77:360-374.
    PMID: 28985616 DOI: 10.1016/j.jmbbm.2017.09.032
    This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36MPa for MgO and ~32MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating.
    Matched MeSH terms: Durapatite/chemistry*
  7. Iqbal B, Sarfaraz Z, Muhammad N, Ahmad P, Iqbal J, Khan ZUH, et al.
    J Biomater Sci Polym Ed, 2018 07;29(10):1168-1184.
    PMID: 29460709 DOI: 10.1080/09205063.2018.1443604
    In this study, collagen/alginate/hydroxyapatite beads having different proportions were prepared as bone fillers for the restoration of osteological defects. Ionic liquid was used to dissolve the collagen and subsequently the solution was mixed with sodium alginate solution. Hydroxyapatite was added in different proportions, with the rationale to enhance mechanical as well as biological properties. The prepared solutions were given characteristic bead shapes by dropwise addition into calcium chloride solution. The prepared beads were characterized using FTIR, XRD, TGA and SEM analysis. Microhardness testing was used to evaluate the mechanical properties. The prepared beads were investigated for water adsorption behavior to ascertain its ability for body fluid uptake and adjusted accordingly to the bone cavity. Drug loading and subsequently the antibacterial activity was investigated for the prepared beads. The biocompatibility was assessed using the hemolysis testing and cell proliferation assay. The prepared collagen-alginate-HA beads, having biocompatibility and good mechanical properties, have showed an option of promising biologically active bone fillers for bone regeneration.
    Matched MeSH terms: Durapatite/chemistry*
  8. Touri M, Moztarzadeh F, Osman NAA, Dehghan MM, Mozafari M
    Mater Sci Eng C Mater Biol Appl, 2018 Mar 01;84:236-242.
    PMID: 29519434 DOI: 10.1016/j.msec.2017.11.037
    Tissue engineering scaffolds with oxygen generating elements have shown to be able to increase the level of oxygen and cell survivability in specific conditions. In this study, biphasic calcium phosphate (BCP) scaffolds with the composition of 60% hydroxyapatite (HA) and 40% beta-tricalcium phosphate (β-TCP), which have shown a great potential for bone tissue engineering applications, were fabricated by a direct-write assembly (robocasting) technique. Then, the three-dimensional (3D)-printed scaffolds were coated with different ratios of an oxygen releasing agent, calcium peroxide (CPO), which encapsulated within a polycaprolactone (PCL) matrix through dip-coating, and used for in situ production of oxygen in the implanted sites. The structure, composition and morphology of the prepared scaffolds were characterized by different techniques. The oxygen release kinetics and biological investigations of the scaffolds were also studied in vitro. The results showed that oxygen release behaviour was sustained and dependant on the concentration of CPO encapsulated in the PCL coating matrix. It was also demonstrated that the coated scaffolds, having 3% CPO in the coating system, could provide a great potential for promoting bone ingrowth with improving osteoblast cells viability and proliferation under hypoxic conditions. The findings indicated that the prepared scaffolds could play a significant role in engineering of large bone tissue implants with limitations in oxygen diffusion.
    Matched MeSH terms: Durapatite/chemistry
  9. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RB
    Indian J Med Res, 2013 Jun;137(6):1093-101.
    PMID: 23852290
    Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering.
    Matched MeSH terms: Durapatite/chemistry*
  10. Baradaran S, Moghaddam E, Nasiri-Tabrizi B, Basirun WJ, Mehrali M, Sookhakian M, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:656-668.
    PMID: 25686995 DOI: 10.1016/j.msec.2015.01.050
    The effect of the addition of an ionic dopant to calcium phosphates for biomedical applications requires specific research due to the essential roles played in such processes. In the present study, the mechanical and biological properties of Ni-doped hydroxyapatite (HA) and Ni-doped HA mixed with graphene nanoplatelets (GNPs) were evaluated. Ni (3wt.% and 6wt.%)-doped HA was synthesized using a continuous precipitation method and calcined at 900°C for 1h. The GNP (0.5-2wt.%)-reinforced 6% Ni-doped HA (Ni6) composite was prepared using rotary ball milling for 15h. The sintering process was performed using hot isostatic pressing at processing conditions of 1150°C and 160MPa with a 1-h holding time. The results indicated that the phase compositions and structural features of the products were noticeably affected by the Ni and GNPs. The mechanical properties of Ni6 and 1.5Ni6 were increased by 55% and 75% in hardness, 59% and 163% in fracture toughness and 120% and 85% in elastic modulus compared with monolithic HA, respectively. The in-vitro biological behavior was investigated using h-FOB osteoblast cells in 1, 3 and 5days of culture. Based on the osteoblast results, the cytotoxicity of the products was indeed affected by the Ni doping. In addition, the effect of GNPs on the growth and proliferation of osteoblast cells was investigated in Ni6 composites containing different ratios of GNPs, where 1.5wt.% was the optimum value.
    Matched MeSH terms: Durapatite/chemistry
  11. Saidin S, Chevallier P, Abdul Kadir MR, Hermawan H, Mantovani D
    Mater Sci Eng C Mater Biol Appl, 2013 Dec 1;33(8):4715-24.
    PMID: 24094179 DOI: 10.1016/j.msec.2013.07.026
    Hydroxyapatite (HA) coated implant is more susceptible to bacterial infection as the micro-structure surface which is beneficial for osseointegration, could also become a reservoir for bacterial colonisation. The aim of this study was to introduce the antibacterial effect of silver (Ag) to the biomineralised HA by utilising a polydopamine film as an intermediate layer for Ag and HA immobilisation. Sufficient catechol groups in polydopamine were required to bind chemically stainless steel 316 L, Ag and HA elements. Different amounts of Ag nanoparticles were metallised on the polydopamine grafted stainless steel by varying the immersion time in silver nitrate solution from 12 to 24 h. Another polydopamine layer was then formed on the metallised film, followed by surface biomineralisation in 1.5 Simulated Body Fluid (SBF) solution for 3 days. Several characterisation techniques including X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and Contact Angle showed that Ag nanoparticles and HA agglomerations were successfully immobilised on the polydopamine film through an element reduction process. The Ag metallisation at 24 h has killed the viable bacteria with 97.88% of bactericidal ratio. The Ag was ionised up to 7 days which is crucial to prevent bacterial infection during the first stage of implant restoration. The aged functionalised films were considered stable due to less alteration of its chemical composition, surface roughness and wettability properties. The ability of the functionalised film to coat complex and micro scale metal make it suitable for dental and orthopaedic implants application.
    Matched MeSH terms: Durapatite/chemistry*
  12. Lim SR, Gooi BH, Singh M, Gam LH
    Appl Biochem Biotechnol, 2011 Nov;165(5-6):1211-24.
    PMID: 21863284 DOI: 10.1007/s12010-011-9339-3
    Limitation on two dimensional (2D) gel electrophoresis technique causes some proteins to be under presented, especially the extreme acidic, basic, or membrane proteins. To overcome the limitation of 2D electrophoresis, an analysis method was developed for identification of differentially expressed proteins in normal and cancerous colonic tissues using self-pack hydroxyapatite (HA) column. Normal and cancerous colon tissues were homogenized and proteins were extracted using sodium phosphate buffer at pH 6.8. Protein concentration was determined and the proteins were loaded unto the HA column. HA column reduced the complexity of proteins mixture by fractionating the proteins according to their ionic strength. Further protein separation was accomplished by a simple and cost effective sodium dodecyl sulfate-polyacrylamide gel electrophoresis method. The protein bands were subjected to in-gel digestion and protein analysis was performed using electrospray ionization (ESI) ion trap mass spectrometer. There were 17 upregulated proteins and seven downregulated proteins detected with significant differential expression. Some of these proteins were low abundant proteins or proteins with extreme pH that were usually under presented in 2D gel analysis. We have identified brain mitochondrial carrier protein 1, T-cell surface glycoprotein CD1a, SOSS complex subunit B2, and Protein Jade 1 which were previously not detected in 2D gel analysis method.
    Matched MeSH terms: Durapatite/chemistry
  13. Mustaffa R, Besar I, Andanastuti M
    Med J Malaysia, 2008 Jul;63 Suppl A:95-6.
    PMID: 19025001
    In this study, porous hydroxyapatite (HA) samples were fabricated via sponge techniques with the aid of sago as part of the binder mixture. Development processes for the production of porous bone graft substitutes are studied using polyurethane sponge. To obtain the optimum amount of binder for successful fabrication of porous HA were done. Initially, porous HA powder was synthesized using calcium hydroxide and orthorphosphoric acid. Meanwhile, sago was mixed with PVA in a certain ratio to be used as binder for preparing the porous HA. After a series of investigative tests were conducted to characterize the sintered samples, the use of the sago and polymeric mixture was found to successfully aid the fabrication of porous HA samples. In this investigation, comparison of physical and mechanical characteristics between samples prepared using difference techniques was made.
    Matched MeSH terms: Durapatite/chemistry*
  14. Zakaria SM, Sharif Zein SH, Othman MR, Jansen JA
    J Biomed Mater Res A, 2013 Jul;101(7):1977-85.
    PMID: 23225849 DOI: 10.1002/jbm.a.34506
    Electrospinning of hydroxyapatite (HA)/polyvinyl butyral solution resulted in the formation of fibers with average diameter of 937-1440 nm. These fibers were converted into HA nanoparticles with size <100 nm after undergoing calcination treatment at 600°C. The diameter of the fiber was found to be influenced by applied voltage and spinning distance. The injection flowrate did not affect the diameter significantly. The electrospinning method successfully reduced the commercial HA particle size in the range of 400-1100 nm into <100 nm. The dispersion of the finally calcined HA nanoparticles was improved significantly after anionic sodium dodecyl sulfate surfactant was introduced. The experimental data of HA growth kinetics were subjected to the integral method of analysis, and the rate law of the reaction was found to follow the first order reaction.
    Matched MeSH terms: Durapatite/chemistry*
  15. Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T
    Regen Med, 2015;10(5):579-90.
    PMID: 26237702 DOI: 10.2217/rme.15.27
    To compare the effect of bovine bone derived porous hydroxyapatite (BDHA) scaffold on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hMSCs) compared with commercial hydroxyapatite (CHA) scaffold.
    Matched MeSH terms: Durapatite/chemistry
  16. Yatongchai C, Placek LM, Curran DJ, Towler MR, Wren AW
    J Biomater Appl, 2015 Nov;30(5):495-511.
    PMID: 26116020 DOI: 10.1177/0885328215592866
    Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2-CaO-ZnO-Na2O-TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability.
    Matched MeSH terms: Durapatite/chemistry*
  17. Khan MUA, Haider S, Shah SA, Razak SIA, Hassan SA, Kadir MRA, et al.
    Int J Biol Macromol, 2020 May 15;151:584-594.
    PMID: 32081758 DOI: 10.1016/j.ijbiomac.2020.02.142
    Arabinoxylan (AX) is a natural biological macromolecule with several potential biomedical applications. In this research, AX, nano-hydroxyapatite (n-HAp) and titanium dioxide (TiO2) based polymeric nanocomposite scaffolds were fabricated by the freeze-drying method. The physicochemical characterizations of these polymeric nanocomposite scaffolds were performed for surface morphology, porosity, swelling, biodegradability, mechanical, and biological properties. The scaffolds exhibited good porosity and rough surface morphology, which were efficiently controlled by TiO2 concentrations. MC3T3-E1 cells were employed to conduct the biocompatibility of these scaffolds. Scaffolds showed unique biocompatibility in vitro and was favorable for cell attachment and growth. PNS3 proved more biocompatible, showed interconnected porosity and substantial mechanical strength compared to PNS1, PNS2 and PNS4. Furthermore, it has also showed more affinity to cells and cell growth. The results illustrated that the bioactive nanocomposite scaffold has the potential to find applications in the tissue engineering field.
    Matched MeSH terms: Durapatite/chemistry*
  18. Baba Ismail YM, Wimpenny I, Bretcanu O, Dalgarno K, El Haj AJ
    J Biomed Mater Res A, 2017 Jun;105(6):1775-1785.
    PMID: 28198131 DOI: 10.1002/jbm.a.36038
    Ionic substitutions have been proposed as a tool to control the functional behavior of synthetic hydroxyapatite (HA), particularly for Bone Tissue Engineering applications. The effect of simultaneous substitution of different levels of carbonate (CO3) and silicon (Si) ions in the HA lattice was investigated. Furthermore, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured on multi-substituted HA (SiCHA) to determine if biomimetic chemical compositions were osteoconductive. Of the four different compositions investigates, SiCHA-1 (0.58 wt % Si) and SiCHA-2 (0.45 wt % Si) showed missing bands for CO3and Si using FTIR analysis, indicating competition for occupation of the phosphate site in the HA lattice; 500°C was considered the most favorable calcination temperature as: (i) the powders produced possessed a similar amount of CO3(2-8 wt %) and Si (<1.0 wt %) as present in native bone; and (ii) there was a minimal loss of CO3and Si from the HA structure to the surroundings during calcination. Higher Si content in SiCHA-1 led to lower cell viability and at most hindered proliferation, but no toxicity effect occurred. While, lower Si content in SiCHA-2 showed the highest ALP/DNA ratio after 21 days culture with hMSCs, indicating that the powder may stimulate osteogenic behavior to a greater extent than other powders. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1775-1785, 2017.
    Matched MeSH terms: Durapatite/chemistry*
  19. Ooi CH, Ling YP, Abdullah WZ, Mustafa AZ, Pung SY, Yeoh FY
    J Mater Sci Mater Med, 2019 Mar 30;30(4):44.
    PMID: 30929088 DOI: 10.1007/s10856-019-6247-5
    Hydroxyapatite is an ideal biomaterial for bone tissue engineering due to its biocompatibility and hemocompatibility which have been widely studied by many researchers. The incorporation of nanoporosity into hydroxyapatite could transform the biomaterial into an effective adsorbent for uremic toxins removal especially in artificial kidney system. However, the effect of nanoporosity incorporation on the hemocompatibility of hydroxyapatite has yet to be answered. In this study, nanoporous hydroxyapatite was synthesized using hydrothermal technique and its hemocompatibility was determined. Non-ionic surfactants were used as soft templates to create porosity in the hydroxyapatite. The presence of pure hydroxyapatite phase in the synthesized samples is validated by X-ray diffraction analysis and Fourier transform infrared spectroscopy. The TEM images show that the hydroxyapatite formed rod-like particles with the length of 21-90 nm and diameter of 11-70 nm. The hydroxyapatite samples exhibit BET surface area of 33-45 m2 g-1 and pore volume of 0.35-0.44 cm3 g-1. The hemocompatibility of the hydroxyapatite was determined via hemolysis test, platelet adhesion, platelet activation and blood clotting time measurement. The nanoporous hydroxyapatite shows less than 5% hemolysis, suggesting that the sample is highly hemocompatible. There is no activation and morphological change observed on the platelets adhered onto the hydroxyapatite. The blood clotting time demonstrates that the blood incubated with the hydroxyapatite did not coagulate. This study summarizes that the synthesized nanoporous hydroxyapatite is a highly hemocompatible biomaterial and could potentially be utilized in biomedical applications.
    Matched MeSH terms: Durapatite/chemistry*
  20. Ramli MI, Sulong AB, Muhamad N, Muchtar A, Arifin A, Mohd Foudzi F, et al.
    PLoS One, 2018;13(10):e0206247.
    PMID: 30359433 DOI: 10.1371/journal.pone.0206247
    The combination of metallic bio-inert material, stainless-steel 316L (SS316L) and a bio-active material, hydroxyapatite (HA) can produce a composite which has superior properties for orthopaedic applications. The main objective of this study is to investigate the effects of sintering temperature and holding time on the physical and mechanical properties of the sintered part. 50wt.% SS316L and 50wt.% HA were mixed with a binder system of palm stearin (PS) and polyethylene (PE) at 61 vol.% powder loading. Rheological properties show a pseudo-plastic behaviour of the feedstock, where viscosity decreases with increasing shear rate. The feedstock was injection moulded into a tensile bar shape while thermal debinding was carried out at 320°C and 500°C. The brown parts were sintered at 1000, 1100, 1200 and 1300°C, with three different sintering times of 1, 3 and 5 hours in the furnace. It was found that the highest sintered density measured was 95.61% of the theoretical density. In addition, the highest hardness and Young's modulus measured were 150.45 HV and 52.61 GPa respectively, which are higher than those of human bone. The lowest percentage of carbon content was 0.022wt.% given by the sample sintered at 1300°C for 1 hour. Therefore, SS316L/HA composite with good mechanical and physical properties was successfully produced through the PIM process.
    Matched MeSH terms: Durapatite/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links