Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Yu H, Zahidi I
    Sci Total Environ, 2023 Mar 15;864:161135.
    PMID: 36566867 DOI: 10.1016/j.scitotenv.2022.161135
    The over-exploitation of mineral resources has led to increasingly serious dust pollution in mines, resulting in a series of negative impacts on the environment, mine workers (occupational health) and nearby residents (public health). For the environment, mine dust pollution is considered a major threat on surface vegetation, landscapes, weather conditions and air quality, leading to serious environmental damage such as vegetation reduction and air pollution; for occupational health, mine dust from the mining process is also regarded as a major threat to mine workers' health, leading to occupational diseases such as pneumoconiosis and silicosis; for public health, the pollutants contained in mine dust may pollute surrounding rivers, farmlands and crops, which poses a serious risk to the domestic water and food security of nearby residents who are also susceptible to respiratory diseases from exposure to mine dust. Therefore, the second section of this paper combines literature research, statistical studies, and meta analysis to introduce the public mainly to the severity of mine dust pollution and its hazards to the environment, mine workers (occupational health), and residents (public health), as well as to present an outlook on the management of mine dust pollution. At the same time, in order to propose a method for monitoring mine dust pollution on a regional scale, based on the Dense Dark Vegetation (DDV) algorithm, the third section of this paper analysed the aerosol optical depth (AOD) change in Dexing City of China using the data of 2010, 2014, 2018 and 2021 from the NASA MCD19A2 Dataset to explore the mine dust pollution situation and the progress of pollution treatment in Dexing City from 2010 to 2021. As a discussion article, this paper aims to review the environmental and health risks caused by mine dust pollution, to remind the public to take mine dust pollution seriously, and to propose the use of remote sensing technologies to monitor mine dust pollution, providing suggestions for local governments as well as mines on mine dust monitoring measures.
    Matched MeSH terms: Dust/analysis
  2. Wahid NB, Latif MT, Suratman S
    Chemosphere, 2013 Jun;91(11):1508-16.
    PMID: 23336924 DOI: 10.1016/j.chemosphere.2012.12.029
    This study was conducted to determine the composition and source apportionment of surfactant in atmospheric aerosols around urban and semi-urban areas in Malaysia based on ionic compositions. Colorimetric analysis was undertaken to determine the concentrations of anionic surfactants as Methylene Blue Active Substances (MBAS) and cationic surfactants as Disulphine Blue Active Substances (DBAS) using a UV spectrophotometer. Ionic compositions were determined using ion chromatography for cations (Na(+), NH4(+), K(+), Mg(2+), Ca(2+)) and anions (F(-), Cl(-), NO3(-), SO4(2-)). Principle component analysis (PCA) combined with multiple linear regression (MLR) were used to identify the source apportionment of MBAS and DBAS. Results indicated that the concentrations of surfactants at both sampling sites were dominated by MBAS rather than DBAS especially in fine mode aerosols during the southwest monsoon. Three main sources of surfactants were identified from PCA-MLR analysis for MBAS in fine mode samples particularly in Kuala Lumpur, dominated by motor vehicles, followed by soil/road dust and sea spray. Besides, for MBAS in coarse mode, biomass burning/sea spray were the dominant source followed by motor vehicles/road dust and building material.
    Matched MeSH terms: Dust/analysis
  3. Wahab MIA, Razak WMAA, Sahani M, Khan MF
    Sci Total Environ, 2020 Feb 10;703:135535.
    PMID: 31767333 DOI: 10.1016/j.scitotenv.2019.135535
    This study aimed to assess the concentrations and health effect of trace metals [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn)] on the road dust of selected locations in the city of Kuala Lumpur. Sampling was conducted thrice at four locations, namely, Tun Razak Road, Raja Abdullah Road, Tunku Abdul Rahman (TAR) Road, and Ayer Molek Road. The concentrations of trace metals in road dust were analyzed by inductively coupled plasma mass spectrometry. TAR Road presented the highest Cd, Cu, Ni, and Pb contents compared with the other roads. The pollution level of trace metals in road dust was assessed by pollution index and pollution load index (PLI), showing that all studied locations were highly contaminated except Ayer Molek Road. Based on the PLI value, the sequence of pollution in descending order is as follows: TAR Road > Raja Abdullah Road > Tun Razak Road > Ayer Molek Road. Health risk assessment was performed to assess the health effects of carcinogenic and noncarcinogenic pollutants caused by the exposure to trace metals in road dust on adults and children. Based on the integrated hazard index values for children at all locations, >1 indicates a possible noncarcinogenic effect. All incremental lifetime cancer risk values for adult and children at all locations are within acceptable limits and are considered safe.
    Matched MeSH terms: Dust/analysis*
  4. Vinjamuri KS, Mhawish A, Banerjee T, Sorek-Hamer M, Broday DM, Mall RK, et al.
    Environ Pollut, 2020 Feb;257:113377.
    PMID: 31672363 DOI: 10.1016/j.envpol.2019.113377
    Attenuated backscatter profiles retrieved by the space borne active lidar CALIOP on-board CALIPSO satellite were used to measure the vertical distribution of smoke aerosols and to compare it against the ECMWF planetary boundary layer height (PBLH) over the smoke dominated region of Indo-Gangetic Plain (IGP), South Asia. Initially, the relative abundance of smoke aerosols was investigated considering multiple satellite retrieved aerosol optical properties. Only the upper IGP was selectively considered for CALIPSO retrieval based on prevalence of smoke aerosols. Smoke extinction was found to contribute 2-50% of the total aerosol extinction, with strong seasonal and altitudinal attributes. During winter (DJF), smoke aerosols contribute almost 50% of total aerosol extinction only near to the surface while in post-monsoon (ON) and monsoon (JJAS), relative contribution of smoke aerosols to total extinction was highest at about 8 km height. There was strong diurnal variation in smoke extinction, evident throughout the year, with frequent abundance of smoke particles at lower height (<4 km) during daytime compared to higher height during night (>4 km). Smoke injection height also varied considerably during rice (ON: 0.71 ± 0.65 km) and wheat (AM: 2.34 ± 1.34 km) residue burning period having a significant positive correlation with prevailing PBLH. Partitioning smoke AOD against PBLH into the free troposphere (FT) and boundary layer (BL) yield interesting results. BL contribute 36% (16%) of smoke AOD during daytime (nighttime) and the BL-FT distinction increased particularly at night. There was evidence that despite travelling efficiently to FT, major proportion of smoke AOD (50-80%) continue to remain close to the surface (<3 km) thereby, may have greater implications on regional climate, air quality, smoke transport and AOD-particulate modelling.
    Matched MeSH terms: Dust/analysis
  5. Tan SY, Praveena SM, Abidin EZ, Cheema MS
    Environ Sci Pollut Res Int, 2018 Dec;25(34):34623-34635.
    PMID: 30315534 DOI: 10.1007/s11356-018-3396-x
    This study aimed to determine bioavailable heavy metal concentrations (As, Cd, Co, Cu, Cr, Ni, Pb, Zn) and their potential sources in classroom dust collected from children's hand palms in Rawang (Malaysia). This study also aimed to determine the association between bioavailable heavy metal concentration in classroom dust and children's respiratory symptoms. Health risk assessment (HRA) was applied to evaluate health risks (non-carcinogenic and carcinogenic) due to heavy metals in classroom dust. The mean of bioavailable heavy metal concentrations in classroom dust found on children's hand palms was shown in the following order: Zn (1.25E + 01 μg/g) > Cu (9.59E-01 μg/g) > Ni (5.34E-01 μg/g) > Cr (4.72E-02 μg/g) > Co (2.34E-02 μg/g) > As (1.77E-02 μg/g) > Cd (9.60E-03 μg/g) > Pb (5.00E-03 μg/g). Hierarchical cluster analysis has clustered 17 sampling locations into three clusters, whereby cluster 1 (S3, S4, S6, S15) located in residential areas and near to roads exposed to vehicle emissions, cluster 2 (S10, S12, S9, S7) located near Rawang town and cluster 3 (S13, S16, S1, S2, S8, S14, S11, S17, S5) located near industrial, residential and plantation areas. Emissions from vehicles, plantations and industrial activities were found as the main sources of heavy metals in classroom dust in Rawang. There is no association found between bioavailable heavy metal concentrations and respiratory symptoms, except for Cu (OR = 0.03). Health risks (non-carcinogenic and carcinogenic risks) indicated that there are no potential non-carcinogenic and carcinogenic risks of heavy metals in classroom dust toward children health.
    Matched MeSH terms: Dust/analysis*
  6. Sun Y, Zhang M, Ou Z, Meng Y, Chen Y, Lin R, et al.
    Eur Respir J, 2022 Nov;60(5).
    PMID: 35618276 DOI: 10.1183/13993003.00260-2022
    BACKGROUND: Indoor microbial exposure is associated with asthma, but the health effects of indoor metabolites and chemicals have not been comprehensively assessed.

    METHODS: We collected classroom dust from 24 junior high schools in three geographically distanced areas in Malaysia (Johor Bahru, Terengganu and Penang), and conducted culture-independent high-throughput microbiome and untargeted metabolomics/chemical profiling.

    RESULTS: 1290 students were surveyed for asthma symptoms (wheeze). In each centre, we found significant variation in the prevalence of wheeze among schools, which could be explained by personal characteristics and air pollutants. Large-scale microbial variations were observed between the three centres; the potential protective bacteria were mainly from phyla Actinobacteria in Johor Bahru, Cyanobacteria in Terengganu and Proteobacteria in Penang. In total, 2633 metabolites and chemicals were characterised. Many metabolites were enriched in low-wheeze schools, including plant secondary metabolites flavonoids/isoflavonoids (isoliquiritigenin, formononetin, astragalin), indole and derivatives (indole, serotonin, 1H-indole-3-carboxaldehyde), and others (biotin, chavicol). A neural network analysis showed that the indole derivatives were co-occurring with the potential protective microbial taxa, including Actinomycetospora, Fischerella and Truepera, suggesting these microorganisms may pose health effects by releasing indole metabolites. A few synthetic chemicals were enriched in high-wheeze schools, including pesticides (2(3H)-benzothiazolethione), fragrances (2-aminobenzoic acid, isovaleric acid), detergents and plastics (phthalic acid), and industrial materials (4,4-sulfonyldiphenol).

    CONCLUSIONS: This is the first association study between high-throughput indoor chemical profiling and asthma symptoms. The consistent results from the three centres indicate that indoor metabolites/chemicals could be a better indicator than the indoor microbiome for environmental and health assessments, providing new insights for asthma prediction, prevention and control.

    Matched MeSH terms: Dust/analysis
  7. Singh N, Banerjee T, Murari V, Deboudt K, Khan MF, Singh RS, et al.
    Chemosphere, 2021 Jan;263:128030.
    PMID: 33297051 DOI: 10.1016/j.chemosphere.2020.128030
    Size-segregated airborne fine (PM2.1) and coarse (PM>2.1) particulates were measured in an urban environment over central Indo-Gangetic plain in between 2015 and 2018 to get insights into its nature, chemistry and sources. Mean (±1σ) concentration of PM2.1 was 98 (±76) μgm-3 with a seasonal high during winter (DJF, 162 ± 71 μgm-3) compared to pre-monsoon specific high in PM>2.1 (MAMJ, 177 ± 84 μgm-3) with an annual mean of 170 (±69) μgm-3. PM2.1 was secondary in nature with abundant secondary inorganic aerosols (20% of particulate mass) and water-soluble organic carbon (19%) against metal enriched (25%) PM>2.1, having robust signature of resuspensions from Earth's crust and road dust. Ammonium-based neutralization of particulate acidity was essentially in PM2.1 with an indication of predominant H2SO4 neutralization in bisulfate form compared to Ca2+ and Mg2+-based neutralization in PM>2.1. Molecular distribution of n-alkanes homologues (C17-C35) showed Cmax at C23 (PM2.1) and C18 (PM>2.1) with weak dominance of odd-numbered n-alkanes. Carbon preference index of n-alkanes was close to unity (PM2.1: 1.4 ± 0.3; PM>2.1: 1.3 ± 0.4). Fatty acids (C12-C26) were characterized with predominance of even carbon with Cmax at n-hexadecanoic acid (C16:0). Low to high molecular weight fatty acid ratio ranged from 2.0 (PM>2.1) to 5.6 (PM2.1) with vital signature of anthropogenic emissions. Levoglucosan was abundant in PM2.1 (758 ± 481 ngm-3) with a high ratio (11.6) against galactosan, emphasizing robust contribution from burning of hardwood and agricultural residues. Receptor model resolves secondary aerosols and biomass burning emissions (45%) as the most influential sources of PM2.1 whereas, crustal (29%) and secondary aerosols (29%) were found responsible for PM>2.1; with significant variations among the seasons.
    Matched MeSH terms: Dust/analysis
  8. Shaharom S, Latif MT, Khan MF, Yusof SNM, Sulong NA, Wahid NBA, et al.
    Environ Sci Pollut Res Int, 2018 Sep;25(27):27074-27089.
    PMID: 30019134 DOI: 10.1007/s11356-018-2745-0
    This study aims to determine the concentrations of surfactants in the surface microlayer (SML), subsurface water (SSW) and fine mode aerosol (diameter size dust (23%) and sulphate/fresh sea salt (8%). During the southwest monsoon, the three main sources of atmospheric aerosol were biomass burning (71%), secondary inorganic aerosol (23%) and sea spray (6%). This study suggests anthropogenic sources are main contributors to the concentrations of surfactants in SML, SSW and fine aerosols.
    Matched MeSH terms: Dust/analysis
  9. Shahab A, Hui Z, Rad S, Xiao H, Siddique J, Huang LL, et al.
    Environ Geochem Health, 2023 Mar;45(3):585-606.
    PMID: 35347514 DOI: 10.1007/s10653-022-01255-3
    In order to expound on the present situation and potential risk of road dust heavy metals in major cities, a total of 114 literatures mainly over the past two decades, involving more than 5000 sampling sites in 61 cities of 21 countries, were screened through the collection and analysis of research papers. The concentration, sources, distribution, health risk, sample collection, and analytical methods of heavy metal research on road dust in cities around the world are summarized. The results show that Cd, Zn, and Cu in many urban road dusts in the world are higher than the grade II of the Chinese maximum allowable concentration of potentially toxic elements in the soil. Geo-accumulation index values show that Pb > Cd > Zn > Cu had the highest contamination levels. Hazard index assessment indicates Pb and Cr had the highest potential health risk, especially for children in which ingestion was found as the main exposure pathway. Moreover, through comparative analysis, it is found that some pollutants are higher in developed and industrialized cities and transport (53%) followed by industrial emissions (35%) provide the major contributions to the sources of heavy metals.
    Matched MeSH terms: Dust/analysis
  10. Shabanda IS, Koki IB, Low KH, Zain SM, Khor SM, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Dec;26(36):37193-37211.
    PMID: 31745807 DOI: 10.1007/s11356-019-06718-2
    Human health is threatened by significant emissions of heavy metals into the urban environment due to various activities. Various studies describing health risk analyses on soil and dust have been conducted previously. However, there are limited studies that have been carried out regarding the potential health risk assessment of heavy metals in urban road dust of < 63-μm diameter, via incidental ingestion, dermal contact, and inhalation exposure routes by children and adults in developing countries. Therefore, this study evaluated the health risks of heavy metal exposure via ingestion, dermal contact, and inhalation of urban dust particles in Petaling Jaya, Malaysia. Heavy metals such as lead (Pb), chromium (Cr), zinc (Zn), copper (Cu), and manganese (Mn) were measured using dust samples obtained from industrial, high-traffic, commercial, and residential areas by using inductively coupled plasma mass spectrometry (ICP-MS). The principal component and hierarchical cluster analysis showed the dominance of these metal concentrations at sites associated with anthropogenic activities. This was suggestive of industrial, traffic emissions, atmospheric depositions, and wind as the significant contributors towards urban dust contamination in the study sites. Further exploratory analysis underlined Cr, Pb, Cu, and Zn as the most representative metals in the dust samples. In accommodating the uncertainties associated with health risk calculations and simulating the reasonable maximum exposure of these metals, the related health risks were estimated at the 75th and 95th percentiles. Furthermore, assessing the exposure to carcinogenic and non-carcinogenic metals in the dust revealed that ingestion was the primary route of consumption. Children who ingested dust particles in Petaling Jaya could be more vulnerable to carcinogenic and non-carcinogenic risks, but the exposure for both children and adults showed no potential health effects. Therefore, this study serves as an important premise for a review and reformation of the existing environmental quality standards for human health safety.
    Matched MeSH terms: Dust/analysis*
  11. Razak IS, Latif MT, Jaafar SA, Khan MF, Mushrifah I
    Environ Sci Pollut Res Int, 2015 Apr;22(8):6024-33.
    PMID: 25382497 DOI: 10.1007/s11356-014-3781-z
    This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F(-), Cl(-), NO3(-), and SO4(2-)) and the Nessler Method was used to obtain the NH4(+) concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93%) and biomass burning (2 to 22%).
    Matched MeSH terms: Dust/analysis
  12. Praveena SM, Aris AZ
    Environ Geochem Health, 2018 Apr;40(2):749-762.
    PMID: 28929262 DOI: 10.1007/s10653-017-0021-8
    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.
    Matched MeSH terms: Dust/analysis*
  13. Othman N, Ismail Z, Selamat MI, Sheikh Abdul Kadir SH, Shibraumalisi NA
    Int J Environ Res Public Health, 2022 Oct 26;19(21).
    PMID: 36360801 DOI: 10.3390/ijerph192113923
    Polychlorinated biphenyls (PCBs) were widely used in industrial and commercial applications, until they were banned in the late 1970s as a result of their significant environmental pollution. PCBs in the environment gained scientific interest because of their persistence and the potential threats they pose to humans. Traditionally, human exposure to PCBs was linked to dietary ingestion. Inhalational exposure to these contaminants is often overlooked. This review discusses the occurrence and distribution of PCBs in environmental matrices and their associated health impacts. Severe PCB contamination levels have been reported in e-waste recycling areas. The occurrence of high PCB levels, notably in urban and industrial areas, might result from extensive PCB use and intensive human activity. Furthermore, PCB contamination in the indoor environment is ten-fold higher than outdoors, which may present expose risk for humans through the inhalation of contaminated air or through the ingestion of dust. In such settings, the inhalation route may contribute significantly to PCB exposure. The data on human health effects due to PCB inhalation are scarce. More epidemiological studies should be performed to investigate the inhalation dose and response mechanism and to evaluate the health risks. Further studies should also evaluate the health impact of prolonged low-concentration PCB exposure.
    Matched MeSH terms: Dust/analysis
  14. Othman M, Latif MT, Matsumi Y
    Ecotoxicol Environ Saf, 2019 Apr 15;170:739-749.
    PMID: 30583285 DOI: 10.1016/j.ecoenv.2018.12.042
    It is important to assess indoor air quality in school classrooms where the air quality may significantly influence school children's health and performance. This study aims to determine the concentrations of PM2.5 and dust chemical compositions in indoor and outdoor school classroom located in Kuala Lumpur City Centre. The PM2.5 concentration was measured from 19th September 2017-16th February 2018 using an optical PM2.5 sensor. Indoor and outdoor dust was also collected from the school classrooms and ion and trace metal concentrations were analysed using ion chromatography (IC) and inductively couple plasma-mass spectrometry (ICP-MS) respectively. This study showed that the average indoor and outdoor 24 h PM2.5 was 11.2 ± 0.45 µg m-3 and 11.4 ± 0.44 µg m-3 respectively. The 8 h PM2.5 concentration ranged between 3.2 and 28 µg m-3 for indoor and 3.2 and 19 µg m-3 for outdoor classrooms. The highest ion concentration in indoor dust was Ca2+ with an average concentration of 38.5 ± 35.0 µg g-1 while for outdoor dust SO42- recorded the highest ion concentration with an average concentration of 30.6 ± 9.37 µg g-1. Dominant trace metals in both indoor and outdoor dust were Al, Fe and Zn. Principle component analysis-multiple linear regression (PCA-MLR) demonstrated that the major source of indoor dust was road dust (69%), while soil dominated the outdoor dust (74%). Health risk assessment showed that the hazard quotient (HQ) value for non-carcinogenic trace metals was dust through dermal and inhalation pathways, but not the ingestion pathway. This study suggests indoor contributions of PM2.5 concentrations are due to the activities of the school children while the compositions of indoor and outdoor dust are greatly influenced by the soil/earth source plus industrial and traffic contribution.
    Matched MeSH terms: Dust/analysis*
  15. Othman M, Latif MT, Mohamed AF
    Ecotoxicol Environ Saf, 2018 Feb;148:293-302.
    PMID: 29080527 DOI: 10.1016/j.ecoenv.2017.10.034
    This study intends to determine the health impacts from two office life cycles (St.1 and St.2) using life cycle assessment (LCA) and health risk assessment of indoor metals in coarse particulates (particulate matter with diameters of less than 10µm). The first building (St.1) is located in the city centre and the second building (St.2) is located within a new development 7km away from the city centre. All life cycle stages are considered and was analysed using SimaPro software. The trace metal concentrations were determined by inductively couple plasma-mass spectrometry (ICP-MS). Particle deposition in the human lung was estimated using the multiple-path particle dosimetry model (MPPD). The results showed that the total human health impact for St.1 (0.027 DALY m-2) was higher than St.2 (0.005 DALY m-2) for a 50-year lifespan, with the highest contribution from the operational phase. The potential health risk to indoor workers was quantified as a hazard quotient (HQ) for non-carcinogenic elements, where the total values for ingestion contact were 4.38E-08 (St.1) and 2.59E-08 (St.2) while for dermal contact the values were 5.12E-09 (St.1) and 2.58E-09 (St.2). For the carcinogenic risk, the values for dermal and ingestion routes for both St.1 and St.2 were lower than the acceptable limit which indicated no carcinogenic risk. Particle deposition for coarse particles in indoor workers was concentrated in the head, followed by the pulmonary region and tracheobronchial tract deposition. The results from this study showed that human health can be significantly affected by all the processes in office building life cycle, thus the minimisation of energy consumption and pollutant exposures are crucially required.
    Matched MeSH terms: Dust/analysis
  16. Othman M, Latif MT
    Environ Sci Pollut Res Int, 2020 Apr;27(10):11227-11245.
    PMID: 31956949 DOI: 10.1007/s11356-020-07633-7
    Urban road dust contains anthropogenic components at toxic concentrations which can be hazardous to human health. A total of 36 road dust samples from five different urban areas, a commercial (CM), a high traffic (HT), a park (GR), a rail station (LRT), and a residential area (RD), were collected in Kuala Lumpur City followed by investigation into compositions, sources, and human health risks. The concentrations of trace metals in road dust and the bioaccessible fraction were determined using inductively couple plasma-mass spectrometry (ICP-MS) while ion concentrations were determined using ion chromatography (IC). The trace metal concentrations were dominated by Fe and Al with contributions of 53% and 21% to the total trace metal and ion concentrations in road dust. Another dominant metal was Zn while the dominant ion was Ca2+ with average concentrations of 314 ± 190 μg g-1 and 3470 ± 1693 μg g-1, respectively. The most bioaccessible fraction was Zn followed by the sequence Sr > Cd > Cr > Cu > Ni > Co > Mn > As > V > Pb > Fe > Al > U. The results revealed that the highest trace metal and ion concentrations in road dust and in the bioaccessible fraction were found at the LRT area. Based on the source apportionment analysis, the major source of road dust was vehicle emissions/traffic activity (47%), and for the bioaccessible fraction, the major source was soil dust (50%). For the health risk assessments, hazard quotient (HQ) and cancer risk (CR) values for each element were
    Matched MeSH terms: Dust/analysis*
  17. Omar M, Sulaiman I, Hassan A, Wood AK
    Radiat Prot Dosimetry, 2007;124(4):400-6.
    PMID: 17510205
    Measurements of external radiation level, radon/thoron daughters concentrations in air and uranium/thorium concentrations in airborne mineral dust at 16 amang plants in Malaysia were carried out for three consecutive months to assess radiation dose to workers. Estimated occupational dose was within the range of 1.7-10.9 mSv y(-1). The mean total dose at the amang plants was 4.1 mSv y(-1). Overall, it was found that the major dose contribution of 80% came from external radiation. Radon/thoron daughters and airborne mineral dust contributed to only 11 and 9% of the total dose, respectively.
    Matched MeSH terms: Dust/analysis
  18. Norbäck D, Hashim JH, Cai GH, Hashim Z, Ali F, Bloom E, et al.
    PLoS One, 2016;11(2):e0147996.
    PMID: 26829324 DOI: 10.1371/journal.pone.0147996
    There are few studies on rhinitis and sick building syndrome (SBS) among students in tropical countries. We studied associations between levels of five fungal DNA sequences, two mycotoxins (sterigmatocystin and verrucarol) and cat allergen (Fel d 1) levels in schools and rhinitis and other weekly SBS symptoms in the students. Fungal DNA was measured by quantitative PCR and cat allergen by ELISA. Pupils (N = 462) from eight randomly selected schools in Johor Bahru, Malaysia participated (96%). Dust samples were collected by cotton swabs and Petri dishes exposed for one week. None of the schools had a mechanical ventilation system, but all classrooms had openable windows that were kept open during lectures and indoor CO2 levels were low (mean 492 ppm; range 380-690 ppm). Weekly nasal symptoms (rhinitis) (18.8%), ocular (11.6%), throat (11.1%), dermal symptoms, headache (20.6%) and tiredness (22.1%) were common. Total fungal DNA in swab samples was associated with rhinitis (p = 0.02), ocular symptoms (p = 0.009) and tiredness (p = 0.001). There were positive associations between Aspergillus versicolor DNA in Petri dish samples, ocular symptoms (p = 0.02) and tiredness (p = 0.001). The level of the mycotoxin verrucarol (produced by Stachybotrys chartarum) in swab samples was positively associated with tiredness (p = 0.04). Streptomyces DNA in swab samples (p = 0.03) and Petri dish samples (p = 0.03) were negatively associated with tiredness. In conclusion, total fungal contamination, measured as total fungal DNA) in the classrooms, Aspergillus versicolor and verrucarol can be risk factors for rhinitis and SBS symptoms among students in the tropical country Malaysia.
    Matched MeSH terms: Dust/analysis*
  19. Norbäck D, Hashim JH, Hashim Z, Sooria V, Ismail SA, Wieslander G
    Int J Hyg Environ Health, 2017 06;220(4):697-703.
    PMID: 28254266 DOI: 10.1016/j.ijheh.2017.01.016
    BACKGROUND: There are few studies on ocular effects of indoor mould exposure in schools, especially in the tropics OBJECTIVE: To study associations between eye symptoms and tear film break up time (BUT) in students and demographic data and fungal DNA in schools.

    METHODS: A school environment study was performed among randomly selected students in eight randomly selected secondary schools in Penang, Malaysia. Information on eye symptoms and demographic data was collected by a standardised questionnaire. BUT was measured by two methods, self-reported BUT (SBUT) and by the non-invasive Tearscope (NIBUT). Dust was collected by vacuuming in 32 classrooms and analysed for five fungal DNA sequences. Geometric mean (GM) for total fungal DNA was 7.31*104 target copies per gram dust and for Aspergillus/Penicillium DNA 3.34*104 target copies per gram dust. Linear mixed models and 3-level multiple logistic regression were applied adjusting for demographic factors.

    RESULTS: A total of 368 students (58%) participated and 17.4% reported weekly eye symptoms the last 3 months. The median SBUT and TBUT were 15 and 12s, respectively. Students wearing glasses (OR 2.41, p=0.01) and with a history of atopy (OR=2.67; p=0.008) had more eye symptoms. Girls had less eye symptoms than boys (OR=0.34; p=0.006) Indoor carbon dioxide in the classrooms was low (range 380-720ppm), temperature was 25-30°C and relative air humidity 70-88%. Total fungal DNA in vacuumed dust was associated with shorter SBUT (4s shorter per 105 target copies per gram dust; p=0.04) and NIBUT (4s shorter per 105 target copies per gram dust; p<0.001). Aspergillus/Penicillium DNA was associated with shorter NIBUT (5s shorter per 105 target copies per gram dust; p=0.01).

    CONCLUSION: Fungal contamination in schools in a tropical country can be a risk factor for impaired tear film stability among students.

    Matched MeSH terms: Dust/analysis*
  20. Nakao A, Tomita M, Wagai R, Tanaka R, Yanai J, Kosaki T
    J Environ Radioact, 2019 Aug;204:86-94.
    PMID: 30986719 DOI: 10.1016/j.jenvrad.2019.03.028
    Radiocesium (RCs) is selectively adsorbed on interlayer sites of weathered micaceous minerals, which can reduce the mobility of RCs in soil. Therefore, soils developed from mica-deficient materials (e.g. serpentine soils) may have a higher risk of soil-to-plant transfer of RCs. Soils were collected from three serpentine soil profiles; Udepts in Oeyama, Japan, and Udepts and Udox in Kinabalu, Malaysia. Soil was sampled every 3 cm from 0 to 30 cm depth and sieved to isolate soil particles of ≤20 μm diameter for the assessment of radiocesium interception potential (RIP) after a series of pretreatments. One subset was treated with H2O2 to remove organic matter (OM). Another subset was further treated with hot sodium citrate to remove hydroxy-Al polymers (Al(OH)x). RIPuntreated was <0.4 mol kg-1 whereas mica-K content was <0.02% by weight for ≤20-μm soil particles from Udepts and Udox in Kinabalu, Malaysia, values as low as those of non-micaceous minerals (e.g. kaolinite and smectite). Neither OM nor Al(OH)x removal resulted in a large increase in RIP value for these soils. These results clearly indicated that serpentine soils in Malaysia have very few RCs selective adsorption sites due to the absence of micaceous minerals. In contrast, soil from Udepts in Oeyama, Japan showed average RIPuntreated of 5.6 mol kg-1 and mica-K content of 0.72% by weight for the ≤20-μm particles. Furthermore, the RIP value was significantly increased to an average of 22.5 mol kg-1 after removing both OM and Al(OH)x. These results strongly suggest that weathered micaceous minerals primarily control the ability to retain RCs. These micaceous minerals cannot originate from serpentine minerals, and are probably incorporated as an exotic material, such as Asian dust. This hypothesis is supported by the δ18O value of quartz isolated from the ≤20-μm soil particles from Oeyama, Japan (+16.13‰±0.11‰), very similar to that of Asian dust. In conclusion, serpentine soils in Japan may exhibit a reduced risk of soil-to-plant transfer of RCs due to the historical deposition of Asian dust.
    Matched MeSH terms: Dust/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links