Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Shabanda IS, Koki IB, Low KH, Zain SM, Khor SM, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Dec;26(36):37193-37211.
    PMID: 31745807 DOI: 10.1007/s11356-019-06718-2
    Human health is threatened by significant emissions of heavy metals into the urban environment due to various activities. Various studies describing health risk analyses on soil and dust have been conducted previously. However, there are limited studies that have been carried out regarding the potential health risk assessment of heavy metals in urban road dust of < 63-μm diameter, via incidental ingestion, dermal contact, and inhalation exposure routes by children and adults in developing countries. Therefore, this study evaluated the health risks of heavy metal exposure via ingestion, dermal contact, and inhalation of urban dust particles in Petaling Jaya, Malaysia. Heavy metals such as lead (Pb), chromium (Cr), zinc (Zn), copper (Cu), and manganese (Mn) were measured using dust samples obtained from industrial, high-traffic, commercial, and residential areas by using inductively coupled plasma mass spectrometry (ICP-MS). The principal component and hierarchical cluster analysis showed the dominance of these metal concentrations at sites associated with anthropogenic activities. This was suggestive of industrial, traffic emissions, atmospheric depositions, and wind as the significant contributors towards urban dust contamination in the study sites. Further exploratory analysis underlined Cr, Pb, Cu, and Zn as the most representative metals in the dust samples. In accommodating the uncertainties associated with health risk calculations and simulating the reasonable maximum exposure of these metals, the related health risks were estimated at the 75th and 95th percentiles. Furthermore, assessing the exposure to carcinogenic and non-carcinogenic metals in the dust revealed that ingestion was the primary route of consumption. Children who ingested dust particles in Petaling Jaya could be more vulnerable to carcinogenic and non-carcinogenic risks, but the exposure for both children and adults showed no potential health effects. Therefore, this study serves as an important premise for a review and reformation of the existing environmental quality standards for human health safety.
    Matched MeSH terms: Dust/analysis*
  2. Praveena SM, Aris AZ
    Environ Geochem Health, 2018 Apr;40(2):749-762.
    PMID: 28929262 DOI: 10.1007/s10653-017-0021-8
    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.
    Matched MeSH terms: Dust/analysis*
  3. Cui J, Zhou F, Gao M, Zhang L, Zhang L, Du K, et al.
    Environ Pollut, 2018 Oct;241:810-820.
    PMID: 29909307 DOI: 10.1016/j.envpol.2018.06.028
    Six different approaches are applied in the present study to apportion the sources of precipitation nitrogen making use of precipitation data of dissolved inorganic nitrogen (DIN, including NO3- and NH4+), dissolved organic nitrogen (DON) and δ15N signatures of DIN collected at six sampling sites in the mountain region of Southwest China. These approaches include one quantitative approach running a Bayesian isotope mixing model (SIAR model) and five qualitative approaches based on in-situ survey (ISS), ratio of NH4+/NO3- (RN), principal component analysis (PCA), canonical-correlation analysis (CCA) and stable isotope approach (SIA). Biomass burning, coal combustion and mobile exhausts in the mountain region are identified as major sources for precipitation DIN while biomass burning and volatilization sources such as animal husbandries are major ones for DON. SIAR model results suggest that mobile exhausts, biomass burning and coal combustion contributed 25.1 ± 14.0%, 26.0 ± 14.1% and 27.0 ± 12.6%, respectively, to NO3- on the regional scale. Higher contributions of both biomass burning and coal combustion appeared at rural and urban sites with a significant difference between Houba (rural) and the wetland site (p 
    Matched MeSH terms: Dust/analysis
  4. Tan SY, Praveena SM, Abidin EZ, Cheema MS
    Environ Sci Pollut Res Int, 2018 Dec;25(34):34623-34635.
    PMID: 30315534 DOI: 10.1007/s11356-018-3396-x
    This study aimed to determine bioavailable heavy metal concentrations (As, Cd, Co, Cu, Cr, Ni, Pb, Zn) and their potential sources in classroom dust collected from children's hand palms in Rawang (Malaysia). This study also aimed to determine the association between bioavailable heavy metal concentration in classroom dust and children's respiratory symptoms. Health risk assessment (HRA) was applied to evaluate health risks (non-carcinogenic and carcinogenic) due to heavy metals in classroom dust. The mean of bioavailable heavy metal concentrations in classroom dust found on children's hand palms was shown in the following order: Zn (1.25E + 01 μg/g) > Cu (9.59E-01 μg/g) > Ni (5.34E-01 μg/g) > Cr (4.72E-02 μg/g) > Co (2.34E-02 μg/g) > As (1.77E-02 μg/g) > Cd (9.60E-03 μg/g) > Pb (5.00E-03 μg/g). Hierarchical cluster analysis has clustered 17 sampling locations into three clusters, whereby cluster 1 (S3, S4, S6, S15) located in residential areas and near to roads exposed to vehicle emissions, cluster 2 (S10, S12, S9, S7) located near Rawang town and cluster 3 (S13, S16, S1, S2, S8, S14, S11, S17, S5) located near industrial, residential and plantation areas. Emissions from vehicles, plantations and industrial activities were found as the main sources of heavy metals in classroom dust in Rawang. There is no association found between bioavailable heavy metal concentrations and respiratory symptoms, except for Cu (OR = 0.03). Health risks (non-carcinogenic and carcinogenic risks) indicated that there are no potential non-carcinogenic and carcinogenic risks of heavy metals in classroom dust toward children health.
    Matched MeSH terms: Dust/analysis*
  5. Hameed BH, El-Khaiary MI
    J Hazard Mater, 2008 Nov 30;159(2-3):574-9.
    PMID: 18387735 DOI: 10.1016/j.jhazmat.2008.02.054
    In this work, the adsorption of malachite green (MG) on rattan sawdust (RSD) was studied at 30 degrees C. The results indicated that RSD can be used as a low-cost adsorbent for the removal of MG dye from aqueous solutions. Equilibrium data were analyzed by two isotherms, namely the Freundlich isotherm and the Langmuir isotherm. The best fit to the data was obtained with the Langmuir isotherm. The monolayer adsorption capacity of RSD was found to be 62.71 mg/g. The adsorption kinetics can be predicted by the pseudo-first-order model. The mechanism of adsorption was also studied. It was found that for a short time period the rate of adsorption is controlled by film diffusion. However, at longer adsorption times, pore-diffusion controls the rate of adsorption. The amount adsorbed on the outer surface was estimated from the time where film-diffusion stops controlling the adsorption rate.
    Matched MeSH terms: Dust/analysis
  6. Sun Y, Zhang M, Ou Z, Meng Y, Chen Y, Lin R, et al.
    Eur Respir J, 2022 Nov;60(5).
    PMID: 35618276 DOI: 10.1183/13993003.00260-2022
    BACKGROUND: Indoor microbial exposure is associated with asthma, but the health effects of indoor metabolites and chemicals have not been comprehensively assessed.

    METHODS: We collected classroom dust from 24 junior high schools in three geographically distanced areas in Malaysia (Johor Bahru, Terengganu and Penang), and conducted culture-independent high-throughput microbiome and untargeted metabolomics/chemical profiling.

    RESULTS: 1290 students were surveyed for asthma symptoms (wheeze). In each centre, we found significant variation in the prevalence of wheeze among schools, which could be explained by personal characteristics and air pollutants. Large-scale microbial variations were observed between the three centres; the potential protective bacteria were mainly from phyla Actinobacteria in Johor Bahru, Cyanobacteria in Terengganu and Proteobacteria in Penang. In total, 2633 metabolites and chemicals were characterised. Many metabolites were enriched in low-wheeze schools, including plant secondary metabolites flavonoids/isoflavonoids (isoliquiritigenin, formononetin, astragalin), indole and derivatives (indole, serotonin, 1H-indole-3-carboxaldehyde), and others (biotin, chavicol). A neural network analysis showed that the indole derivatives were co-occurring with the potential protective microbial taxa, including Actinomycetospora, Fischerella and Truepera, suggesting these microorganisms may pose health effects by releasing indole metabolites. A few synthetic chemicals were enriched in high-wheeze schools, including pesticides (2(3H)-benzothiazolethione), fragrances (2-aminobenzoic acid, isovaleric acid), detergents and plastics (phthalic acid), and industrial materials (4,4-sulfonyldiphenol).

    CONCLUSIONS: This is the first association study between high-throughput indoor chemical profiling and asthma symptoms. The consistent results from the three centres indicate that indoor metabolites/chemicals could be a better indicator than the indoor microbiome for environmental and health assessments, providing new insights for asthma prediction, prevention and control.

    Matched MeSH terms: Dust/analysis
  7. Hamzah NA, Mohd Tamrin SB, Ismail NH
    Int J Occup Environ Health, 2016 07;22(3):224-232.
    PMID: 27392157 DOI: 10.1080/10773525.2016.1207040
    BACKGROUND: Metallic dust is a heterogeneous substance with respiratory sensitizing properties. Its long term exposure adversely affected lung function, thus may cause acute or chronic respiratory diseases.

    METHODS: A cross-sectional study was conducted in a steel factory in Terengganu, Malaysia to assess the metal dust exposure and its relationship to lung function values among 184 workers. Metal dust concentrations values (Co, Cr, and Ni) for each worker were collected using air personal sampling. Lung function values (FEV1, FVC, and %FEV1/FVC) were determined using spirometer.

    RESULTS: Exposure to cobalt and chromium were 1-3 times higher than permissible exposure limit (PEL) while nickel was not exceeding the PEL. Cumulative of chromium was the predictor to all lung function values (FEV1, FVC, and %FEV1/FVC). Frequency of using mask was positively associated with FVC (Adj b = 0.263, P = 0.011) while past respiratory illnesses were negatively associated with %FEV1/FVC (Adj b = -1.452, P = 0.026). Only few workers (36.4%) were found to wear their masks all times during the working hours.

    CONCLUSIONS: There was an exposure-response relationship of cumulative metal dust exposure with the deterioration of lung function values. Improvement of control measures as well as proper and efficient use or personal protection equipment while at work could help to protect the respiratory health of workers.

    Matched MeSH terms: Dust/analysis
  8. Aziz NAI, Feisal NAS, Ibrahim TNBT, Cheah WY, Kamaludin NH
    Med J Malaysia, 2024 Mar;79(Suppl 1):110-116.
    PMID: 38555894
    INTRODUCTION: Cleaners perform a vital role in environmental health by keeping the place clean, but they are also exposed to various hazards. Yet, there is a lack of effective and accessible occupational safety standard measures, thus making this to be difficult to monitor the long-term health effects of cleaners. This study aims to determine the respirable dust exposure on respiratory symptoms among cleaners in a public university in Selangor.

    MATERIALS AND METHODS: A cross-sectional study was carried out among 51 cleaners. The respondents' background information and respiratory symptoms were gathered using a series of standardised questionnaires validated by the American Thoracic Society (ATS-DLD-78-A). The 8- hour respirable dust exposure to cleaners was measured using an air sampling pump (Gillian & Sensodyne Gil Air 3).

    RESULTS: The mean of respirable dust was lower than permissible exposure limit with 0.63±0.57mg/m3. The respiratory symptoms among the cleaners showed no significant association between cough, phlegm, and breathing difficulties with working tenure. Meanwhile, wheezing and coughing with phlegm have an almost significant association with working tenure among cleaners with (Χ2=1.00, p=0.08) and (Χ2=1.00, p=0.07) respectively. Exposure to respirable dust has exhibited 6 times the prevalence of coughing with phlegm among cleaners (PR=6.28, 95% CI: 0.44, 89.38).

    CONCLUSION: The findings of this study demonstrated that the cleaners were significantly affected by the respirable dust. The cleaners' working environment has caused them to be exposed to respirable dust.

    Matched MeSH terms: Dust/analysis
  9. Dewika M, Markandan K, Irfan NA, Mohd Abdah MAA, Ruwaida JN, Sara YY, et al.
    Chemosphere, 2023 May;324:138270.
    PMID: 36878370 DOI: 10.1016/j.chemosphere.2023.138270
    The emergence of microplastics (MPs) pollution as a global environmental concern has attracted significant attention in the last decade. The majority of the human population spends most of their time indoors, leading to increased exposure to MPs contamination through various sources such as settled dust, air, drinking water and food. Although research on indoor MPs has intensified significantly in recent years, comprehensive reviews on this topic remain limited. Therefore, this review comprehensively analyses the occurrence, distribution, human exposure, potential health impact and mitigation strategies of MPs in the indoor air environment. Specifically, we focus on the risks associated with finer MPs that can translocate into the circulatory system and other organs, emphasizing the need for continued research to develop effective strategies to mitigate the risks associated with MPs exposure. Our findings suggest that indoor MPs impose potential risk to human health, and strategies for mitigating exposure should be further explored.
    Matched MeSH terms: Dust/analysis
  10. Mohamad N, Latif MT, Khan MF
    Ecotoxicol Environ Saf, 2016 Feb;124:351-362.
    PMID: 26590697 DOI: 10.1016/j.ecoenv.2015.11.002
    This study aimed to investigate the chemical composition and potential sources of PM10 as well as assess the potential health hazards it posed to school children. PM10 samples were taken from classrooms at a school in Kuala Lumpur's city centre (S1) and one in the suburban city of Putrajaya (S2) over a period of eight hours using a low volume sampler (LVS). The composition of the major ions and trace metals in PM10 were then analysed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The results showed that the average PM10 concentration inside the classroom at the city centre school (82µg/m(3)) was higher than that from the suburban school (77µg/m(3)). Principal component analysis-absolute principal component scores (PCA-APCS) revealed that road dust was the major source of indoor PM10 at both school in the city centre (36%) and the suburban location (55%). The total hazard quotient (HQ) calculated, based on the formula suggested by the United States Environmental Protection Agency (USEPA), was found to be slightly higher than the acceptable level of 1, indicating that inhalation exposure to particle-bound non-carcinogenic metals of PM10, particularly Cr exposure by children and adults occupying the school environment, was far from negligible.
    Matched MeSH terms: Dust/analysis
  11. Wahab MIA, Razak WMAA, Sahani M, Khan MF
    Sci Total Environ, 2020 Feb 10;703:135535.
    PMID: 31767333 DOI: 10.1016/j.scitotenv.2019.135535
    This study aimed to assess the concentrations and health effect of trace metals [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn)] on the road dust of selected locations in the city of Kuala Lumpur. Sampling was conducted thrice at four locations, namely, Tun Razak Road, Raja Abdullah Road, Tunku Abdul Rahman (TAR) Road, and Ayer Molek Road. The concentrations of trace metals in road dust were analyzed by inductively coupled plasma mass spectrometry. TAR Road presented the highest Cd, Cu, Ni, and Pb contents compared with the other roads. The pollution level of trace metals in road dust was assessed by pollution index and pollution load index (PLI), showing that all studied locations were highly contaminated except Ayer Molek Road. Based on the PLI value, the sequence of pollution in descending order is as follows: TAR Road > Raja Abdullah Road > Tun Razak Road > Ayer Molek Road. Health risk assessment was performed to assess the health effects of carcinogenic and noncarcinogenic pollutants caused by the exposure to trace metals in road dust on adults and children. Based on the integrated hazard index values for children at all locations, >1 indicates a possible noncarcinogenic effect. All incremental lifetime cancer risk values for adult and children at all locations are within acceptable limits and are considered safe.
    Matched MeSH terms: Dust/analysis*
  12. Nakao A, Tomita M, Wagai R, Tanaka R, Yanai J, Kosaki T
    J Environ Radioact, 2019 Aug;204:86-94.
    PMID: 30986719 DOI: 10.1016/j.jenvrad.2019.03.028
    Radiocesium (RCs) is selectively adsorbed on interlayer sites of weathered micaceous minerals, which can reduce the mobility of RCs in soil. Therefore, soils developed from mica-deficient materials (e.g. serpentine soils) may have a higher risk of soil-to-plant transfer of RCs. Soils were collected from three serpentine soil profiles; Udepts in Oeyama, Japan, and Udepts and Udox in Kinabalu, Malaysia. Soil was sampled every 3 cm from 0 to 30 cm depth and sieved to isolate soil particles of ≤20 μm diameter for the assessment of radiocesium interception potential (RIP) after a series of pretreatments. One subset was treated with H2O2 to remove organic matter (OM). Another subset was further treated with hot sodium citrate to remove hydroxy-Al polymers (Al(OH)x). RIPuntreated was <0.4 mol kg-1 whereas mica-K content was <0.02% by weight for ≤20-μm soil particles from Udepts and Udox in Kinabalu, Malaysia, values as low as those of non-micaceous minerals (e.g. kaolinite and smectite). Neither OM nor Al(OH)x removal resulted in a large increase in RIP value for these soils. These results clearly indicated that serpentine soils in Malaysia have very few RCs selective adsorption sites due to the absence of micaceous minerals. In contrast, soil from Udepts in Oeyama, Japan showed average RIPuntreated of 5.6 mol kg-1 and mica-K content of 0.72% by weight for the ≤20-μm particles. Furthermore, the RIP value was significantly increased to an average of 22.5 mol kg-1 after removing both OM and Al(OH)x. These results strongly suggest that weathered micaceous minerals primarily control the ability to retain RCs. These micaceous minerals cannot originate from serpentine minerals, and are probably incorporated as an exotic material, such as Asian dust. This hypothesis is supported by the δ18O value of quartz isolated from the ≤20-μm soil particles from Oeyama, Japan (+16.13‰±0.11‰), very similar to that of Asian dust. In conclusion, serpentine soils in Japan may exhibit a reduced risk of soil-to-plant transfer of RCs due to the historical deposition of Asian dust.
    Matched MeSH terms: Dust/analysis*
  13. Alahmad B, Al-Hemoud A, Kang CM, Almarri F, Kommula V, Wolfson JM, et al.
    Environ Pollut, 2021 Aug 01;282:117016.
    PMID: 33848912 DOI: 10.1016/j.envpol.2021.117016
    BACKGROUND: Kuwait and the Gulf region have a desert, hyper-arid and hot climate that makes outdoor air sampling challenging. The region is also affected by intense dust storms. Monitoring challenges from the harsh climate have limited data needed to inform appropriate regulatory actions to address air pollution in the region.

    OBJECTIVES: To compare gravimetric measurements with existing networks that rely on beta-attenuation measurements in a desert climate; determine the annual levels of PM2.5 and PM10 over a two-year period in Kuwait; assess compliance with air quality standards; and identify and quantify PM2.5 sources.

    METHODS: We custom-designed particle samplers that can withstand large quantities of dust without their inlet becoming overloaded. The samplers were placed in two populated residential locations, one in Kuwait City and another near industrial and petrochemical facilities in Ali Sabah Al-Salem (ASAS) to collect PM2.5 and PM10 samples for mass and elemental analysis. We used positive matrix factorization to identify PM2.5 sources and apportion their contributions.

    RESULTS: We collected 2339 samples during the period October 2017 through October 2019. The beta-attenuation method in measuring PM2.5 consistently exceeded gravimetric measurements, especially during dust events. The annual levels for PM2.5 in Kuwait City and ASAS were 41.6 ± 29.0 and 47.5 ± 27.6 μg/m3, respectively. Annual PM2.5 levels in Kuwait were nearly four times higher than the U.S. National Ambient Air Quality Standard. Regional pollution was a major contributor to PM2.5 levels in both locations accounting for 44% in Kuwait City and 46% in ASAS. Dust storms and re-suspended road dust were the second and third largest contributors to PM2.5, respectively.

    CONCLUSIONS: The premise that frequent and extreme dust storms make air quality regulation futile is dubious. In this comprehensive particulate pollution analysis, we show that the sizeable regional anthropogenic particulate sources warrant national and regional mitigation strategies to ensure compliance with air quality standards.

    Matched MeSH terms: Dust/analysis
  14. Norbäck D, Hashim JH, Cai GH, Hashim Z, Ali F, Bloom E, et al.
    PLoS One, 2016;11(2):e0147996.
    PMID: 26829324 DOI: 10.1371/journal.pone.0147996
    There are few studies on rhinitis and sick building syndrome (SBS) among students in tropical countries. We studied associations between levels of five fungal DNA sequences, two mycotoxins (sterigmatocystin and verrucarol) and cat allergen (Fel d 1) levels in schools and rhinitis and other weekly SBS symptoms in the students. Fungal DNA was measured by quantitative PCR and cat allergen by ELISA. Pupils (N = 462) from eight randomly selected schools in Johor Bahru, Malaysia participated (96%). Dust samples were collected by cotton swabs and Petri dishes exposed for one week. None of the schools had a mechanical ventilation system, but all classrooms had openable windows that were kept open during lectures and indoor CO2 levels were low (mean 492 ppm; range 380-690 ppm). Weekly nasal symptoms (rhinitis) (18.8%), ocular (11.6%), throat (11.1%), dermal symptoms, headache (20.6%) and tiredness (22.1%) were common. Total fungal DNA in swab samples was associated with rhinitis (p = 0.02), ocular symptoms (p = 0.009) and tiredness (p = 0.001). There were positive associations between Aspergillus versicolor DNA in Petri dish samples, ocular symptoms (p = 0.02) and tiredness (p = 0.001). The level of the mycotoxin verrucarol (produced by Stachybotrys chartarum) in swab samples was positively associated with tiredness (p = 0.04). Streptomyces DNA in swab samples (p = 0.03) and Petri dish samples (p = 0.03) were negatively associated with tiredness. In conclusion, total fungal contamination, measured as total fungal DNA) in the classrooms, Aspergillus versicolor and verrucarol can be risk factors for rhinitis and SBS symptoms among students in the tropical country Malaysia.
    Matched MeSH terms: Dust/analysis*
  15. Ee-Ling O, Mustaffa NI, Amil N, Khan MF, Latif MT
    Bull Environ Contam Toxicol, 2015 Apr;94(4):537-42.
    PMID: 25652682 DOI: 10.1007/s00128-015-1477-9
    This study determined the source contribution of PM2.5 (particulate matter <2.5 μm) in air at three locations on the Malaysian Peninsula. PM2.5 samples were collected using a high volume sampler equipped with quartz filters. Ion chromatography was used to determine the ionic composition of the samples and inductively coupled plasma mass spectrometry was used to determine the concentrations of heavy metals. Principal component analysis with multilinear regressions were used to identify the possible sources of PM2.5. The range of PM2.5 was between 10 ± 3 and 30 ± 7 µg m(-3). Sulfate (SO4 (2-)) was the major ionic compound detected and zinc was found to dominate the heavy metals. Source apportionment analysis revealed that motor vehicle and soil dust dominated the composition of PM2.5 in the urban area. Domestic waste combustion dominated in the suburban area, while biomass burning dominated in the rural area.
    Matched MeSH terms: Dust/analysis
  16. Singh N, Banerjee T, Murari V, Deboudt K, Khan MF, Singh RS, et al.
    Chemosphere, 2021 Jan;263:128030.
    PMID: 33297051 DOI: 10.1016/j.chemosphere.2020.128030
    Size-segregated airborne fine (PM2.1) and coarse (PM>2.1) particulates were measured in an urban environment over central Indo-Gangetic plain in between 2015 and 2018 to get insights into its nature, chemistry and sources. Mean (±1σ) concentration of PM2.1 was 98 (±76) μgm-3 with a seasonal high during winter (DJF, 162 ± 71 μgm-3) compared to pre-monsoon specific high in PM>2.1 (MAMJ, 177 ± 84 μgm-3) with an annual mean of 170 (±69) μgm-3. PM2.1 was secondary in nature with abundant secondary inorganic aerosols (20% of particulate mass) and water-soluble organic carbon (19%) against metal enriched (25%) PM>2.1, having robust signature of resuspensions from Earth's crust and road dust. Ammonium-based neutralization of particulate acidity was essentially in PM2.1 with an indication of predominant H2SO4 neutralization in bisulfate form compared to Ca2+ and Mg2+-based neutralization in PM>2.1. Molecular distribution of n-alkanes homologues (C17-C35) showed Cmax at C23 (PM2.1) and C18 (PM>2.1) with weak dominance of odd-numbered n-alkanes. Carbon preference index of n-alkanes was close to unity (PM2.1: 1.4 ± 0.3; PM>2.1: 1.3 ± 0.4). Fatty acids (C12-C26) were characterized with predominance of even carbon with Cmax at n-hexadecanoic acid (C16:0). Low to high molecular weight fatty acid ratio ranged from 2.0 (PM>2.1) to 5.6 (PM2.1) with vital signature of anthropogenic emissions. Levoglucosan was abundant in PM2.1 (758 ± 481 ngm-3) with a high ratio (11.6) against galactosan, emphasizing robust contribution from burning of hardwood and agricultural residues. Receptor model resolves secondary aerosols and biomass burning emissions (45%) as the most influential sources of PM2.1 whereas, crustal (29%) and secondary aerosols (29%) were found responsible for PM>2.1; with significant variations among the seasons.
    Matched MeSH terms: Dust/analysis
  17. Vinjamuri KS, Mhawish A, Banerjee T, Sorek-Hamer M, Broday DM, Mall RK, et al.
    Environ Pollut, 2020 Feb;257:113377.
    PMID: 31672363 DOI: 10.1016/j.envpol.2019.113377
    Attenuated backscatter profiles retrieved by the space borne active lidar CALIOP on-board CALIPSO satellite were used to measure the vertical distribution of smoke aerosols and to compare it against the ECMWF planetary boundary layer height (PBLH) over the smoke dominated region of Indo-Gangetic Plain (IGP), South Asia. Initially, the relative abundance of smoke aerosols was investigated considering multiple satellite retrieved aerosol optical properties. Only the upper IGP was selectively considered for CALIPSO retrieval based on prevalence of smoke aerosols. Smoke extinction was found to contribute 2-50% of the total aerosol extinction, with strong seasonal and altitudinal attributes. During winter (DJF), smoke aerosols contribute almost 50% of total aerosol extinction only near to the surface while in post-monsoon (ON) and monsoon (JJAS), relative contribution of smoke aerosols to total extinction was highest at about 8 km height. There was strong diurnal variation in smoke extinction, evident throughout the year, with frequent abundance of smoke particles at lower height (<4 km) during daytime compared to higher height during night (>4 km). Smoke injection height also varied considerably during rice (ON: 0.71 ± 0.65 km) and wheat (AM: 2.34 ± 1.34 km) residue burning period having a significant positive correlation with prevailing PBLH. Partitioning smoke AOD against PBLH into the free troposphere (FT) and boundary layer (BL) yield interesting results. BL contribute 36% (16%) of smoke AOD during daytime (nighttime) and the BL-FT distinction increased particularly at night. There was evidence that despite travelling efficiently to FT, major proportion of smoke AOD (50-80%) continue to remain close to the surface (<3 km) thereby, may have greater implications on regional climate, air quality, smoke transport and AOD-particulate modelling.
    Matched MeSH terms: Dust/analysis
  18. Othman M, Latif MT
    Environ Sci Pollut Res Int, 2020 Apr;27(10):11227-11245.
    PMID: 31956949 DOI: 10.1007/s11356-020-07633-7
    Urban road dust contains anthropogenic components at toxic concentrations which can be hazardous to human health. A total of 36 road dust samples from five different urban areas, a commercial (CM), a high traffic (HT), a park (GR), a rail station (LRT), and a residential area (RD), were collected in Kuala Lumpur City followed by investigation into compositions, sources, and human health risks. The concentrations of trace metals in road dust and the bioaccessible fraction were determined using inductively couple plasma-mass spectrometry (ICP-MS) while ion concentrations were determined using ion chromatography (IC). The trace metal concentrations were dominated by Fe and Al with contributions of 53% and 21% to the total trace metal and ion concentrations in road dust. Another dominant metal was Zn while the dominant ion was Ca2+ with average concentrations of 314 ± 190 μg g-1 and 3470 ± 1693 μg g-1, respectively. The most bioaccessible fraction was Zn followed by the sequence Sr > Cd > Cr > Cu > Ni > Co > Mn > As > V > Pb > Fe > Al > U. The results revealed that the highest trace metal and ion concentrations in road dust and in the bioaccessible fraction were found at the LRT area. Based on the source apportionment analysis, the major source of road dust was vehicle emissions/traffic activity (47%), and for the bioaccessible fraction, the major source was soil dust (50%). For the health risk assessments, hazard quotient (HQ) and cancer risk (CR) values for each element were
    Matched MeSH terms: Dust/analysis*
  19. Othman M, Latif MT, Matsumi Y
    Ecotoxicol Environ Saf, 2019 Apr 15;170:739-749.
    PMID: 30583285 DOI: 10.1016/j.ecoenv.2018.12.042
    It is important to assess indoor air quality in school classrooms where the air quality may significantly influence school children's health and performance. This study aims to determine the concentrations of PM2.5 and dust chemical compositions in indoor and outdoor school classroom located in Kuala Lumpur City Centre. The PM2.5 concentration was measured from 19th September 2017-16th February 2018 using an optical PM2.5 sensor. Indoor and outdoor dust was also collected from the school classrooms and ion and trace metal concentrations were analysed using ion chromatography (IC) and inductively couple plasma-mass spectrometry (ICP-MS) respectively. This study showed that the average indoor and outdoor 24 h PM2.5 was 11.2 ± 0.45 µg m-3 and 11.4 ± 0.44 µg m-3 respectively. The 8 h PM2.5 concentration ranged between 3.2 and 28 µg m-3 for indoor and 3.2 and 19 µg m-3 for outdoor classrooms. The highest ion concentration in indoor dust was Ca2+ with an average concentration of 38.5 ± 35.0 µg g-1 while for outdoor dust SO42- recorded the highest ion concentration with an average concentration of 30.6 ± 9.37 µg g-1. Dominant trace metals in both indoor and outdoor dust were Al, Fe and Zn. Principle component analysis-multiple linear regression (PCA-MLR) demonstrated that the major source of indoor dust was road dust (69%), while soil dominated the outdoor dust (74%). Health risk assessment showed that the hazard quotient (HQ) value for non-carcinogenic trace metals was dust through dermal and inhalation pathways, but not the ingestion pathway. This study suggests indoor contributions of PM2.5 concentrations are due to the activities of the school children while the compositions of indoor and outdoor dust are greatly influenced by the soil/earth source plus industrial and traffic contribution.
    Matched MeSH terms: Dust/analysis*
  20. Othman M, Latif MT, Mohamed AF
    Ecotoxicol Environ Saf, 2018 Feb;148:293-302.
    PMID: 29080527 DOI: 10.1016/j.ecoenv.2017.10.034
    This study intends to determine the health impacts from two office life cycles (St.1 and St.2) using life cycle assessment (LCA) and health risk assessment of indoor metals in coarse particulates (particulate matter with diameters of less than 10µm). The first building (St.1) is located in the city centre and the second building (St.2) is located within a new development 7km away from the city centre. All life cycle stages are considered and was analysed using SimaPro software. The trace metal concentrations were determined by inductively couple plasma-mass spectrometry (ICP-MS). Particle deposition in the human lung was estimated using the multiple-path particle dosimetry model (MPPD). The results showed that the total human health impact for St.1 (0.027 DALY m-2) was higher than St.2 (0.005 DALY m-2) for a 50-year lifespan, with the highest contribution from the operational phase. The potential health risk to indoor workers was quantified as a hazard quotient (HQ) for non-carcinogenic elements, where the total values for ingestion contact were 4.38E-08 (St.1) and 2.59E-08 (St.2) while for dermal contact the values were 5.12E-09 (St.1) and 2.58E-09 (St.2). For the carcinogenic risk, the values for dermal and ingestion routes for both St.1 and St.2 were lower than the acceptable limit which indicated no carcinogenic risk. Particle deposition for coarse particles in indoor workers was concentrated in the head, followed by the pulmonary region and tracheobronchial tract deposition. The results from this study showed that human health can be significantly affected by all the processes in office building life cycle, thus the minimisation of energy consumption and pollutant exposures are crucially required.
    Matched MeSH terms: Dust/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links