Displaying publications 1 - 20 of 515 in total

Abstract:
Sort:
  1. Han Y, Bai J, Zhang Z, Wu T, Chen P, Sun G, et al.
    Sci. Total Environ., 2019 Nov 10;690:748-759.
    PMID: 31302540 DOI: 10.1016/j.scitotenv.2019.06.508
    Many species of birds gradually adapt to urbanization and colonize cities successfully. However, their nest site selection and competitive relationship in an urban community remain little known. Understanding the impact of urbanization on birds and the competitive relationship has important implications for the conservation and management of wildlife in urban ecosystems. Here, we undertook a systematic study to quantify nests in all species of birds in an urbanizing area of Nanchang, China. A total of 363 nests were detected in surveys including 340 nests of 16 bird species and 23 unidentified species nests. We mainly analyzed 5 dominant breeding birds with a sample size of >10 during the two breeding seasons (From April to July in 2016 and 2017), which included the light-vented bulbul, Chinese blackbird, scaly-breasted munia, spotted dove and grey-capped greenfinch. Most birds (93.66%) nested in the tree of artificial green belts, which seems to be the best breeding habitat for urban birds. Our results suggested that birds' breeding success relies on the trade-off between the benefit and the expense of specific stresses from habitats. The nest site selection of birds is also affected by the life habit of urban predators. Furthermore, competition among species can influence their distributions and utilization of environmental resources when birds nest in cities. We confirmed that the niche differentiation of five bird species in an urban environment makes them coexist successfully by utilizing various resources.
    Matched MeSH terms: Ecosystem*
  2. Brändle J, Kunert N
    Tree Physiol., 2019 Oct 14.
    PMID: 31631217 DOI: 10.1093/treephys/tpz104
    Tree autotrophic respiratory processes, especially stem respiration or stem CO2 efflux (Estem), are important components of the forest carbon budget. Despite the efforts to investigate the controlling processes of Estem in the last years a considerable lack in our knowledge remains on the abiotic and biotic drivers affecting Estem dynamics. It has been strongly advocated that long-term measurements would shed light into those processes. The expensive scientific instruments needed to measure gas exchange has prevented from applying Estem measurements on a larger temporal and spatial scale. Here, we present an automated closed dynamic chamber system based on inexpensive and industrially broadly applied CO2 sensors reducing the costs for the sensing system to a minimum. The CO2 sensor was cross-calibrated with a commonly used gas exchange system in the laboratory and in the field, and we found very good accordance of these sensors. We tested the system under harsh tropical climatic conditions, characterized by heavy tropical rainfall events, extreme humidity, and temperatures, in a moist lowland forest in Malaysia. We recorded Estem of three Dyera costulata trees with our prototype over various days. The variation of Estem was large among the three tree individuals and varied by 7.5-fold. However, clear diurnal changes in Estem were present in all three tree individuals. One tree showed high diurnal variation in Estem and the relationship between Estem and temperature was characterized by a strong hysteresis. The large variations found within one single tree species highlights the importance of continuous measurement to quantify ecosystem carbon fluxes.
    Matched MeSH terms: Ecosystem
  3. Schepaschenko D, Chave J, Phillips OL, Lewis SL, Davies SJ, Réjou-Méchain M, et al.
    Sci Data, 2019 10 10;6(1):198.
    PMID: 31601817 DOI: 10.1038/s41597-019-0196-1
    Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
    Matched MeSH terms: Ecosystem
  4. Serrano O, Lovelock CE, B Atwood T, Macreadie PI, Canto R, Phinn S, et al.
    Nat Commun, 2019 Oct 02;10(1):4313.
    PMID: 31575872 DOI: 10.1038/s41467-019-12176-8
    Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1-3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.
    Matched MeSH terms: Ecosystem
  5. Bongalov B, Burslem DFRP, Jucker T, Thompson SED, Rosindell J, Swinfield T, et al.
    Ecol. Lett., 2019 Oct;22(10):1608-1619.
    PMID: 31347263 DOI: 10.1111/ele.13357
    Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy β-diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field-derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide β-diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of β-diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales.
    Matched MeSH terms: Ecosystem*
  6. Parrett JM, Mann DJ, Chung AYC, Slade EM, Knell RJ
    Ecol. Lett., 2019 Oct;22(10):1629-1637.
    PMID: 31353816 DOI: 10.1111/ele.13358
    The effect of sexual selection on species persistence remains unclear. The cost of bearing ornaments or armaments might increase extinction risk, but sexual selection can also enhance the spread of beneficial alleles and increase the removal of deleterious alleles, potentially reducing extinction risk. Here we investigate the effect of sexual selection on species persistence in a community of 34 species of dung beetles across a gradient of environmental disturbance ranging from old growth forest to oil palm plantation. Horns are sexually selected traits used in contests between males, and we find that both horn presence and relative size are strongly positively associated with species persistence and abundance in altered habitats. Testes mass, an indicator of post-copulatory selection, is, however, negatively linked with the abundance of species within the most disturbed habitats. This study represents the first evidence from a field system of a population-level benefit from pre-copulatory sexual selection.
    Matched MeSH terms: Ecosystem
  7. Hawkes FM, Manin BO, Cooper A, Daim S, R H, Jelip J, et al.
    Sci Rep, 2019 Sep 16;9(1):13312.
    PMID: 31527622 DOI: 10.1038/s41598-019-49842-2
    In lowland areas of Malaysia, Plasmodium knowlesi infection is associated with land use change and high proportions of the vector Anopheles balabacensis. We conducted a 15-month study in two Malaysian villages to determine the effect of habitat on vector populations in understudied high-altitude, high-incidence districts. Anopheles mosquitoes were sampled in human settlements, plantations and forest edges, and screened for Plasmodium species by PCR. We report the first An. donaldi positive for P. knowlesi. This potential vector was associated with habitat fragmentation measured as disturbed forest edge:area ratio, while An. balabacensis was not, indicating fragmented land use could favour An. donaldi. Anopheline species richness and diversity decreased from forest edge, to plantation, to human settlement. Greater numbers of An. balabacensis and An. donaldi were found in forest edges compared to human settlements, suggesting exposure to vectors and associated zoonoses may be greater for people entering this habitat.
    Matched MeSH terms: Ecosystem
  8. Khan F, Ahmed W, Najmi A, Younus M
    PMID: 31512138 DOI: 10.1007/s11356-019-06411-4
    The rapid increase in urbanization has given rise to the need of proper waste management. Within municipal waste, the plastic waste is a growing concern which is causing severe harm to our ecosystem. If ignored, this problem will have harmful effects on both human and wildlife. Therefore, this study aims to find out the factors that influence the recycling behavior patterns of consumers regarding plastic waste. The variables from the theory of planned behavior were adopted to study the behavior of consumers toward recycling plastic waste. The data was collected from 243 residents of Karachi-metropolitan city of Pakistan. The partial least square-structural equation modelling was applied to analyze the data. The findings of the current study reveal that different consumers' attributes and attitudes trigger different types of recycling behavior when it comes to waste disposal. Pressure from family and friends and perceived behavioral control trigger the behavior of reselling the waste plastic products while consumer's awareness of consequences and personal attitude toward proper waste disposal leads to reuse or donating that product to someone who can use that plastic product. The understanding of these consumer attributes may help to shape the behavioral outcomes in order to manage waste disposal. This study will be beneficial for business managers looking to improve reverse logistics as well as government/municipal policy makers and academics/researchers who are interested in a solution-oriented study.
    Matched MeSH terms: Ecosystem
  9. Kudryavtsev A, Volkova E, Plotnikov A
    Eur. J. Protistol., 2019 Sep 11;71:125634.
    PMID: 31585231 DOI: 10.1016/j.ejop.2019.125634
    Vannella samoroda n. sp. (Amoebozoa, Vannellida) was isolated from the mouth of the Malaya Samoroda river flowing into Elton, the largest European hypersaline lake (Russia). Among all rivers of the area, it has the highest salt content (ca. 110‰). Amoebae maintained in seawater medium with ca. 77‰ salts concentration had a set of morphological characters typical of Vannella spp.: rounded, fan-shaped, or spatulate locomotive form, floating form with bent, blunt-ended hyaline pseudopodia, and a cell coat consisting of regularly packed palisade elements and scarce simple filaments. Phylogenetic analyses based on SSU rRNA and cytochrome C oxidase subunit 1 genes show that the amoeba is most closely related to Vannella ebro Smirnov, 2001, but represents a distinct species. The clade of V. ebro and V. samoroda branches among marine species of Vannella. The studied species is the first member of the genus Vannella from a continental saline habitat described using molecular data. Interestingly, it has a broad range of salinity tolerance: cells reproduce above 18‰, while survival of a few cells regularly occurs even in highly diluted Prescott and James medium. The normal culture restores itself when PJ medium is substituted with 77‰ seawater medium even after months of experimental incubation.
    Matched MeSH terms: Ecosystem
  10. Ho CL
    Genomics, 2019 Sep 05.
    PMID: 31494197 DOI: 10.1016/j.ygeno.2019.09.002
    Red algae are a major source of marine sulfated galactans. In this study, orthologs and inparalogs from seven red algae were analyzed and compared with the aim to discover differences in algal galactan biosynthesis and related pathways of these algae. Red algal orthologs for putative carbohydrate sulfotransferases were found to be prevalent in Porphyridium purpureum, Florideophytes and Bangiophytes, while red algal orthologs for putative chondroitin sulfate synthases, sulfurylases, and porphyranases /carrageenases were found exclusively in Florideophytes and Bangiophytes. The acquirement of these genes could have happened after the divergence from Cyanidiales red algae. Cyanidiales red algae were found to have more number and types of putative sulfate permeases, suggesting that these genes could have been acquired in adaptation to the environmental stresses and biogeochemistry of respective habitats. The findings of this study shed lights on the evolution of different homeostasis mechanisms by the early and late diverging red algal orders.
    Matched MeSH terms: Ecosystem
  11. Darling ES, McClanahan TR, Maina J, Gurney GG, Graham NAJ, Januchowski-Hartley F, et al.
    Nat Ecol Evol, 2019 Sep;3(9):1341-1350.
    PMID: 31406279 DOI: 10.1038/s41559-019-0953-8
    Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages-the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014-2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.
    Matched MeSH terms: Ecosystem
  12. Thiry V, Bhasin O, Stark DJ, Beudels-Jamar RC, Vercauteren Drubbel R, Nathan SKSS, et al.
    Primates, 2019 Sep;60(5):449-457.
    PMID: 31342225 DOI: 10.1007/s10329-019-00736-x
    Frugivorous vertebrates such as primates are important dispersal agents in tropical forests, although the role of folivorous colobines is generally not considered. However, recent studies reported seed dispersal by endo- and epizoochory in colobine primates, including the proboscis monkey (Nasalis larvatus), suggesting that the role colobines play in seed dispersal might have been underestimated. In the Lower Kinabatangan Floodplain in Sabah, Malaysian Borneo, we investigated whether seeds were still able to germinate after being ingested by proboscis monkeys. Faecal samples (n = 201) from proboscis monkeys were collected between 2015 and 2017. Intact seeds belonging to eight plant species were found in 77% of the faecal samples. Nauclea spp. were the most abundant plant species, accounting for 98% of all intact seeds. This study is the first to conduct germination trials on seeds defecated by proboscis monkeys. Higher germination success was recorded in ingested Nauclea spp. seeds than in control seeds, from both ripe and unripe Nauclea orientalis fruits (P 
    Matched MeSH terms: Ecosystem
  13. Soper FM, MacKenzie RA, Sharma S, Cole TG, Litton CM, Sparks JP
    Glob Chang Biol, 2019 Aug 29.
    PMID: 31465581 DOI: 10.1111/gcb.14813
    Mangrove forests play an important role in climate change adaptation and mitigation by maintaining coastline elevations relative to sea level rise, protecting coastal infrastructure from storm damage and storing substantial quantities of carbon (C) in live and detrital pools. Determining the efficacy of mangroves in achieving climate goals can be complicated by difficulty in quantifying C inputs (i.e., differentiating newer inputs from younger trees from older residual C pools), and mitigation assessments rarely consider potential offsets to CO2 storage by methane (CH4 ) production in mangrove sediments. The establishment of non-native Rhizophora mangle along Hawaiian coastlines over the last century offers an opportunity to examine the role mangroves play in climate mitigation and adaptation both globally and locally as novel ecosystems. We quantified total ecosystem C storage, sedimentation, accretion, sediment organic C burial and CH4 emissions from ~70 year old R. mangle stands and adjacent uninvaded mudflats. Ecosystem C stocks of mangrove stands exceeded mudflats by 434 ± 33 Mg C ha-1 , and mangrove establishment increased average coastal accretion by 460%. Sediment organic C burial increased 10-fold (to 4.5 Mg C ha-1 yr-1 ), double the global mean for old growth mangrove forests, suggesting that C accumulation from younger trees may occur faster than previously thought, with implications for mangrove restoration. Simulations indicate that increased CH4 emissions from sediments offset ecosystem CO2 storage by only 2-4%, equivalent to 30-60 Mg CO2 -eq ha-1 over mangrove lifetime (100-year sustained global warming potential). Results highlight the importance of mangroves as novel systems that can rapidly accumulate C, have a net positive atmospheric greenhouse gas removal effect, and support shoreline accretion rates that outpace current sea level rise. Sequestration potential of novel mangrove forests should be taken into account when considering their removal or management, especially in the context of climate mitigation goals.
    Matched MeSH terms: Ecosystem
  14. Shahimi S, Salam R, Salim JM, Ahmad A
    Data Brief, 2019 Aug;25:104045.
    PMID: 31194175 DOI: 10.1016/j.dib.2019.104045
    This data article is on riparian vegetation species richness in four different streams located in the Sultan Mahmud Hydroelectric dam, also known as Kenyir dam and commonly referred to as Tasik Kenyir, Terengganu. The dataset consists of three reservoir-island streams and the other is a small stream located on the mainland. A total of 41 families and 90 species of riparian plants were reported for the first time after 34 years of the establishment of the Sultan Mahmud Hydroelectric dam. Trees contributing 60% of the species recorded in this study and the others were non-tree species, including climbers, ferns, epiphyte, herbs, shrub, strangling trees and palms. Among the recorded riparian plant species, two are introduced which are Clidemia hirta and Mimosa pigra. The highest diversity of riparian plant found in the stream of Sungai Kiang, followed by Sungai Ikan and Sungai Saok with 46, 29 and 17 species respectively for the reservoir-island streams. The mainland stream, Sungai Siput recorded 37 species. These riparian plants provide important ecosystem services, among others soil stabilization, habitat and food for aquatic fauna and water filtration. In terms of plant utilization potential and values, 47 species are identified having medicinal value, 10 species with ornamental value and another 36 species are timber trees. Our study demonstrates that the riparian plants are closely linked to stream size with variability associated with types of stream systems. The data collected also demonstrates that the riparian plant community is at the seral stages of riparian forest. This is indicated by the increase in plant species richness as the vegetation gradually changes from riparian towards mature forest composition. To secure ecological functions of Tasik Kenyir riparian plant assemblages, particularly in stabilizing the lake's margin and riverbank, it is recommended that monitoring and legal protection may need to be imposed by local authority.
    Matched MeSH terms: Ecosystem
  15. Thomson DR, Linard C, Vanhuysse S, Steele JE, Shimoni M, Siri J, et al.
    J Urban Health, 2019 Aug;96(4):514-536.
    PMID: 31214975 DOI: 10.1007/s11524-019-00363-3
    Area-level indicators of the determinants of health are vital to plan and monitor progress toward targets such as the Sustainable Development Goals (SDGs). Tools such as the Urban Health Equity Assessment and Response Tool (Urban HEART) and UN-Habitat Urban Inequities Surveys identify dozens of area-level health determinant indicators that decision-makers can use to track and attempt to address population health burdens and inequalities. However, questions remain as to how such indicators can be measured in a cost-effective way. Area-level health determinants reflect the physical, ecological, and social environments that influence health outcomes at community and societal levels, and include, among others, access to quality health facilities, safe parks, and other urban services, traffic density, level of informality, level of air pollution, degree of social exclusion, and extent of social networks. The identification and disaggregation of indicators is necessarily constrained by which datasets are available. Typically, these include household- and individual-level survey, census, administrative, and health system data. However, continued advancements in earth observation (EO), geographical information system (GIS), and mobile technologies mean that new sources of area-level health determinant indicators derived from satellite imagery, aggregated anonymized mobile phone data, and other sources are also becoming available at granular geographic scale. Not only can these data be used to directly calculate neighborhood- and city-level indicators, they can be combined with survey, census, administrative and health system data to model household- and individual-level outcomes (e.g., population density, household wealth) with tremendous detail and accuracy. WorldPop and the Demographic and Health Surveys (DHS) have already modeled dozens of household survey indicators at country or continental scales at resolutions of 1 × 1 km or even smaller. This paper aims to broaden perceptions about which types of datasets are available for health and development decision-making. For data scientists, we flag area-level indicators at city and sub-city scales identified by health decision-makers in the SDGs, Urban HEART, and other initiatives. For local health decision-makers, we summarize a menu of new datasets that can be feasibly generated from EO, mobile phone, and other spatial data-ideally to be made free and publicly available-and offer lay descriptions of some of the difficulties in generating such data products.
    Matched MeSH terms: Ecosystem
  16. Seaman DJI, Bernard H, Ancrenaz M, Coomes D, Swinfield T, Milodowski DT, et al.
    Am. J. Primatol., 2019 Aug;81(8):e23030.
    PMID: 31328289 DOI: 10.1002/ajp.23030
    The conversion of forest to agriculture continues to contribute to the loss and fragmentation of remaining orang-utan habitat. There are still few published estimates of orang-utan densities in these heavily modified agricultural areas to inform range-wide population assessments and conservation strategies. In addition, little is known about what landscape features promote orang-utan habitat use. Using indirect nest count methods, we implemented surveys and estimated population densities of the Northeast Bornean orang-utan (Pongo pygmaeus morio) across the continuous logged forest and forest remnants in a recently salvage-logged area and oil palm plantations in Sabah, Malaysian Borneo. We then assessed the influence of landscape features and forest structural metrics obtained from LiDAR data on estimates of orang-utan density. Recent salvage logging appeared to have a little short-term effect on orang-utan density (2.35 ind/km 2 ), which remained similar to recovering logged forest nearby (2.32 ind/km 2 ). Orang-utans were also present in remnant forest patches in oil palm plantations, but at significantly lower numbers (0.82 ind/km 2 ) than nearby logged forest and salvage-logged areas. Densities were strongly influenced by variation in canopy height but were not associated with other potential covariates. Our findings suggest that orang-utans currently exist, at least in the short-term, within human-modified landscapes, providing that remnant forest patches remain. We urge greater recognition of the role that these degraded habitats can have in supporting orang-utan populations, and that future range-wide analyses and conservation strategies better incorporate data from human-modified landscapes.
    Matched MeSH terms: Ecosystem
  17. Muhammad T, Ismail S, Ikhwanuddin M, Abol-Munafi AB
    Data Brief, 2019 Aug;25:104205.
    PMID: 31338400 DOI: 10.1016/j.dib.2019.104205
    The data collected in the present work correspond to the behavioral, Hepatosomatic Index (HSI), Gonadosomatic Index (GSI) and total lipid analysis between male and female mud crabs, Scylla olivacea at different water velocities. A total of 56 immature male and female crabs were used in this data article. The important criteria for estimating the selective habitat facing by S. olivacea is a considerate of (1) the behavioral range in response to abiotic factors (and how it adapt ontogenetically) and (2) the movement of the crab under wild velocities situations. This work purposes to recognize the performance, locomotion rate and escaping capability of S. olivacea under stagnant and flowing water situations and to discuss the significance of horizontal walking to habitat choice. The collective outcomes clearly show that the locomotor activities and escaping capabilities of S. olivacea were influenced by water flow in the mangrove habitats. For the HSI data, velocities of 20 cm/s were the highest increased mean HSI percentage and highest mean HSI percentage in males and females was recorded on the end of the experiment. For GSI percentage of male and female crabs, 20 cm/s dominates the highest increases mean GSI, followed by 60, 40 and 0 cm/s. For total lipid percentage, the results showed that, the mean total lipid of hepatopancrease, muscle and gonad were increased at the beginning and decreased at the final in each water velocities except for 20 cm/s over a culture period of 60 days. Velocities of 20 cm/s were the highest increased mean total lipid percentage followed by 40, 60, and lastly 0 cm/s. The high flow velocities inhibit the production of hepatopancrease and gonad, in terms of nutrients from food used to endeavor the stress condition faced.
    Matched MeSH terms: Ecosystem
  18. Chua TH, Manin BO, Vythilingam I, Fornace K, Drakeley CJ
    Parasit Vectors, 2019 Jul 25;12(1):364.
    PMID: 31345256 DOI: 10.1186/s13071-019-3627-0
    BACKGROUND: We investigated the effect of five common habitat types on the diversity and abundance of Anopheles spp. and on the biting rate and time of Anopheles balabacensis (currently the only known vector for Plasmodium knowlesi in Sabah) at Paradason village, Kudat, Sabah. The habitats were forest edge, playground area, longhouse, oil palm plantation and shrub-bushes area. Sampling of Anopheles was done monthly using the human landing catch method in all habitat types for 14 months (October 2013 to December 2014, excluding June 2014). The Anopheles species were morphologically identified and subjected to PCR assay for the detection of Plasmodium parasites. Generalised linear mixed models (GLMM) were applied to test the variation in abundance and biting rates of An. balabacensis in different habitat types.

    RESULTS: A total of 1599 Anopheles specimens were collected in the village, of which about 90% were An. balabacensis. Anopheles balabacensis was present throughout the year and was the dominant Anopheles species in all habitat types. The shrub bushes habitat had the highest Anopheles species diversity while forest edge had the greatest number of Anopheles individuals caught. GLMM analysis indicated that An. balabacensis abundance was not affected by the type of habitats, and it was more active during the early and late night compared to predawn and dawn. PCR assay showed that 1.61% of the tested An. balabacensis were positive for malaria parasites, most of which were caught in oil palm estates and infected with one to two Plasmodium species.

    CONCLUSIONS: The identification of infected vectors in a range of habitats, including agricultural and farming areas, illustrates the potential for humans to be exposed to P. knowlesi outside forested areas. This finding contributes to a growing body of evidence implicating environmental changes due to deforestation, expansion of agricultural and farming areas, and development of human settlements near to forest fringes in the emergence of P. knowlesi in Sabah.

    Matched MeSH terms: Ecosystem
  19. Nimmo IC, Barbrook AC, Lassadi I, Chen JE, Geisler K, Smith AG, et al.
    Elife, 2019 07 18;8.
    PMID: 31317866 DOI: 10.7554/eLife.45292
    Coral reefs are some of the most important and ecologically diverse marine environments. At the base of the reef ecosystem are dinoflagellate algae, which live symbiotically within coral cells. Efforts to understand the relationship between alga and coral have been greatly hampered by the lack of an appropriate dinoflagellate genetic transformation technology. By making use of the plasmid-like fragmented chloroplast genome, we have introduced novel genetic material into the dinoflagellate chloroplast genome. We have shown that the introduced genes are expressed and confer the expected phenotypes. Genetically modified cultures have been grown for 1 year with subculturing, maintaining the introduced genes and phenotypes. This indicates that cells continue to divide after transformation and that the transformation is stable. This is the first report of stable chloroplast transformation in dinoflagellate algae.
    Matched MeSH terms: Ecosystem
  20. Lau NS, Zarkasi KZ, Md Sah ASR, Shu-Chien AC
    Microb. Ecol., 2019 Jul;78(1):20-32.
    PMID: 30397794 DOI: 10.1007/s00248-018-1283-0
    Although freshwater biomes cover less than 1% of the Earth's surface, they have disproportionate ecological significances. Attempts to study the taxonomy and function of freshwater microbiota are currently limited to samples collected from temperate lakes. In this study, we investigated samples from the photic and aphotic of an aquaculture site (disturbed) of Temengor Lake, a tropical lake in comparison with the undisturbed site of the lake using 16S rRNA amplicon and shotgun metagenomic approaches. Vertical changes in bacterial community composition and function of the Temengor Lake metagenomes were observed. The photic water layer of Temengor Lake was dominated by typical freshwater assemblages consisting of Proteobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia, and Cyanobacteria lineages. On the other hand, the aphotic water featured in addition to Proteobacteria, Bacteroidetes, Verrucomicrobia, and two more abundant bacterial phyla that are typically ubiquitous in anoxic habitats (Chloroflexi and Firmicutes). The aphotic zone of Temengor Lake exhibited genetic potential for nitrogen and sulfur metabolisms for which terminal electron acceptors other than oxygen are used in the reactions. The aphotic water of the disturbed site also showed an overrepresentation of genes associated with the metabolism of carbohydrates, likely driven by the enrichment of nutrient resulting from aquaculture activities at the site. The results presented in this study can serve as a basis for understanding the structure and functional capacity of the microbial communities in the photic and aphotic zones/water layers of tropical man-made lakes.
    Matched MeSH terms: Ecosystem
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links