Displaying publications 1 - 20 of 135 in total

Abstract:
Sort:
  1. Umar Hamzah, Ibrahim Komoo
    A survey to characterize seismic and ultrasonic properties of a granite weathering profile have been carried out at a roadcut slope exposure along Kuala Lumpur-Karak highway at kilometres 39.9. The terraced cut slope shows a complete weathering profile beginning from fresh grade I rock to grade VI residual soil. Together with in situ seismic measurement, rock samples have been collected for ultrasonic tests in laboratory. The range of velocities representing grades and indices of weathered rocks and soils are determined from the in situ seismic surveys. The range of ultrasonic velocities and elastic moduli are obtained from the laboratory measurements.
    Satu survei untuk mencirikan sifat seismos dan ultrasonik profil luluhawa granit telah dilakukan di singkapan potongan jalan, cerun utara lebuhraya Kuala Lumpur-Karak pada lokaliti 39.9 km. Potongan berteres ini mempamirkan satu profil luluhawa lengkap iaitu mulai batuan gred 1 yang segar hingga ke tanah baki bergred VI. Di samping pengukuran seismos secara in situ, sampel batuan juga diambil untuk dibuat pengukuran halaju ultrasonik di makmal. Julat halaju yang mewakili gred dan indeks luluhawa bagi tanah dan batuan diperolehi daripada survei seismos in situ. Julat halaju trasonik dan modulus kenyal diperolehi hasil pengukuran di makmal.
    Matched MeSH terms: Elastic Modulus
  2. Muhamad Daud, Sarimah Mahat, Mohd Sharif Sattar
    MyJurnal
    Surface free energies have been evaluated from Young’s moduli and lattice parameter data of five aluminium alloys with varying amounts of stanum to determine the inter-correlation with anode capacity of the alloys. The composition containing ~1.47%Sn exhibits a minimum in the surface free energy which accounts for the decrease in the tendency of the alloy to undergo passivation thus resulting in a higher anode capacity of 2478Ah/kg at ≈ 0.08mA/cm 2 , current density. The results showed that aluminium alloy containing certain amount of stanum has lowered surface free energy, leading to reduction in passive film thickness and reduces metal/oxide bond strength. These factors in turn result in a better cathodic protection property of aluminium alloy containing stanum.
    Matched MeSH terms: Elastic Modulus
  3. Mohamad, D., Young, R.J., Mann, A.B., Watts, D.C.
    MyJurnal
    The aim of the study was to evaluate post-polymerization of resin composite by measuring NanoHardness (H), Young’s Modulus (E) and Degree of Conversion (DC) using nanoindentation and Micro-Raman spectroscopy. For this purpose a computer-controlled NanoIndenter™ and a Renishaw 1000 Raman Spectrometer fitted with an Olympus microscope attachment, operated at 638 nm, were used. A light-activated resin composite was used in this study, (Z250, 3MESPE). Sub-groups (n=3) of specimens were irradiated for 20, 30, 40 s. All samples for nanoindentation were polished metallographically and typically 50 nanoindentations were performed per specimen. After curing and polishing, half of the samples were tested immediately (Group 1); the others after being stored dry at 37 °C for 7 days (Group 2) to allow scope for postpolymerization. H values ranged from 1.08 to 1.40 GPa for Group 1, and from 1.64 to1.71 GPa for Group 2. E values in Group 1 ranged from 19.60 to 19.94 GPa and for Group 2, from 21.42 to 22.05 GPa. DC values ranged from 55 to 66.39%, and 60.90 to 66.47% for Group 1 and Group 2 respectively. All values obtained shown significant different between Groups 1 and 2 (p
    Matched MeSH terms: Elastic Modulus
  4. Seow LL, Toh CG, Fok AS, Wilson NH
    Am J Dent, 2008 Oct;21(5):331-6.
    PMID: 19024261
    PURPOSE: To investigate the level and distribution of stresses in endodontically treated maxillary premolar teeth restored using various cavity designs of bonded all-ceramic restorations. The hypothesis tested was that the various all-ceramic approaches, including incorporating a pulp chamber extension in the restoration, had no influence on the stresses in the restored tooth unit.
    METHODS: Finite element packages Patran and Abaqus were used for the stress analysis. The cavity designs investigated include: (1) inlay (I); (2) inlay with palatal cusp coverage (IPC); (3) onlay (O); (4) inlay with pulp chamber extension (IPE); (5) inlay with palatal cusp coverage and pulp chamber extension (IPCPE); and (6) onlay with pulp chamber extension (OPE).
    RESULTS: In each case, tensile stresses were found to be concentrated subjacent to the occlusal fossa. Peak tensile stress and peak shear stress values along the tooth/restoration interface for IPC, O IPCPE and OPE cavity designs were found to be associated with the axiogingival line angle. Overall, the order of the various forms of restoration investigated in terms of the maximum principal stress (from greatest to lowest) was as follows: IPE > IPCPE > OPE > I > IPC > O.
    Matched MeSH terms: Elastic Modulus
  5. Ali IL, Yunus N, Abu-Hassan MI
    J Prosthodont, 2008 Oct;17(7):545-9.
    PMID: 18761582 DOI: 10.1111/j.1532-849X.2008.00357.x
    This study compared the surface hardness, flexural strength, and flexural modulus of a light- and heat-cured urethane dimethacrylate (UDMA) to two conventional polymethyl methacrylate (PMMA) denture base resins. The effect of less-than-optimal processing condition on the hardness of internal and external surfaces of UDMA specimens was also investigated.
    Matched MeSH terms: Elastic Modulus
  6. Lee SY, Pereira BP, Yusof N, Selvaratnam L, Yu Z, Abbas AA, et al.
    Acta Biomater, 2009 Jul;5(6):1919-25.
    PMID: 19289306 DOI: 10.1016/j.actbio.2009.02.014
    A poly(vinyl alcohol) (PVA) hydrogel composite scaffold containing N,O-carboxymethylated chitosan (NOCC) was tested to assess its potential as a scaffold for cartilage tissue engineering in a weight-bearing environment. The mechanical properties under unconfined compression for different hydration periods were investigated. The effect of supplementing PVA with NOCC (20wt.% PVA:5vol.% NOCC) produced a porosity of 43.3% and this was compared against a non-porous PVA hydrogel (20g PVA: 100ml of water, control). Under non-hydrated conditions, the porous PVA-NOCC hydrogel behaved in a similar way to the control non-porous PVA hydrogel, with similar non-linear stress-strain response under unconfined compression (0-30% strain). After 7days' hydration, the porous hydrogel demonstrated a reduced stiffness (0.002kPa, at 25% strain), resulting in a more linear stiffness relationship over a range of 0-30% strain. Poisson's ratio for the hydrated non-porous and porous hydrogels ranged between 0.73 and 1.18, and 0.76 and 1.33, respectively, suggesting a greater fluid flow when loaded. The stress relaxation function for the porous hydrogel was affected by the hydration period (from 0 to 600s); however the percentage stress relaxation regained by about 95%, after 1200s for all hydration periods assessed. No significant differences were found between the different hydration periods between the porous hydrogels and control. The calculated aggregate modulus, H(A), for the porous hydrogel reduced drastically from 10.99kPa in its non-hydrated state to about 0.001kPa after 7days' hydration, with the calculated shear modulus reducing from 30.92 to 0.14kPa, respectively. The porous PVA-NOCC hydrogel conformed to a biphasic, viscoelastic model, which has the desired properties required for any scaffold in cartilage tissue engineering.
    Matched MeSH terms: Elastic Modulus
  7. Norul Azlin, M.Z., Senin, H.B., Kok Sheng, C.
    MyJurnal
    Phenolic resin-silica nanocomposites samples in pellet shape have been successfully prepared by intercalation of polymer solution through the hot pressing method. The phenolic resin is modified with organic elastomers of silica nanoparticles, which is about 20 nanometer in diameter. The change of density and porosity was studied based on the addition of silica content in the phenolic resin composites. The densities of composites increased with the addition of the silica content from 10 wt.% to 40 wt.%. On the other hand, the porosity percentage was decreased with increasing of silica contents. The mechanical properties (Young’s modulus, energy to break and time to failure) of the nanocomposites samples were identified using the Universal Testing Material Machine (UTM). The results of Young’s modulus, energy to break and time to failure of the phenolic resin composites were found to be slightly increased with silica content from 10 wt.% to 30 wt.%. The X-Ray Microtomogaphy (XRM) topographies have shown that the porosity exists on fracture structure for each nanocomposite. The nanocomposites surface structure has been analyzed using Scanning Electron Microscope (SEM). The observation shows that the fracture surface of the pure phenolic resin is relatively smooth and glassy, which is typical for a brittle material, but the phenolic resin- silica composites fracture surface is not smooth at all. The observations indicate the pure phenolic resin is brittle than phenolic resin-silica nanocomposites. Consequently, the physical properties of the phenolic resin-silica nanocomposites were improved with the addition of 10 wt.% to 30 wt.% silica contents, as compared to that of the pure phenolic resin.
    Matched MeSH terms: Elastic Modulus
  8. Saifullah, R., Abbas, F.M.A., Yeoh, S.Y., Azhar, M.E.
    MyJurnal
    Banana pulp (BP) noodles prepared by partial substitution of wheat flour with green Cavendish banana pulp flour were assessed pH, color, tensile strength and elasticity, and in-vitro hydrolysis index (HI) and estimated glycemic index (GI). BP noodles had lower L* (darker) and b* values (less yellow) but higher tensile strength and elasticity modulus than control noodles. Following an in-vitro starch hydrolysis studies, it was found that GI of BP noodles was lower than control noodles. Partial substitution of green banana pulp into noodles may be useful for controlling starch hydrolysis of yellow noodles.
    Matched MeSH terms: Elastic Modulus
  9. Kadir MR, Syahrom A, Ochsner A
    Med Biol Eng Comput, 2010 May;48(5):497-505.
    PMID: 20224954 DOI: 10.1007/s11517-010-0593-2
    Human bones can be categorised into one of two types--the compact cortical and the porous cancellous. Whilst the cortical is a solid structure macroscopically, the structure of cancellous bone is highly complex with plate-like and strut-like structures of various sizes and shapes depending on the anatomical site. Reconstructing the actual structure of cancellous bone for defect filling is highly unfeasible. However, the complex structure can be simplified into an idealised structure with similar properties. In this study, two idealised architectures were developed based on morphological indices of cancellous bone: the tetrakaidecahedral and the prismatic. The two architectures were further subdivided into two types of microstructure, the first consists of struts only and the second consists of a combination of plates and struts. The microstructures were transformed into finite element models and displacement boundary condition was applied to all four idealised cancellous models with periodic boundary conditions. Eight unit cells extracted from the actual cancellous bone obtained from micro-computed tomography were also analysed with the same boundary conditions. Young's modulus values were calculated and comparison was made between the idealised and real cancellous structures. Results showed that all models with a combination of plates and struts have higher rigidity compared to the one with struts only. Values of Young's modulus from eight unit cells of cancellous bone varied from 42 to 479 MPa with an average of 234 MPa. The prismatic architecture with plates and rods closely resemble the average stiffness of a unit cell of cancellous bone.
    Matched MeSH terms: Elastic Modulus
  10. Santiagoo, Ragunathan, Hanafi Ismail, Kamarudin Hussin
    MyJurnal
    The effect of polypropylene maleic anhydride (PPMAH) on tensile properties and morphology of polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr)/ rice husk powder (RHP) composites has been studied. The composites were prepared through melt mixing at 180ºC for 9 minutes using 50 rpm rotor speed. The specimens were analyzed using different techniques, namely tensile test and Scanning Electron Microscopy (SEM). The results obtained showed that the tensile strength and Young’s modulus of the modified composites were increased, while the elongation at break showed the opposite trend as compared with the unmodified composites. The morphology results support the tensile properties and these indicated a better interaction between the filler and matrix with the presence of PPMAH as a compatibilizer.
    Matched MeSH terms: Elastic Modulus
  11. Syahrom A, Abdul Kadir MR, Abdullah J, Öchsner A
    Med Biol Eng Comput, 2011 Dec;49(12):1393-403.
    PMID: 21947767 DOI: 10.1007/s11517-011-0833-0
    The relationship between microarchitecture to the failure mechanism and mechanical properties can be assessed through experimental and computational methods. In this study, both methods were utilised using bovine cadavers. Twenty four samples of cancellous bone were extracted from fresh bovine and the samples were cleaned from excessive marrow. Uniaxial compression testing was performed with displacement control. After mechanical testing, each specimen was ashed in a furnace. Four of the samples were exemplarily scanned using micro-computed tomography (μCT) and three dimensional models of the cancellous bones were reconstructed for finite element simulation. The mechanical properties and the failure modes obtained from numerical simulations were then compared to the experiments. Correlations between microarchitectural parameters to the mechanical properties and failure modes were then made. The Young's modulus correlates well with the bone volume fraction with R² = 0.615 and P value 0.013. Three different types of failure modes of cancellous bone were observed: oblique fracture (21.7%), perpendicular global fracture (47.8%), and scattered localised fracture (30.4%). However, no correlations were found between the failure modes to the morphological parameters. The percentage of error between computer predictions and the actual experimental test was from 6 to 12%. These mechanical properties and information on failure modes can be used for the development of synthetic cancellous bone.
    Matched MeSH terms: Elastic Modulus
  12. Ahmad, Z., Wee, L.S., Fauzi, M.A.
    ASM Science Journal, 2011;5(1):27-35.
    MyJurnal
    This paper reports the mechanical properties of cement composite boards made using wood-wool from a lesser known Malaysian timber species. A total of 108 specimens were fabricated using Portland cement (Type I) and wood-wool from Kelampayan (Neolamarckia cadamba). The cement to wood ratio of the specimens was 2 to 1 by weight. The aim of the study was to determine the density; flexural, compressive and tensile strength of wood-wool cement composite boards (WWCCB) by studying boards with wood-wool sized 1.5 mm, 2.5 mm and 3.5 mm and board thickness 25 mm, 50 mm and 75mm. The physical and mechanical properties of the boards were evaluated according to ASTM D 1037-96a (Standard testing method for evaluating properties of wood-based fibre and particle panel materials) and MS934:1986. Results showed that mechanical properties of WWCCB were greatly influenced by the density; as the density decreased, the mechanical strengths also decreased. However, the strength properties of the composite boards did not display a similar trend when subjected to different types of loading conditions. The compressive strength increased with thicker boards (50 mm and 75 mm) but the modulus of elasticity and modulus of rupture declined as the thickness of the board was increased.
    Matched MeSH terms: Elastic Modulus
  13. Hanafi Ismail, Rohani Abdul Majid, Razaina Mat Taib
    MyJurnal
    Linear density polyethylene (LDPE)/thermoplastic sago starch (TPSS), blended with and without the addition of compatibilizer [Polyethylene-grafted-Maleic Anhydride, (PE-g-MA)] were prepared for soil burial test. The test was conducted in the natural soil environment for 3 and 6 months. Different loading of TPSS (10, 20, 30, 40, and 50 wt. %) were used in this study. After soil burial, the blends were evaluated for their tensile properties and scanning electron microscopy (SEM) to observe the surface morphology properties after the test. For LDPE/TPSS, it was observed that the tensile strength decreased with the increase of soil burial time, as well as Young modulus and elongation at break (EB). The LDPE/TPSS/PE-g-MA also showed the same trend for the tensile properties, but with higher properties as compared to uncompatibilized blends. The tensile properties also decreased with the increase in the TPSS loading for both the LDPE/TPSS and LDPE/TPSS/PE-g-MA. Meanwhile,
    the scanning electron microscopy (SEM) on the blend surfaces after the soil burial test showed that degradability increased with the increase in the exposure time as well as the TPSS loading.
    Matched MeSH terms: Elastic Modulus
  14. Dayangku Intan Munthoub, Wan Aizan Wan Abdul Rahman
    Sains Malaysiana, 2011;40:1179-1186.
    Natural organic and abundant resources biopolymers received more attention due to their low cost, availability and degradability after usage. Cassava skin was used as natural fillers to the polyvinyl alcohol (PVA). Cassava skin/poly vinyl alcohol blends were compounded using melt extrusion twin screw extruder and test samples were prepared using the compression method. Various ratios of cassava skin and glycerol were investigated to identify suitable composition based on the water absorption and tensile properties. The water absorption of the cassava skins/PVA samples increased at higher composition of cassava skin due to their hydrophilic properties but decrease with glycerol content. The strength of the cassava skins/PVA samples increased with the higher composition of cassava skin up to 70 wt% while gradually decreased with the increasing composition of glycerol. The Young modulus increased with glycerol content but decreased with fibre loading up to 70 wt%. Elongation at break decreased with fibre loading and glycerol up to 70 wt% and 30 phr, respectively.
    Matched MeSH terms: Elastic Modulus
  15. Abd Latif MJ, Jin Z, Wilcox RK
    J Biomech, 2012 May 11;45(8):1346-52.
    PMID: 22483055 DOI: 10.1016/j.jbiomech.2012.03.015
    The spinal facet joints are known to be an important component in the kinematics and the load transmission of the spine. The articular cartilage in the facet joint is prone to degenerative changes which lead to back pain and treatments for the condition have had limited long term success. There is currently a lack of information on the basic biomechanical properties of the facet joint cartilage which is needed to develop tissue substitution or regenerative interventions. In the present study, the thickness and biphasic properties of ovine facet cartilage were determined using a combination of indentation tests and computational modelling. The equilibrium biphasic Young's modulus and permeability were derived to be 0.76±0.35 MPa and 1.61±1.10×10⁻¹⁵ m⁴/(Ns) respectively, which were within the range of cartilage properties characterised from the human synovial joints. The average thickness of the ovine facet cartilage was 0.52±0.10 mm, which was measured using a needle indentation test. These properties could potentially be used for the development of substitution or tissue engineering interventions and for computational modelling of the facet joint. Furthermore, the developed method to characterise the facet cartilage could be used for other animals or human donors.
    Matched MeSH terms: Elastic Modulus/physiology
  16. Rahmandoust M, Ochsner A
    J Nanosci Nanotechnol, 2012 Oct;12(10):8129-36.
    PMID: 23421189
    In this study, Single-Walled and Multi-Walled Carbon Nanotubes in their perfect forms were investigated by the Finite Element Method. Details on the modeling of the structure are provided in this paper, including the appropriate elements, the element properties that should be defined based on the atomic structure of Carbon Nanotubes and the corresponding chemical bonds. Non-covalent van der Waals interactions between two neighbor atoms as well as the required approximations for the modeling of the structures with this kind of interaction are also presented. Specific attention was dedicated to the necessity of using some time- and energy-consuming steps in the simulation process. First, the effect of simulating only a single ring of the whole structure is studied to find out if it would represent the same mechanical behavior as the long structure. Results show that by applying an appropriate set of boundary conditions, the stiffness of the shortened structure is practically equal to the long perfect structure. Furthermore, Multi-Walled Carbon Nanotube structures with and without defining the van der Waals force are studied. Based on the observations, applying the van der Waals force does not significantly influence the obtained Young's modulus of the structure in the case of a uniaxial tensile test.
    Matched MeSH terms: Elastic Modulus
  17. Amid BT, Mirhosseini H
    Int J Mol Sci, 2012 Nov 13;13(11):14871-88.
    PMID: 23203099 DOI: 10.3390/ijms131114871
    In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus) seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05) effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05) effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like) behavior compared to the viscous (liquid like) behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed.
    Matched MeSH terms: Elastic Modulus
  18. Sidek HA, Bahari HR, Halimah MK, Yunus WM
    Int J Mol Sci, 2012;13(4):4632-41.
    PMID: 22606000 DOI: 10.3390/ijms13044632
    This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG) systems in the form of (GeO(2))(60)-(PbO)(40-) (x)-(½Bi(2)O(3))(x) where x = 0 to 40 mol%. Their densities with respect of Bi(2)O(3) concentration were determined using Archimedes' method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B(2)O(3))(20)-(PbO)(80-) (x)-(Bi(2)O(3))(x). The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi(2)O(3) content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young's also increase linearly with addition of Bi(2)O(3) but the bulk modulus did not. The Poisson's ratio and fractal dimensionality are also found to vary linearly with the Bi(2)O(3) concentration.
    Matched MeSH terms: Elastic Modulus/physiology*
  19. Eili M, Shameli K, Ibrahim NA, Yunus WM
    Int J Mol Sci, 2012;13(7):7938-51.
    PMID: 22942682 DOI: 10.3390/ijms13077938
    Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn(3)Al LDH. A solution casting method was used to prepare PLA/stearate-Zn(3)Al LDH nanocomposites. The anionic clay Zn(3)Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn(3)Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn(3)Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn(3)Al LDH nanocomposites showed that the presence of around 1.0-3.0 wt % of the stearate-Zn(3)Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn(3)Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA.
    Matched MeSH terms: Elastic Modulus
  20. Sugandi, G., Majlis, B.Y.
    ASM Science Journal, 2012;6(2):122-127.
    MyJurnal
    Since its invention, polyimide (PI) has been widely used in micro-electro-mechanical system (MEMS) devices. For fabrication, the PI membrane, PI-2723 HD-Microsystems was used as the membrane material due to its Young's modulus of 2.7 GPa and its film thickness could easily be controlled by changing the speed of the spin coater system. The application PI as membrane structure on silicon wafers therefore gave a much better mechanical performance then conventional membranes made of silicon dioxide (SiO2) or silicon nitride (Si3N4) layers. The fabrication of PI membrane was the same as for SiO2 and Si3N4 membranes; the basic step was to etch a side of the silicon wafer using wet anisotropic etching. This paper proposes an effective process for fabrication of PI membrane with f ast and little supervision. In this process, a dual step process was wet anisotropic etching of single crystal silicon using pottasium hydroxyl (KOH) with different concentrations and temperature processes. For the first process, 45% KOH under boiling temperature was used to etch at least 90%–95% of the silicon. In the second process, the silicon was submerged in 45% KOH with temperature at 70ºC–80ºC to etch away the residual silicon until a clean and transparent PI membrane was achieved. Using this method, the fabrication of PI membrane could be generated fast.
    Matched MeSH terms: Elastic Modulus
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links