Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Vinjamuri KS, Mhawish A, Banerjee T, Sorek-Hamer M, Broday DM, Mall RK, et al.
    Environ Pollut, 2020 Feb;257:113377.
    PMID: 31672363 DOI: 10.1016/j.envpol.2019.113377
    Attenuated backscatter profiles retrieved by the space borne active lidar CALIOP on-board CALIPSO satellite were used to measure the vertical distribution of smoke aerosols and to compare it against the ECMWF planetary boundary layer height (PBLH) over the smoke dominated region of Indo-Gangetic Plain (IGP), South Asia. Initially, the relative abundance of smoke aerosols was investigated considering multiple satellite retrieved aerosol optical properties. Only the upper IGP was selectively considered for CALIPSO retrieval based on prevalence of smoke aerosols. Smoke extinction was found to contribute 2-50% of the total aerosol extinction, with strong seasonal and altitudinal attributes. During winter (DJF), smoke aerosols contribute almost 50% of total aerosol extinction only near to the surface while in post-monsoon (ON) and monsoon (JJAS), relative contribution of smoke aerosols to total extinction was highest at about 8 km height. There was strong diurnal variation in smoke extinction, evident throughout the year, with frequent abundance of smoke particles at lower height (<4 km) during daytime compared to higher height during night (>4 km). Smoke injection height also varied considerably during rice (ON: 0.71 ± 0.65 km) and wheat (AM: 2.34 ± 1.34 km) residue burning period having a significant positive correlation with prevailing PBLH. Partitioning smoke AOD against PBLH into the free troposphere (FT) and boundary layer (BL) yield interesting results. BL contribute 36% (16%) of smoke AOD during daytime (nighttime) and the BL-FT distinction increased particularly at night. There was evidence that despite travelling efficiently to FT, major proportion of smoke AOD (50-80%) continue to remain close to the surface (<3 km) thereby, may have greater implications on regional climate, air quality, smoke transport and AOD-particulate modelling.
    Matched MeSH terms: Dust/analysis
  2. Othman M, Latif MT, Matsumi Y
    Ecotoxicol Environ Saf, 2019 Apr 15;170:739-749.
    PMID: 30583285 DOI: 10.1016/j.ecoenv.2018.12.042
    It is important to assess indoor air quality in school classrooms where the air quality may significantly influence school children's health and performance. This study aims to determine the concentrations of PM2.5 and dust chemical compositions in indoor and outdoor school classroom located in Kuala Lumpur City Centre. The PM2.5 concentration was measured from 19th September 2017-16th February 2018 using an optical PM2.5 sensor. Indoor and outdoor dust was also collected from the school classrooms and ion and trace metal concentrations were analysed using ion chromatography (IC) and inductively couple plasma-mass spectrometry (ICP-MS) respectively. This study showed that the average indoor and outdoor 24 h PM2.5 was 11.2 ± 0.45 µg m-3 and 11.4 ± 0.44 µg m-3 respectively. The 8 h PM2.5 concentration ranged between 3.2 and 28 µg m-3 for indoor and 3.2 and 19 µg m-3 for outdoor classrooms. The highest ion concentration in indoor dust was Ca2+ with an average concentration of 38.5 ± 35.0 µg g-1 while for outdoor dust SO42- recorded the highest ion concentration with an average concentration of 30.6 ± 9.37 µg g-1. Dominant trace metals in both indoor and outdoor dust were Al, Fe and Zn. Principle component analysis-multiple linear regression (PCA-MLR) demonstrated that the major source of indoor dust was road dust (69%), while soil dominated the outdoor dust (74%). Health risk assessment showed that the hazard quotient (HQ) value for non-carcinogenic trace metals was dust through dermal and inhalation pathways, but not the ingestion pathway. This study suggests indoor contributions of PM2.5 concentrations are due to the activities of the school children while the compositions of indoor and outdoor dust are greatly influenced by the soil/earth source plus industrial and traffic contribution.
    Matched MeSH terms: Dust/analysis*
  3. Shaharom S, Latif MT, Khan MF, Yusof SNM, Sulong NA, Wahid NBA, et al.
    Environ Sci Pollut Res Int, 2018 Sep;25(27):27074-27089.
    PMID: 30019134 DOI: 10.1007/s11356-018-2745-0
    This study aims to determine the concentrations of surfactants in the surface microlayer (SML), subsurface water (SSW) and fine mode aerosol (diameter size dust (23%) and sulphate/fresh sea salt (8%). During the southwest monsoon, the three main sources of atmospheric aerosol were biomass burning (71%), secondary inorganic aerosol (23%) and sea spray (6%). This study suggests anthropogenic sources are main contributors to the concentrations of surfactants in SML, SSW and fine aerosols.
    Matched MeSH terms: Dust/analysis
  4. Razak IS, Latif MT, Jaafar SA, Khan MF, Mushrifah I
    Environ Sci Pollut Res Int, 2015 Apr;22(8):6024-33.
    PMID: 25382497 DOI: 10.1007/s11356-014-3781-z
    This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F(-), Cl(-), NO3(-), and SO4(2-)) and the Nessler Method was used to obtain the NH4(+) concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93%) and biomass burning (2 to 22%).
    Matched MeSH terms: Dust/analysis
  5. Praveena SM, Aris AZ
    Environ Geochem Health, 2018 Apr;40(2):749-762.
    PMID: 28929262 DOI: 10.1007/s10653-017-0021-8
    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.
    Matched MeSH terms: Dust/analysis*
  6. Ee-Ling O, Mustaffa NI, Amil N, Khan MF, Latif MT
    Bull Environ Contam Toxicol, 2015 Apr;94(4):537-42.
    PMID: 25652682 DOI: 10.1007/s00128-015-1477-9
    This study determined the source contribution of PM2.5 (particulate matter <2.5 μm) in air at three locations on the Malaysian Peninsula. PM2.5 samples were collected using a high volume sampler equipped with quartz filters. Ion chromatography was used to determine the ionic composition of the samples and inductively coupled plasma mass spectrometry was used to determine the concentrations of heavy metals. Principal component analysis with multilinear regressions were used to identify the possible sources of PM2.5. The range of PM2.5 was between 10 ± 3 and 30 ± 7 µg m(-3). Sulfate (SO4 (2-)) was the major ionic compound detected and zinc was found to dominate the heavy metals. Source apportionment analysis revealed that motor vehicle and soil dust dominated the composition of PM2.5 in the urban area. Domestic waste combustion dominated in the suburban area, while biomass burning dominated in the rural area.
    Matched MeSH terms: Dust/analysis
  7. Mohamad N, Latif MT, Khan MF
    Ecotoxicol Environ Saf, 2016 Feb;124:351-362.
    PMID: 26590697 DOI: 10.1016/j.ecoenv.2015.11.002
    This study aimed to investigate the chemical composition and potential sources of PM10 as well as assess the potential health hazards it posed to school children. PM10 samples were taken from classrooms at a school in Kuala Lumpur's city centre (S1) and one in the suburban city of Putrajaya (S2) over a period of eight hours using a low volume sampler (LVS). The composition of the major ions and trace metals in PM10 were then analysed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The results showed that the average PM10 concentration inside the classroom at the city centre school (82µg/m(3)) was higher than that from the suburban school (77µg/m(3)). Principal component analysis-absolute principal component scores (PCA-APCS) revealed that road dust was the major source of indoor PM10 at both school in the city centre (36%) and the suburban location (55%). The total hazard quotient (HQ) calculated, based on the formula suggested by the United States Environmental Protection Agency (USEPA), was found to be slightly higher than the acceptable level of 1, indicating that inhalation exposure to particle-bound non-carcinogenic metals of PM10, particularly Cr exposure by children and adults occupying the school environment, was far from negligible.
    Matched MeSH terms: Dust/analysis
  8. Norbäck D, Hashim JH, Cai GH, Hashim Z, Ali F, Bloom E, et al.
    PLoS One, 2016;11(2):e0147996.
    PMID: 26829324 DOI: 10.1371/journal.pone.0147996
    There are few studies on rhinitis and sick building syndrome (SBS) among students in tropical countries. We studied associations between levels of five fungal DNA sequences, two mycotoxins (sterigmatocystin and verrucarol) and cat allergen (Fel d 1) levels in schools and rhinitis and other weekly SBS symptoms in the students. Fungal DNA was measured by quantitative PCR and cat allergen by ELISA. Pupils (N = 462) from eight randomly selected schools in Johor Bahru, Malaysia participated (96%). Dust samples were collected by cotton swabs and Petri dishes exposed for one week. None of the schools had a mechanical ventilation system, but all classrooms had openable windows that were kept open during lectures and indoor CO2 levels were low (mean 492 ppm; range 380-690 ppm). Weekly nasal symptoms (rhinitis) (18.8%), ocular (11.6%), throat (11.1%), dermal symptoms, headache (20.6%) and tiredness (22.1%) were common. Total fungal DNA in swab samples was associated with rhinitis (p = 0.02), ocular symptoms (p = 0.009) and tiredness (p = 0.001). There were positive associations between Aspergillus versicolor DNA in Petri dish samples, ocular symptoms (p = 0.02) and tiredness (p = 0.001). The level of the mycotoxin verrucarol (produced by Stachybotrys chartarum) in swab samples was positively associated with tiredness (p = 0.04). Streptomyces DNA in swab samples (p = 0.03) and Petri dish samples (p = 0.03) were negatively associated with tiredness. In conclusion, total fungal contamination, measured as total fungal DNA) in the classrooms, Aspergillus versicolor and verrucarol can be risk factors for rhinitis and SBS symptoms among students in the tropical country Malaysia.
    Matched MeSH terms: Dust/analysis*
  9. Dewika M, Markandan K, Irfan NA, Mohd Abdah MAA, Ruwaida JN, Sara YY, et al.
    Chemosphere, 2023 May;324:138270.
    PMID: 36878370 DOI: 10.1016/j.chemosphere.2023.138270
    The emergence of microplastics (MPs) pollution as a global environmental concern has attracted significant attention in the last decade. The majority of the human population spends most of their time indoors, leading to increased exposure to MPs contamination through various sources such as settled dust, air, drinking water and food. Although research on indoor MPs has intensified significantly in recent years, comprehensive reviews on this topic remain limited. Therefore, this review comprehensively analyses the occurrence, distribution, human exposure, potential health impact and mitigation strategies of MPs in the indoor air environment. Specifically, we focus on the risks associated with finer MPs that can translocate into the circulatory system and other organs, emphasizing the need for continued research to develop effective strategies to mitigate the risks associated with MPs exposure. Our findings suggest that indoor MPs impose potential risk to human health, and strategies for mitigating exposure should be further explored.
    Matched MeSH terms: Dust/analysis
  10. Lim FL, Hashim Z, Than LTL, Md Said S, Hashim JH, Norbäck D
    Int J Tuberc Lung Dis, 2019 11 01;23(11):1171-1177.
    PMID: 31718753 DOI: 10.5588/ijtld.18.0668
    OBJECTIVE: To examine the associations between endotoxin and (1,3)-β-glucan concentrations in office dust and respiratory symptoms and airway inflammation among 695 office workers in Malaysia.METHODS: Health data were collected using a questionnaire, sensitisation testing and measurement of fractional exhaled nitric oxide (FeNO). Indoor temperature, relative air humidity (RH) and carbon dioxide (CO₂) were measured in the offices and settled dust was vacuumed and analysed for endotoxin and (1,3)-β-glucan concentrations. Associations were analysed by two level multiple logistic regression.RESULTS: Overall, 9.6% of the workers had doctor-diagnosed asthma, 15.5% had wheeze, 18.4% had daytime attacks of breathlessness and 25.8% had elevated FeNO (≥25 ppb). The median levels in office dust were 11.3 EU/mg endotoxin and 62.9 ng/g (1,3)-β-glucan. After adjusting for personal and home environment factors, endotoxin concentration in dust was associated with wheeze (P = 0.02) and rhinoconjunctivitis (P = 0.007). The amount of surface dust (P = 0.04) and (1,3)-β-glucan concentration dust (P = 0.03) were associated with elevated FeNO.CONCLUSION: Endotoxin in office dust could be a risk factor for wheeze and rhinoconjunctivitis among office workers in mechanically ventilated offices in a tropical country. The amount of dust and (1,3)-β-glucan (a marker of indoor mould exposure) were associated with Th2 driven airway inflammation.
    Matched MeSH terms: Dust/analysis*
  11. Aziz NAI, Feisal NAS, Ibrahim TNBT, Cheah WY, Kamaludin NH
    Med J Malaysia, 2024 Mar;79(Suppl 1):110-116.
    PMID: 38555894
    INTRODUCTION: Cleaners perform a vital role in environmental health by keeping the place clean, but they are also exposed to various hazards. Yet, there is a lack of effective and accessible occupational safety standard measures, thus making this to be difficult to monitor the long-term health effects of cleaners. This study aims to determine the respirable dust exposure on respiratory symptoms among cleaners in a public university in Selangor.

    MATERIALS AND METHODS: A cross-sectional study was carried out among 51 cleaners. The respondents' background information and respiratory symptoms were gathered using a series of standardised questionnaires validated by the American Thoracic Society (ATS-DLD-78-A). The 8- hour respirable dust exposure to cleaners was measured using an air sampling pump (Gillian & Sensodyne Gil Air 3).

    RESULTS: The mean of respirable dust was lower than permissible exposure limit with 0.63±0.57mg/m3. The respiratory symptoms among the cleaners showed no significant association between cough, phlegm, and breathing difficulties with working tenure. Meanwhile, wheezing and coughing with phlegm have an almost significant association with working tenure among cleaners with (Χ2=1.00, p=0.08) and (Χ2=1.00, p=0.07) respectively. Exposure to respirable dust has exhibited 6 times the prevalence of coughing with phlegm among cleaners (PR=6.28, 95% CI: 0.44, 89.38).

    CONCLUSION: The findings of this study demonstrated that the cleaners were significantly affected by the respirable dust. The cleaners' working environment has caused them to be exposed to respirable dust.

    Matched MeSH terms: Dust/analysis
  12. Omar M, Sulaiman I, Hassan A, Wood AK
    Radiat Prot Dosimetry, 2007;124(4):400-6.
    PMID: 17510205
    Measurements of external radiation level, radon/thoron daughters concentrations in air and uranium/thorium concentrations in airborne mineral dust at 16 amang plants in Malaysia were carried out for three consecutive months to assess radiation dose to workers. Estimated occupational dose was within the range of 1.7-10.9 mSv y(-1). The mean total dose at the amang plants was 4.1 mSv y(-1). Overall, it was found that the major dose contribution of 80% came from external radiation. Radon/thoron daughters and airborne mineral dust contributed to only 11 and 9% of the total dose, respectively.
    Matched MeSH terms: Dust/analysis
  13. Othman M, Latif MT
    Environ Sci Pollut Res Int, 2020 Apr;27(10):11227-11245.
    PMID: 31956949 DOI: 10.1007/s11356-020-07633-7
    Urban road dust contains anthropogenic components at toxic concentrations which can be hazardous to human health. A total of 36 road dust samples from five different urban areas, a commercial (CM), a high traffic (HT), a park (GR), a rail station (LRT), and a residential area (RD), were collected in Kuala Lumpur City followed by investigation into compositions, sources, and human health risks. The concentrations of trace metals in road dust and the bioaccessible fraction were determined using inductively couple plasma-mass spectrometry (ICP-MS) while ion concentrations were determined using ion chromatography (IC). The trace metal concentrations were dominated by Fe and Al with contributions of 53% and 21% to the total trace metal and ion concentrations in road dust. Another dominant metal was Zn while the dominant ion was Ca2+ with average concentrations of 314 ± 190 μg g-1 and 3470 ± 1693 μg g-1, respectively. The most bioaccessible fraction was Zn followed by the sequence Sr > Cd > Cr > Cu > Ni > Co > Mn > As > V > Pb > Fe > Al > U. The results revealed that the highest trace metal and ion concentrations in road dust and in the bioaccessible fraction were found at the LRT area. Based on the source apportionment analysis, the major source of road dust was vehicle emissions/traffic activity (47%), and for the bioaccessible fraction, the major source was soil dust (50%). For the health risk assessments, hazard quotient (HQ) and cancer risk (CR) values for each element were
    Matched MeSH terms: Dust/analysis*
  14. Norbäck D, Hashim JH, Hashim Z, Sooria V, Ismail SA, Wieslander G
    Int J Hyg Environ Health, 2017 06;220(4):697-703.
    PMID: 28254266 DOI: 10.1016/j.ijheh.2017.01.016
    BACKGROUND: There are few studies on ocular effects of indoor mould exposure in schools, especially in the tropics OBJECTIVE: To study associations between eye symptoms and tear film break up time (BUT) in students and demographic data and fungal DNA in schools.

    METHODS: A school environment study was performed among randomly selected students in eight randomly selected secondary schools in Penang, Malaysia. Information on eye symptoms and demographic data was collected by a standardised questionnaire. BUT was measured by two methods, self-reported BUT (SBUT) and by the non-invasive Tearscope (NIBUT). Dust was collected by vacuuming in 32 classrooms and analysed for five fungal DNA sequences. Geometric mean (GM) for total fungal DNA was 7.31*104 target copies per gram dust and for Aspergillus/Penicillium DNA 3.34*104 target copies per gram dust. Linear mixed models and 3-level multiple logistic regression were applied adjusting for demographic factors.

    RESULTS: A total of 368 students (58%) participated and 17.4% reported weekly eye symptoms the last 3 months. The median SBUT and TBUT were 15 and 12s, respectively. Students wearing glasses (OR 2.41, p=0.01) and with a history of atopy (OR=2.67; p=0.008) had more eye symptoms. Girls had less eye symptoms than boys (OR=0.34; p=0.006) Indoor carbon dioxide in the classrooms was low (range 380-720ppm), temperature was 25-30°C and relative air humidity 70-88%. Total fungal DNA in vacuumed dust was associated with shorter SBUT (4s shorter per 105 target copies per gram dust; p=0.04) and NIBUT (4s shorter per 105 target copies per gram dust; p<0.001). Aspergillus/Penicillium DNA was associated with shorter NIBUT (5s shorter per 105 target copies per gram dust; p=0.01).

    CONCLUSION: Fungal contamination in schools in a tropical country can be a risk factor for impaired tear film stability among students.

    Matched MeSH terms: Dust/analysis*
  15. Hamzah NA, Mohd Tamrin SB, Ismail NH
    Int J Occup Environ Health, 2016 07;22(3):224-232.
    PMID: 27392157 DOI: 10.1080/10773525.2016.1207040
    BACKGROUND: Metallic dust is a heterogeneous substance with respiratory sensitizing properties. Its long term exposure adversely affected lung function, thus may cause acute or chronic respiratory diseases.

    METHODS: A cross-sectional study was conducted in a steel factory in Terengganu, Malaysia to assess the metal dust exposure and its relationship to lung function values among 184 workers. Metal dust concentrations values (Co, Cr, and Ni) for each worker were collected using air personal sampling. Lung function values (FEV1, FVC, and %FEV1/FVC) were determined using spirometer.

    RESULTS: Exposure to cobalt and chromium were 1-3 times higher than permissible exposure limit (PEL) while nickel was not exceeding the PEL. Cumulative of chromium was the predictor to all lung function values (FEV1, FVC, and %FEV1/FVC). Frequency of using mask was positively associated with FVC (Adj b = 0.263, P = 0.011) while past respiratory illnesses were negatively associated with %FEV1/FVC (Adj b = -1.452, P = 0.026). Only few workers (36.4%) were found to wear their masks all times during the working hours.

    CONCLUSIONS: There was an exposure-response relationship of cumulative metal dust exposure with the deterioration of lung function values. Improvement of control measures as well as proper and efficient use or personal protection equipment while at work could help to protect the respiratory health of workers.

    Matched MeSH terms: Dust/analysis
  16. Hameed BH, El-Khaiary MI
    J Hazard Mater, 2008 Nov 30;159(2-3):574-9.
    PMID: 18387735 DOI: 10.1016/j.jhazmat.2008.02.054
    In this work, the adsorption of malachite green (MG) on rattan sawdust (RSD) was studied at 30 degrees C. The results indicated that RSD can be used as a low-cost adsorbent for the removal of MG dye from aqueous solutions. Equilibrium data were analyzed by two isotherms, namely the Freundlich isotherm and the Langmuir isotherm. The best fit to the data was obtained with the Langmuir isotherm. The monolayer adsorption capacity of RSD was found to be 62.71 mg/g. The adsorption kinetics can be predicted by the pseudo-first-order model. The mechanism of adsorption was also studied. It was found that for a short time period the rate of adsorption is controlled by film diffusion. However, at longer adsorption times, pore-diffusion controls the rate of adsorption. The amount adsorbed on the outer surface was estimated from the time where film-diffusion stops controlling the adsorption rate.
    Matched MeSH terms: Dust/analysis
  17. Singh N, Banerjee T, Murari V, Deboudt K, Khan MF, Singh RS, et al.
    Chemosphere, 2021 Jan;263:128030.
    PMID: 33297051 DOI: 10.1016/j.chemosphere.2020.128030
    Size-segregated airborne fine (PM2.1) and coarse (PM>2.1) particulates were measured in an urban environment over central Indo-Gangetic plain in between 2015 and 2018 to get insights into its nature, chemistry and sources. Mean (±1σ) concentration of PM2.1 was 98 (±76) μgm-3 with a seasonal high during winter (DJF, 162 ± 71 μgm-3) compared to pre-monsoon specific high in PM>2.1 (MAMJ, 177 ± 84 μgm-3) with an annual mean of 170 (±69) μgm-3. PM2.1 was secondary in nature with abundant secondary inorganic aerosols (20% of particulate mass) and water-soluble organic carbon (19%) against metal enriched (25%) PM>2.1, having robust signature of resuspensions from Earth's crust and road dust. Ammonium-based neutralization of particulate acidity was essentially in PM2.1 with an indication of predominant H2SO4 neutralization in bisulfate form compared to Ca2+ and Mg2+-based neutralization in PM>2.1. Molecular distribution of n-alkanes homologues (C17-C35) showed Cmax at C23 (PM2.1) and C18 (PM>2.1) with weak dominance of odd-numbered n-alkanes. Carbon preference index of n-alkanes was close to unity (PM2.1: 1.4 ± 0.3; PM>2.1: 1.3 ± 0.4). Fatty acids (C12-C26) were characterized with predominance of even carbon with Cmax at n-hexadecanoic acid (C16:0). Low to high molecular weight fatty acid ratio ranged from 2.0 (PM>2.1) to 5.6 (PM2.1) with vital signature of anthropogenic emissions. Levoglucosan was abundant in PM2.1 (758 ± 481 ngm-3) with a high ratio (11.6) against galactosan, emphasizing robust contribution from burning of hardwood and agricultural residues. Receptor model resolves secondary aerosols and biomass burning emissions (45%) as the most influential sources of PM2.1 whereas, crustal (29%) and secondary aerosols (29%) were found responsible for PM>2.1; with significant variations among the seasons.
    Matched MeSH terms: Dust/analysis
  18. Sun Y, Zhang M, Ou Z, Meng Y, Chen Y, Lin R, et al.
    Eur Respir J, 2022 Nov;60(5).
    PMID: 35618276 DOI: 10.1183/13993003.00260-2022
    BACKGROUND: Indoor microbial exposure is associated with asthma, but the health effects of indoor metabolites and chemicals have not been comprehensively assessed.

    METHODS: We collected classroom dust from 24 junior high schools in three geographically distanced areas in Malaysia (Johor Bahru, Terengganu and Penang), and conducted culture-independent high-throughput microbiome and untargeted metabolomics/chemical profiling.

    RESULTS: 1290 students were surveyed for asthma symptoms (wheeze). In each centre, we found significant variation in the prevalence of wheeze among schools, which could be explained by personal characteristics and air pollutants. Large-scale microbial variations were observed between the three centres; the potential protective bacteria were mainly from phyla Actinobacteria in Johor Bahru, Cyanobacteria in Terengganu and Proteobacteria in Penang. In total, 2633 metabolites and chemicals were characterised. Many metabolites were enriched in low-wheeze schools, including plant secondary metabolites flavonoids/isoflavonoids (isoliquiritigenin, formononetin, astragalin), indole and derivatives (indole, serotonin, 1H-indole-3-carboxaldehyde), and others (biotin, chavicol). A neural network analysis showed that the indole derivatives were co-occurring with the potential protective microbial taxa, including Actinomycetospora, Fischerella and Truepera, suggesting these microorganisms may pose health effects by releasing indole metabolites. A few synthetic chemicals were enriched in high-wheeze schools, including pesticides (2(3H)-benzothiazolethione), fragrances (2-aminobenzoic acid, isovaleric acid), detergents and plastics (phthalic acid), and industrial materials (4,4-sulfonyldiphenol).

    CONCLUSIONS: This is the first association study between high-throughput indoor chemical profiling and asthma symptoms. The consistent results from the three centres indicate that indoor metabolites/chemicals could be a better indicator than the indoor microbiome for environmental and health assessments, providing new insights for asthma prediction, prevention and control.

    Matched MeSH terms: Dust/analysis
  19. Fu X, Norbäck D, Yuan Q, Li Y, Zhu X, Hashim JH, et al.
    Environ Int, 2020 05;138:105664.
    PMID: 32200316 DOI: 10.1016/j.envint.2020.105664
    Indoor microbial diversity and composition are suggested to affect the prevalence and severity of asthma by previous home microbiome studies, but no microbiome-health association study has been conducted in a school environment, especially in tropical countries. In this study, we collected floor dust and environmental characteristics from 21 classrooms, and health data related to asthma symptoms from 309 students, in junior high schools in Johor Bahru, Malaysia. The bacterial and fungal composition was characterized by sequencing 16s rRNA gene and internal transcribed spacer (ITS) region, and the absolute microbial concentration was quantified by qPCR. In total, 326 bacterial and 255 fungal genera were characterized. Five bacterial (Sphingobium, Rhodomicrobium, Shimwellia, Solirubrobacter, Pleurocapsa) and two fungal (Torulaspora and Leptosphaeriaceae) taxa were protective for asthma severity. Two bacterial taxa, Izhakiella and Robinsoniella, were positively associated with asthma severity. Several protective bacterial taxa including Rhodomicrobium, Shimwellia and Sphingobium have been reported as protective microbes in previous studies, whereas other taxa were first time reported. Environmental characteristics, such as age of building, size of textile curtain per room volume, occurrence of cockroaches, concentration of house dust mite allergens transferred from homes by the occupants, were involved in shaping the overall microbial community but not asthma-associated taxa; whereas visible dampness and mold, which did not change the overall microbial community for floor dust, was negatively associated with the concentration of protective bacteria Rhodomicrobium (β = -2.86, p = 0.021) of asthma. The result indicates complex interactions between microbes, environmental characteristics and asthma symptoms. Overall, this is the first indoor microbiome study to characterize the asthma-associated microbes and their environmental determinant in the tropical area, promoting the understanding of microbial exposure and respiratory health in this region.
    Matched MeSH terms: Dust/analysis
  20. Mariana A, Ho TM, Sofian-Azirun M, Wong AL
    PMID: 11414418
    Allergy to house dust mites (HDM) is an important cause of asthma and rhinitis in Malaysia. This study was carried out to evaluate the dust mite fauna in the Klang Valley. Dust samples were collected from 20 houses from March 1994 to February 1995. Thirty-three dust samples from mattresses were examined monthly for the occurrence of HDM. A total of 22 species in 9 families of HDM was identified. The most common and densely populated species was Blomia tropicalis with an average density of 8,934 mites/g of dust. Dermatophagoides pteronyssinus was the next in abundance, followed by Malayoglyphus intermedius. All houses surveyed were found to be infested with HDM and every house had at least 6 species of HDM. B. tropicalis and D. pteronyssinus were found in all mattresses. HDM in the Klang Valley were found to be highly prevalent and present in high densities. In this study, counts of D. pteronyssinus was found to exceed the proposed exposure threshold of 500 mites/g dust, for triggering acute asthma. Although counts of B. tropicalis exceeded D. pteronyssinus, no conclusion could be made because there is currently no exposure threshold for triggering acute asthma, for this species. Monthly distribution of B. tropicalis and D. pteronyssinus showed 2 peaks and 4 peaks, respectively. The major peak for D. pteronysinus was in January 1995 whereas for B. tropicalis, the major peak was more variable and occurred between November 1994 to January 1995. Both the species showed minor peak in April 1994.
    Matched MeSH terms: Dust/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links