Displaying publications 1 - 20 of 137 in total

Abstract:
Sort:
  1. Syahrom A, Abdul Kadir MR, Abdullah J, Öchsner A
    Med Biol Eng Comput, 2011 Dec;49(12):1393-403.
    PMID: 21947767 DOI: 10.1007/s11517-011-0833-0
    The relationship between microarchitecture to the failure mechanism and mechanical properties can be assessed through experimental and computational methods. In this study, both methods were utilised using bovine cadavers. Twenty four samples of cancellous bone were extracted from fresh bovine and the samples were cleaned from excessive marrow. Uniaxial compression testing was performed with displacement control. After mechanical testing, each specimen was ashed in a furnace. Four of the samples were exemplarily scanned using micro-computed tomography (μCT) and three dimensional models of the cancellous bones were reconstructed for finite element simulation. The mechanical properties and the failure modes obtained from numerical simulations were then compared to the experiments. Correlations between microarchitectural parameters to the mechanical properties and failure modes were then made. The Young's modulus correlates well with the bone volume fraction with R² = 0.615 and P value 0.013. Three different types of failure modes of cancellous bone were observed: oblique fracture (21.7%), perpendicular global fracture (47.8%), and scattered localised fracture (30.4%). However, no correlations were found between the failure modes to the morphological parameters. The percentage of error between computer predictions and the actual experimental test was from 6 to 12%. These mechanical properties and information on failure modes can be used for the development of synthetic cancellous bone.
    Matched MeSH terms: Elastic Modulus
  2. Jia Y, Luo B, Lee SH, Huang H, Wu Z, Zhou B, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128548.
    PMID: 38043656 DOI: 10.1016/j.ijbiomac.2023.128548
    A flame retardant high-performance gelatinized starch (GS)-ammonium dihydrogen phosphate (ADP) wood adhesive, named GS-ADP adhesive was prepared by condensation of GS and ADP under acidic condition. The preparation process of GS-ADP adhesive is very simple by mixing and stirring GS and ADP evenly at room temperature. The results revealed that the GS-ADP adhesive has good storage stability and water resistance, and its wet shear strength is much higher than that of phenolic resin (PF) adhesive. Markedly, the cone calorimeter test results show that G-ADP adhesive has good flame retardancy, and the plywood based on GS-ADP adhesive has good flame retardancy. Meanwhile, it can be seen from dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) that GS-ADP has excellent modulus of elasticity (MOE), high glass transition temperature (Tg) and good thermal stability. The findings suggest that GS-ADP could be a viable substitute for PF resin in structural wood fabrication.
    Matched MeSH terms: Elastic Modulus
  3. Safiuddin M, Raman SN, Zain MFM
    Materials (Basel), 2015 Dec 10;8(12):8608-8623.
    PMID: 28793732 DOI: 10.3390/ma8125464
    The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete.
    Matched MeSH terms: Elastic Modulus
  4. Rahman MR, Hamdan S, Lai JCH, Jawaid M, Yusof FABM
    Heliyon, 2017 Jul;3(7):e00342.
    PMID: 28725868 DOI: 10.1016/j.heliyon.2017.e00342
    In this study, the physical, morphological, mechanical and thermal properties of furfuryl alcohol/2-ethylhexyl methacrylate/halloysite nanoclay wood polymer nanocomposites (FA-co-EHMA-HNC WPNCs) were investigated. FA-co-EHMA-HNC WPNCs were prepared via an impregnation method and the properties of the nanocomposites were characterized through the weight percent gain, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), three-point flexural test, dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) analysis and moisture absorption test. The weight percent gain in the 50:50 FA-co-EHMA-HNC WPNC was the highest compared with the raw wood (RW) and other WPNCs. The FT-IR results confirmed that polymerization took place in the nanocomposites, especially 50:50 FA-co-EHMA-HNC WPNC, which had a reduced amount of hydroxyl groups. The SEM results revealed that the 50:50 FA-co-EHMA-HNC WPNC had the smoothest and most uniform surface among all of the nanocomposites. The 50:50 FA-co-EHMA-HNC WPNC showed the highest flexural strength and modulus of elasticity. The results revealed that the storage modulus and loss modulus of the FA-co-EHMA-HNC WPNCs were higher and the tan δ of FA-co-EHMA-HNC WNPCs was lower compared with the RW. The FA-co-EHMA-HNC WPNCs exhibited the higher thermal stability in the TGA and DSC analysis. The 50:50 FA-co-EHMA-HNC WPNC exhibited remarkably lower moisture absorption compared with the RW. Overall, this study proved that the ratio 50:50 FA-co-EHMA ratio was the most suitable for introduction in the in the RW.
    Matched MeSH terms: Elastic Modulus
  5. Sidek HA, Bahari HR, Halimah MK, Yunus WM
    Int J Mol Sci, 2012;13(4):4632-41.
    PMID: 22606000 DOI: 10.3390/ijms13044632
    This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG) systems in the form of (GeO(2))(60)-(PbO)(40-) (x)-(½Bi(2)O(3))(x) where x = 0 to 40 mol%. Their densities with respect of Bi(2)O(3) concentration were determined using Archimedes' method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B(2)O(3))(20)-(PbO)(80-) (x)-(Bi(2)O(3))(x). The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi(2)O(3) content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young's also increase linearly with addition of Bi(2)O(3) but the bulk modulus did not. The Poisson's ratio and fractal dimensionality are also found to vary linearly with the Bi(2)O(3) concentration.
    Matched MeSH terms: Elastic Modulus/physiology*
  6. Eili M, Shameli K, Ibrahim NA, Yunus WM
    Int J Mol Sci, 2012;13(7):7938-51.
    PMID: 22942682 DOI: 10.3390/ijms13077938
    Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn(3)Al LDH. A solution casting method was used to prepare PLA/stearate-Zn(3)Al LDH nanocomposites. The anionic clay Zn(3)Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn(3)Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn(3)Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn(3)Al LDH nanocomposites showed that the presence of around 1.0-3.0 wt % of the stearate-Zn(3)Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn(3)Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA.
    Matched MeSH terms: Elastic Modulus
  7. Salih AM, Ahmad MB, Ibrahim NA, Dahlan KZ, Tajau R, Mahmood MH, et al.
    Molecules, 2015;20(8):14191-211.
    PMID: 26248072 DOI: 10.3390/molecules200814191
    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.
    Matched MeSH terms: Elastic Modulus
  8. Othman SH, Othman NFL, Shapi'i RA, Ariffin SH, Yunos KFM
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513664 DOI: 10.3390/polym13030390
    This work aims to develop corn starch/chitosan nanoparticles/thymol (CS/CNP/Thy) bio-nanocomposite films as potential food packaging materials that can enhance the shelf life of food. CS/CNP/Thy bio-nanocomposite films were prepared by the addition of different concentrations of thymol (0, 1.5, 3.0, 4.5 w/w%) using a solvent casting method. The resulting films were characterized in terms of optical, mechanical, and water vapor permeability (WVP) properties. The addition of thymol was found to reduce the tensile strength (TS), elongation at break (EAB), and Young's modulus (YM) of the films. Generally, the increment in the concentration of thymol did not significantly affect the TS, EAB, and YM values. The addition of 1.5 w/w% thymol increased the WVP of the films but the WVP reduced with the increase in thymol concentrations. CS/CNP/Thy-3% bio-nanocomposite films demonstrated the potential to lengthen the shelf life of cherry tomatoes packed with the films, whereby the cherry tomatoes exhibited no significant changes in firmness and the lowest weight loss. In addition, no mold growth was observed on the sliced cherry tomatoes that were in direct contact with the films during 7 days of storage, proving the promising application of the films as active food packaging materials.
    Matched MeSH terms: Elastic Modulus
  9. Yan L, Yu J, Zhong Y, Gu Y, Ma Y, Li W, et al.
    J Nanosci Nanotechnol, 2020 03 01;20(3):1605-1612.
    PMID: 31492322 DOI: 10.1166/jnn.2020.17340
    The present study focuses on the microstructural and bioactive properties evolution in selective laser melting (SLM) β titanium alloys. We have applied cross-scan strategy for improving mechanical properties and lower elastic modulus of SLMed Ti-20Mg-5Ta alloys which has been shown to be altering the microstructure and refining the grain size. The cross-scan strategy can refine the microstructure and induce various deformation textures in contrast to the conventional scan strategy. The microstructures of Ti-20Mg-5Ta alloys indicate that the cross-scan strategy will yield the best mechanical properties and lower elastic modulus. The corrosion behavior of the Ti-20Mg-5Ta alloys was studied during immersion in an acellular simulated body fluid (SBF) at 37±0.50 °C for 28 days. Both the mechanical and bioactive properties showed that the novel Ti-20Mg-5Ta alloys should be ideal for bone implants.
    Matched MeSH terms: Elastic Modulus
  10. Law JX, Musa F, Ruszymah BH, El Haj AJ, Yang Y
    Med Eng Phys, 2016 Sep;38(9):854-61.
    PMID: 27349492 DOI: 10.1016/j.medengphy.2016.05.017
    Collagen and fibrin are widely used in tissue engineering due to their excellent biocompatibility and bioactivities that support in vivo tissue formation. These two hydrogels naturally present in different wound healing stages with different regulatory effects on cells, and both of them are mechanically weak in the reconstructed hydrogels. We conducted a comparative study by the growth of rat dermal fibroblasts or dermal fibroblasts and epidermal keratinocytes together in collagen and fibrin constructs respectively with and without the reinforcement of electrospun poly(lactic acid) nanofiber mesh. Cell proliferation, gel contraction and elastic modulus of the constructs were measured on the same gels at multiple time points during the 22 day culturing period using multiple non-destructive techniques. The results demonstrated considerably different cellular activities within the two types of constructs. Co-culturing keratinocytes with fibroblasts in the collagen constructs reduced the fibroblast proliferation, collagen contraction and mechanical strength at late culture point regardless of the presence of nanofibers. Co-culturing keratinocytes with fibroblasts in the fibrin constructs promoted fibroblast proliferation but exerted no influence on fibrin contraction and mechanical strength. The presence of nanofibers in the collagen and fibrin constructs played a favorable role on the fibroblast proliferation when keratinocytes were absent. Thus, this study exhibited new evidence of the strong cross-talk between keratinocytes and fibroblasts, which can be used to control fibroblast proliferation and construct contraction. This cross-talk activity is extracellular matrix-dependent in terms of the fibrous network morphology, density and strength.
    Matched MeSH terms: Elastic Modulus
  11. Eweis AH, Yap AU, Yahya NA
    J Mech Behav Biomed Mater, 2017 10;74:183-188.
    PMID: 28605721 DOI: 10.1016/j.jmbbm.2017.06.004
    This study investigated the effect of food simulating liquids on visco-elastic properties of bulk-fill restoratives using dynamic mechanical analysis. One conventional composite (Filtek Z350 [FZ]), two bulk-fill composites (Filtek Bulk-fill [FB] and Tetric N Ceram [TN]) and a bulk-fill giomer (Beautifil-Bulk Restorative [BB]) were evaluated. Specimens (12 × 2 × 2mm) were fabricated using customized stainless steel molds. The specimens were light-cured, removed from their molds, finished, measured and randomly divided into six groups. The groups (n = 10) were conditioned in the following mediums for 7 days at 37°C: air (control), artificial saliva (SAGF), distilled water, 0.02N citric acid, heptane, 50% ethanol-water solution. Specimens were assessed using dynamic mechanical testing in flexural three-point bending mode and their respective mediums at 37°C and a frequency range of 0.1-10Hz. The distance between the supports were fixed at 10mm and an axial load of 5N was employed. Data for elastic modulus, viscous modulus and loss tangent were subjected to ANOVA/Tukey's tests at significance level p < 0.05. Significant differences in visco-elastic properties were observed between materials and mediums. Apart from bulk-fill giomer, elastic modulus was the highest after conditioning in heptane. No apparent trends were noted for viscous modulus. Generally, loss tangent was the highest after conditioning in ethanol. The effect of food-simulating liquids on the visco-elastic properties of bulk-fill composites was material and medium dependent.
    Matched MeSH terms: Elastic Modulus
  12. Karimzadeh A, R Koloor SS, Ayatollahi MR, Bushroa AR, Yahya MY
    Sci Rep, 2019 10 31;9(1):15763.
    PMID: 31673118 DOI: 10.1038/s41598-019-51904-4
    This study investigates the capacity of the nano-indentation method in the mechanical characterization of a heterogeneous dental restorative nanocomposite using experimental and computational approaches. In this respect, Filtek Z350 XT was selected as a nano-particle reinforced polymer nanocomposite with a specific range of the particle size (50 nm to 4 µm), within the range of indenter contact area of the nano-indentation experiment. A Sufficient number of nano-indentation tests were performed in various locations of the nanocomposite to extract the hardness and elastic modulus properties. A hybrid computational-experimental approach was developed to examine the extracted properties by linking the internal behaviour and the global response of the nanocomposite. In the computational part, several representative models of the nanocomposite were created in a finite element environment to simulate the mechanism of elastic-plastic deformation of the nanocomposite under Berkovich indenter. Dispersed values of hardness and elastic modulus were obtained through the experiment with 26.8 and 48.5 percent average errors, respectively, in comparison to the nanocomposite properties, respectively. A disordered shape was predicted for plastic deformation of the equilateral indentation mark, representing the interaction of the particles and matrix, which caused the experiment results reflect the local behaviour of the nanocomposite instead of the real material properties.
    Matched MeSH terms: Elastic Modulus
  13. Seow LL, Toh CG, Fok AS, Wilson NH
    Am J Dent, 2008 Oct;21(5):331-6.
    PMID: 19024261
    PURPOSE: To investigate the level and distribution of stresses in endodontically treated maxillary premolar teeth restored using various cavity designs of bonded all-ceramic restorations. The hypothesis tested was that the various all-ceramic approaches, including incorporating a pulp chamber extension in the restoration, had no influence on the stresses in the restored tooth unit.
    METHODS: Finite element packages Patran and Abaqus were used for the stress analysis. The cavity designs investigated include: (1) inlay (I); (2) inlay with palatal cusp coverage (IPC); (3) onlay (O); (4) inlay with pulp chamber extension (IPE); (5) inlay with palatal cusp coverage and pulp chamber extension (IPCPE); and (6) onlay with pulp chamber extension (OPE).
    RESULTS: In each case, tensile stresses were found to be concentrated subjacent to the occlusal fossa. Peak tensile stress and peak shear stress values along the tooth/restoration interface for IPC, O IPCPE and OPE cavity designs were found to be associated with the axiogingival line angle. Overall, the order of the various forms of restoration investigated in terms of the maximum principal stress (from greatest to lowest) was as follows: IPE > IPCPE > OPE > I > IPC > O.
    Matched MeSH terms: Elastic Modulus
  14. Abd Latif MJ, Jin Z, Wilcox RK
    J Biomech, 2012 May 11;45(8):1346-52.
    PMID: 22483055 DOI: 10.1016/j.jbiomech.2012.03.015
    The spinal facet joints are known to be an important component in the kinematics and the load transmission of the spine. The articular cartilage in the facet joint is prone to degenerative changes which lead to back pain and treatments for the condition have had limited long term success. There is currently a lack of information on the basic biomechanical properties of the facet joint cartilage which is needed to develop tissue substitution or regenerative interventions. In the present study, the thickness and biphasic properties of ovine facet cartilage were determined using a combination of indentation tests and computational modelling. The equilibrium biphasic Young's modulus and permeability were derived to be 0.76±0.35 MPa and 1.61±1.10×10⁻¹⁵ m⁴/(Ns) respectively, which were within the range of cartilage properties characterised from the human synovial joints. The average thickness of the ovine facet cartilage was 0.52±0.10 mm, which was measured using a needle indentation test. These properties could potentially be used for the development of substitution or tissue engineering interventions and for computational modelling of the facet joint. Furthermore, the developed method to characterise the facet cartilage could be used for other animals or human donors.
    Matched MeSH terms: Elastic Modulus/physiology
  15. Mohamad, D., Young, R.J., Mann, A.B., Watts, D.C.
    MyJurnal
    The aim of the study was to evaluate post-polymerization of resin composite by measuring NanoHardness (H), Young’s Modulus (E) and Degree of Conversion (DC) using nanoindentation and Micro-Raman spectroscopy. For this purpose a computer-controlled NanoIndenter™ and a Renishaw 1000 Raman Spectrometer fitted with an Olympus microscope attachment, operated at 638 nm, were used. A light-activated resin composite was used in this study, (Z250, 3MESPE). Sub-groups (n=3) of specimens were irradiated for 20, 30, 40 s. All samples for nanoindentation were polished metallographically and typically 50 nanoindentations were performed per specimen. After curing and polishing, half of the samples were tested immediately (Group 1); the others after being stored dry at 37 °C for 7 days (Group 2) to allow scope for postpolymerization. H values ranged from 1.08 to 1.40 GPa for Group 1, and from 1.64 to1.71 GPa for Group 2. E values in Group 1 ranged from 19.60 to 19.94 GPa and for Group 2, from 21.42 to 22.05 GPa. DC values ranged from 55 to 66.39%, and 60.90 to 66.47% for Group 1 and Group 2 respectively. All values obtained shown significant different between Groups 1 and 2 (p
    Matched MeSH terms: Elastic Modulus
  16. Dayangku Intan Munthoub, Wan Aizan Wan Abdul Rahman
    Sains Malaysiana, 2011;40:1179-1186.
    Natural organic and abundant resources biopolymers received more attention due to their low cost, availability and degradability after usage. Cassava skin was used as natural fillers to the polyvinyl alcohol (PVA). Cassava skin/poly vinyl alcohol blends were compounded using melt extrusion twin screw extruder and test samples were prepared using the compression method. Various ratios of cassava skin and glycerol were investigated to identify suitable composition based on the water absorption and tensile properties. The water absorption of the cassava skins/PVA samples increased at higher composition of cassava skin due to their hydrophilic properties but decrease with glycerol content. The strength of the cassava skins/PVA samples increased with the higher composition of cassava skin up to 70 wt% while gradually decreased with the increasing composition of glycerol. The Young modulus increased with glycerol content but decreased with fibre loading up to 70 wt%. Elongation at break decreased with fibre loading and glycerol up to 70 wt% and 30 phr, respectively.
    Matched MeSH terms: Elastic Modulus
  17. Soheilmoghaddam M, Wahit MU
    Int J Biol Macromol, 2013 Jul;58:133-9.
    PMID: 23567285 DOI: 10.1016/j.ijbiomac.2013.03.066
    In this study, novel nanocomposite films based on regenerated cellulose/halloysite nanotube (RC/HNT) have been prepared using an environmentally friendly ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) through a simple green method. The structural, morphological, thermal and mechanical properties of the RC/HNT nanocomposites were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), thermal analysis and tensile strength measurements. The results obtained revealed interactions between the halloysite nanotubes and regenerated cellulose matrix. The thermal stability and mechanical properties of the nanocomposite films, compared with pure regenerated cellulose film, were significantly improved When the halloysite nanotube (HNT) loading was only 2 wt.%, the 20% weight loss temperature (T20) increased 20°C. The Young's modulus increased from 1.8 to 4.1 GPa, while tensile strength increased from 35.30 to 60.50 MPa when 8 wt.% halloysite nanotube (HNT) was incorporated, interestingly without loss of ductility. The nanocomposite films exhibited improved oxygen barrier properties and water absorption resistance compared to regenerated cellulose.
    Matched MeSH terms: Elastic Modulus
  18. Feng Z, Ishiguro Y, Fujita K, Kosawada T, Nakamura T, Sato D, et al.
    Biomaterials, 2015 Oct;67:365-81.
    PMID: 26247391 DOI: 10.1016/j.biomaterials.2015.07.038
    In this paper, we present a general, fibril-based structural constitutive theory which accounts for three material aspects of crosslinked filamentous materials: the single fibrillar force response, the fibrillar network model, and the effects of alterations to the fibrillar network. In the case of the single fibrillar response, we develop a formula that covers the entropic and enthalpic deformation regions, and introduce the relaxation phase to explain the observed force decay after crosslink breakage. For the filamentous network model, we characterize the constituent element of the fibrillar network in terms its end-to-end distance vector and its contour length, then decompose the vector orientation into an isotropic random term and a specific alignment, paving the way for an expanded formalism from principal deformation to general 3D deformation; and, more important, we define a critical core quantity over which macroscale mechanical characteristics can be integrated: the ratio of the initial end-to-end distance to the contour length (and its probability function). For network alterations, we quantitatively treat changes in constituent elements and relate these changes to the alteration of network characteristics. Singular in its physical rigor and clarity, this constitutive theory can reproduce and predict a wide range of nonlinear mechanical behavior in materials composed of a crosslinked filamentous network, including: stress relaxation (with dual relaxation coefficients as typically observed in soft tissues); hysteresis with decreasing maximum stress under serial cyclic loading; strain-stiffening under uniaxial tension; the rupture point of the structure as a whole; various effects of biaxial tensile loading; strain-stiffening under simple shearing; the so-called "negative normal stress" phenomenon; and enthalpic elastic behaviors of the constituent element. Applied to compacted collagen gels, the theory demonstrates that collagen fibrils behave as enthalpic elasticas with linear elasticity within the gels, and that the macroscale nonlinearity of the gels originates from the curved fibrillar network. Meanwhile, the underlying factors that determine the mechanical properties of the gels are clarified. Finally, the implications of this study on the enhancement of the mechanical properties of compacted collagen gels and on the cellular mechanics with this model tissue are discussed.
    Matched MeSH terms: Elastic Modulus/drug effects
  19. Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, et al.
    Sci Rep, 2015 Dec 14;5:18136.
    PMID: 26656754 DOI: 10.1038/srep18136
    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
    Matched MeSH terms: Elastic Modulus
  20. Lai DS, Osman AF, Adnan SA, Ibrahim I, Alrashdi AA, Ahmad Salimi MN, et al.
    Polymers (Basel), 2021 Mar 15;13(6).
    PMID: 33803984 DOI: 10.3390/polym13060897
    Thermoplastic starch (TPS) hybrid bio-composite films containing microcrystalline cellulose (C) and nano-bentonite (B) as hybrid fillers were studied to replace the conventional non-degradable plastic in packaging applications. Raw oil palm empty fruit bunch (OPEFB) was subjected to chemical treatment and acid hydrolysis to obtain C filler. B filler was ultra-sonicated for better dispersion in the TPS films to improve the filler-matrix interactions. The morphology and structure of fillers were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). TPS hybrid bio-composite films were produced by the casting method with different ratios of B and C fillers. The best ratio of B/C was determined through the data of the tensile test. FTIR analysis proved the molecular interactions between the TPS and the hybrid fillers due to the presence of polar groups in their structure. XRD analysis confirmed the intercalation of the TPS chains between the B inter-platelets as a result of well-developed interactions between the TPS and hybrid fillers. SEM images suggested that more plastic deformation occurred in the fractured surface of the TPS hybrid bio-composite film due to the higher degree of stretching after being subjected to tensile loading. Overall, the results indicate that incorporating the hybrid B/C fillers could tremendously improve the mechanical properties of the films. The best ratio of B/C in the TPS was found to be 4:1, in which the tensile strength (8.52MPa), Young's modulus (42.0 MPa), elongation at break (116.4%) and tensile toughness of the film were increased by 92%, 146%, 156% and 338%, respectively. The significantly improved strength, modulus, flexibility and toughness of the film indicate the benefits of using the hybrid fillers, since these features are useful for the development of sustainable flexible packaging film.
    Matched MeSH terms: Elastic Modulus
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links