Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Abu Bakar MF, Kamerkar U, Abdul Rahman SN, Muhd Sakaff MKL, Othman AS
    Data Brief, 2020 Oct;32:106188.
    PMID: 32904357 DOI: 10.1016/j.dib.2020.106188
    Hevea brasiliensis is exploited for its latex production, and it is the only viable source of natural rubber worldwide. The demand for natural rubber remains high due its high-quality properties, which synthetic rubber cannot compete with. In this paper, we present transcriptomic data and analysis of three H. brasiliensis clones using tissue from latex and bark tissues collected from 10-year-old plant. The combined, assembled transcripts were mapped onto an H. brasiliensis draft genome. Gene ontology analysis showed that the most abundant transcripts related to molecular functions, followed by biological processes and cellular components. Simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) were also identified, and these can be useful for selection of parental and new clones in a breeding program. Data generated by RNA sequencing were deposited in the NCBI public repository under accession number PRJNA629890.
    Matched MeSH terms: Elastomers
  2. Ghani, S.H.A.
    Ann Dent, 1996;3(1):-.
    MyJurnal
    Fixed-removable appliance is frequently used to extrude a tooth but the idea of incorporating an acrylic capping or stop has not been documented in the literature. This article reports on a case treated with this new approach and describes the technique used.
    Matched MeSH terms: Silicone Elastomers
  3. Singh R, Singh G, Singh J, Kumar R, Rahman MM, Ramakrishna S
    Proc Inst Mech Eng H, 2019 Nov;233(11):1196-1203.
    PMID: 31545132 DOI: 10.1177/0954411919877979
    In this experimental study, a composite of poly-ether-ketone-ketone by reinforcement of hydroxyapatite and chitosan has been prepared for possible applications as orthopaedic scaffolds. Initially, different weight percentages of hydroxyapatite and chitosan were reinforced in the poly-ether-ketone-ketone matrix and tested for melt flow index in order to check the flowability of different compositions/proportions. Suitable compositions revealed by the melt flow index test were then taken forward for the extrusion of filament required for fused deposition modelling. For thermomechanical investigations, Taguchi-based design of experiments has been used with input variables in the extrusion process as follows: temperature, load applied and different composition/proportions. The specimens in the form of feedstock filament produced by the extrusion process were made to undergo tensile testing. The specimens were also inspected by differential scanning calorimetry and photomicrographs. Finally, the specimen showing the best performance from the thermomechanical viewpoint has been selected to extrude the filament for the fused deposition modelling process.
    Matched MeSH terms: Silicone Elastomers
  4. Yunus NA, Mazlan SA, Ubaidillah, Abdul Aziz SA, Tan Shilan S, Abdul Wahab NA
    Int J Mol Sci, 2019 Feb 10;20(3).
    PMID: 30744210 DOI: 10.3390/ijms20030746
    Determination of the thermal characteristics and temperature-dependent rheological properties of the magnetorheological elastomers (MREs) is of paramount importance particularly with regards to MRE applications. Hitherto, a paucity of temperature dependent analysis has been conducted by MRE researchers. In this study, an investigation on the thermal and rheological properties of epoxidized natural rubber (ENR)-based MREs was performed. Various percentages of carbonyl iron particles (CIPs) were blended with the ENR compound using a two roll-mill for the preparation of the ENR-based MRE samples. The morphological, elemental, and thermal analyses were performed before the rheological test. Several characterizations, as well as the effects of the strain amplitude, temperature, and magnetic field on the rheological properties of ENR-based MRE samples, were evaluated. The micrographs and elemental results were well-correlated regarding the CIP and Fe contents, and a uniform distribution of CIPs was achieved. The results of the thermal test indicated that the incorporation of CIPs enhanced the thermal stability of the ENR-based MREs. Based on the rheological analysis, the storage modulus and loss factor were dependent on the CIP content and strain amplitude. The effect of temperature on the rheological properties revealed that the stiffness of the ENR-based MREs was considered stable, and they were appropriate to be employed in the MRE devices exposed to high temperatures above 45 °C.
    Matched MeSH terms: Elastomers/chemistry*
  5. Aziz SAA, Mazlan SA, Ubaidillah U, Mohamad N, Choi SB, Che Aziz MA, et al.
    Int J Mol Sci, 2020 Nov 27;21(23).
    PMID: 33260840 DOI: 10.3390/ijms21239007
    Engineering rubber composites have been widely used as main components in many fields including vehicle engineering and biomedical applications. However, when a rubber composite surface area is exposed to heat or sunlight and over a long-term accelerated exposure and lifecycle of test, the rubber becomes hard, thus influencing the mechanical and rheological behavior of the materials. Therefore, in this study, the deterioration of rheological characteristics particularly the phase shift angle (δ) of silicone rubber (SR) based magnetorheological elastomer (MRE) is investigated under the effect of thermal aging. SR-MRE with 60 wt% of CIPs is fabricated and subjected to a continuous temperature of 100 °C for 72 h. The characterization of SR-MRE before and after thermal aging related to hardness, micrograph, and rheological properties are characterized using low vacuum scanning electron microscopy (LV-SEM) and a rheometer, respectively. The results demonstrated that the morphological analysis has a rough surface and more voids occurred after the thermal aging. The hardness and the weight of the SR-MRE before and after thermal aging were slightly different. Nonetheless, the thermo-rheological results showed that the stress-strain behavior have changed the phase-shift angle (δ) of SR-MRE particularly at a high strain. Moreover, the complex mechanism of SR-MRE before and after thermal aging can be observed through the changes of the 'in-rubber structure' under rheological properties. Finally, the relationship between the phase-shift angle (δ) and the in-rubber structure due to thermal aging are discussed thoroughly which led to a better understanding of the thermo-rheological behavior of SR-MRE.
    Matched MeSH terms: Silicone Elastomers/chemistry*
  6. Olaiya NG, Nuryawan A, Oke PK, Khalil HPSA, Rizal S, Mogaji PB, et al.
    Polymers (Basel), 2020 Mar 05;12(3).
    PMID: 32151004 DOI: 10.3390/polym12030592
    The current research trend for excellent miscibility in polymer mixing is the use of plasticizers. The use of most plasticizers usually has some negative effects on the mechanical properties of the resulting composite and can sometimes make it toxic, which makes such polymers unsuitable for biomedical applications. This research focuses on the improvement of the miscibility of polymer composites using two-step mixing with a rheomixer and a mix extruder. Polylactic acid (PLA), chitin, and starch were produced after two-step mixing, using a compression molding method with decreasing composition variation (between 8% to 2%) of chitin and increasing starch content. A dynamic mechanical analysis (DMA) was used to study the mechanical behavior of the composite at various temperatures. The tensile strength, yield, elastic modulus, impact, morphology, and compatibility properties were also studied. The DMA results showed a glass transition temperature range of 50 °C to 100 °C for all samples, with a distinct peak value for the loss modulus and factor. The single distinct peak value meant the polymer blend was compatible. The storage and loss modulus increased with an increase in blending, while the loss factor decreased, indicating excellent compatibility and miscibility of the composite components. The mechanical properties of the samples improved compared to neat PLA. Small voids and immiscibility were noticed in the scanning electron microscopy images, and this was corroborated by X-ray diffraction graphs that showed an improvement in the crystalline nature of PLA with starch. Bioabsorption and toxicity tests showed compatibility with the rat system, which is similar to the human system.
    Matched MeSH terms: Silicone Elastomers
  7. Ngeow YW, Williams DR, Chapman AV, Heng JYY
    ACS Omega, 2020 May 12;5(18):10266-10275.
    PMID: 32426583 DOI: 10.1021/acsomega.9b03920
    The reinforcing silica filler, which can be more than 40% of an elastomer composite, plays a key role to achieve the desired mechanical properties in elastomer vulcanizates. However, the highly hydrophilic nature of silica surface causes silica particle aggregation. It remained a challenge for many tire manufacturers when using silica-filled elastomer compounds. Here, the silica surface energy changes when the surface is modified with coupling or noncoupling silanes; coupling silanes can covalently bond the silica to the elastomers. The surface energy of silica was determined using inverse gas chromatography (IGC) at finite dilution (FD-IGC) and found to be reduced by up to 50% when the silica surface was silanized. The spatial distribution of silica aggregates within the tire matrix is determined by transmission electron microscopy (TEM) and a direct correlation between aggregate size (silica microdispersion) and work of cohesion from IGC is reported, highlighting surface energy and work of cohesion being excellent indicators of the degree of dispersion of silica aggregates.
    Matched MeSH terms: Elastomers
  8. Khalaf S, Ariffin Z, Husein A, Reza F
    J Prosthodont, 2015 Jul;24(5):419-23.
    PMID: 25219956 DOI: 10.1111/jopr.12213
    PURPOSE: This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified.

    MATERIALS AND METHODS: A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05.

    RESULTS: Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers.

    CONCLUSIONS: Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold.

    Matched MeSH terms: Silicone Elastomers
  9. Khalaf S, Ariffin Z, Husein A, Reza F
    J Prosthodont, 2017 Dec;26(8):664-669.
    PMID: 28177575 DOI: 10.1111/jopr.12460
    PURPOSE: To compare the adhesion of three microorganisms on modified and unmodified silicone elastomer surfaces with different surface roughnesses and porosities.

    MATERIALS AND METHODS: Candida albicans, Streptococcus mutans, and Staphylococcus aureus were incubated with modified and unmodified silicone groups (N = 35) for 30 days at 37°C. The counts of viable microorganisms in the accumulating biofilm layer were determined and converted to cfu/cm2 unit surface area. A scanning electron microscope (SEM) was used to evaluate the microbial adhesion. Statistical analysis was performed using t-test, one-way ANOVA, and post hoc tests as indicated.

    RESULTS: Significant differences in microbial adhesion were observed between modified and unmodified silicone elastomers after the cells were incubated for 30 days (p < 0.001). SEM showed evident differences in microbial adhesion on modified silicone elastomer compared with unmodified silicone elastomer.

    CONCLUSIONS: Surface modification of silicone elastomer yielding a smoother and less porous surface showed lower adhesion of different microorganisms than observed on unmodified surfaces.

    Matched MeSH terms: Silicone Elastomers*
  10. Lee, S.Y.
    MyJurnal
    Tapioca starch, poly(lactic acid) and Cloisite 10A nanocomposite foams were prepared by twin screw extrusion. Residence time distribution (RTD) in an extruder is a useful means of determining optimal processing conditions for mixing, cooking and shearing reactions during the process. RTD was obtained by inputting a pulse-like stimulus and measuring its profile at the exit or other point in the extruder. During processing, after the steady state had been reached, a fixed amount of tracer was instantaneously fed into the extruder and its concentration was measured from the samples collected at fixed time intervals in the extruder exit. The tracer concentration was the value of the redness, a* was used as a measure of red colour intensity of the concentration of tracer in the extrudate. Meanwhile, the effects of two screw configurations (compression and mixing screws) and two barrel temperatures (150 and 160ºC) on RTD of nanocomposite foams were also studied. The influences of screw configurations and barrel temperatures on RTD were analyzed using the mean residence time (MRT) and variance. Screw configurations and temperatures had significant effects (P
    Matched MeSH terms: Silicone Elastomers
  11. Ren C, Su Z, Su Y, Wang L
    Biomed Res Int, 2022;2022:5152911.
    PMID: 36093408 DOI: 10.1155/2022/5152911
    Polyurethane, as a rubber material, can relieve the load on the ground and provide seismic design for the venue, which is of great significance for sports venues. In order to improve the seismic resistance and abrasion resistance of materials for sports fields and reduce accidents in sports, this article has carried out research on the polyurethane elastomer layered nanocomposites for sports fields and their preparation. Today's world is a challenging era of science and technology. The fields of biotechnology, information, medicine, energy, environment, and national defense and security are closely related to the development of high tech, and the requirements for materials are becoming increasingly diversified. Polymer nanocomposite coating has the dual characteristics of organic and inorganic components. It not only retains the advantages of a polymer but also endows it with versatility. It meets the current application needs. It is a hot spot in today's research. Among them, there are two major problems in the composite process of nanomaterials and polymers: dispersion and compatibility. How to improve the dispersion of nanoparticles and enhance the compatibility between nanoparticles and polymers is an urgent problem to be solved. In the method part, this article introduces a small amount of polyurethane and polyurethane elastomers formed after polyurethane modification and introduces layered compounds and nanocomposites and introduces several models involved in nanomaterials in terms of algorithms. In the analysis part, this paper conducts a comprehensive analysis of the hard segment mass fraction, mechanical properties, thermal decomposition behavior, degradation mechanism, and dynamic mechanical properties. With the increase of GO content, the tensile strength increases significantly and the elongation at break becomes smaller and smaller. When the GO content increases from 0% to 2%, the tensile properties of the WPU film increase from 2.6 MPa to 7.9 MPa and the fracture of the elongation decreased from 201.7% to 62.8%. This shows that the increase in GO content will make the composite material harder and brittle. It can be seen from the experimental results that the preparation of the polyurethane elastomer layered nanocomposite material designed in this paper has a good application effect on sports venues.
    Matched MeSH terms: Elastomers
  12. Al-Saleh MA, Yussuf AA, Al-Enezi S, Kazemi R, Wahit MU, Al-Shammari T, et al.
    Materials (Basel), 2019 Nov 27;12(23).
    PMID: 31783544 DOI: 10.3390/ma12233924
    In this research work, graphene nanoplatelets (GNP) were selected as alternative reinforcing nanofillers to enhance the properties of polypropylene (PP) using different compatibilizers called polypropylene grafted maleic anhydride (PP-g-MA) and ethylene-octene elastomer grafted maleic anhydride (POE-g-MA). A twin screw extruder was used to compound PP, GNP, and either the PP-g-MA or POE-g-MA compatibilizer. The effect of GNP loading on mechanical and thermal properties of neat PP was investigated. Furthermore, the influence and performance of different compatibilizers on the final properties, such as mechanical and thermal, were discussed and reported. Tensile, flexural, impact, melting temperature, crystallization temperature, and thermal stability were evaluated by using a universal testing system, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). For mechanical properties, it was found that increasing GNP content from 1 wt.% to 5 wt.% increased tensile strength of the neat PP up to 4 MPa. The influence of compatibilizers on the mechanical properties had been discussed and reported. For instance, the addition of PP-g-MA compatibilizer improved tensile strength of neat PP with GNP loading. However, the addition of compatibilizer POE-g-MA slightly decreased the tensile strength of neat PP. A similar trend of behavior was observed for flexural strength. For thermal properties, it was found that both GNP loading and compatibilizers have no significant influence on both crystallization and melting temperature of neat PP. For thermal stability, however, it was found that increasing the GNP loading had a significant influence on improving the thermal behavior of neat PP. Furthermore, the addition of compatibilizers into the PP/GNP nanocomposite had slightly improved the thermal stability of neat PP.
    Matched MeSH terms: Silicone Elastomers; Elastomers
  13. Huong KH, Azuraini MJ, Aziz NA, Amirul AA
    J Biosci Bioeng, 2017 Jul;124(1):76-83.
    PMID: 28457658 DOI: 10.1016/j.jbiosc.2017.02.003
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] copolymer receives attention as next generation biomaterial in medical application. However, the exploitation of the copolymer is still constrained since such copolymer has not yet successfully been performed in industrial scale production. In this work, we intended to establish pilot production system of the copolymer retaining the copolymer quality which has recently discovered to have novel characteristic from lab scale fermentation. An increase of agitation speed has significantly improved the copolymer accumulation efficiency by minimizing the utilization of substrates towards cell growth components. This is evidenced by a drastic increase of PHA content from 28 wt% to 63 wt% and PHA concentration from 3.1 g/L to 6.5 g/L but accompanied by the reduction of residual biomass from 8.0 g/L to 3.8 g/L. Besides, fermentations at lower agitation and aeration have resulted in reduced molecular weight and mechanical strength of the copolymer, suggesting the role of sufficient oxygen supply efficiency in improving the properties of the resulting copolymers. The KLa-based scale-up fermentation was performed successfully in maintaining the yield and the quality of the copolymers produced without a drastic fluctuation. This suggests that the scale-up based on the KLa values supported the fermentation system of P(3HB-co-4HB) copolymer production in single-stage using mixed-substrate cultivation strategy.
    Matched MeSH terms: Elastomers/metabolism*; Elastomers/chemistry*
  14. Burhannuddin NL, Nordin NA, Mazlan SA, Aziz SAA, Kuwano N, Jamari SKM, et al.
    Sci Rep, 2021 Jan 13;11(1):868.
    PMID: 33441824 DOI: 10.1038/s41598-020-80539-z
    Carbonyl iron particles (CIPs) is one of the key components in magnetic rubber, known as magnetorheological elastomer (MRE). Apart from the influence of their sizes and concentrations, the role of the particle' shape is pronounced worthy of the attention for the MRE performance. However, the usage of CIPs in MRE during long-term applications may lead to corrosion effects on the embedded CIPs, which significantly affects the performance of devices or systems utilizing MRE. Hence, the distinctions between the two types of MRE embedded in different shapes of spherical and plate-like CIPs, at both conditions of non-corroded and corroded CIPs were investigated in terms of the field-dependent rheological properties of MRE. The plate-like shape was produced from spherical CIPs through a milling process using a rotary ball mill. Then, both shapes of CIPs individually subjected to an accelerated corrosion test in diluted hydrochloric (HCl) at different concentrations, particularly at 0.5, 1.0, and 1.5 vol.% for 30 min of immersion time. Eight samples of CIPs, including non-corroded for both CIPs shapes, were characterized in terms of a morphological study by field emission scanning electron microscope (FESEM) and magnetic properties via vibrating sample magnetometer (VSM). The field-dependent rheological properties of MREs were analyzed the change in the dynamic modulus behavior of MREs via rheometer. From the application perspective, this finding may be useful for the system to be considered that provide an idea to prolong the performance MRE by utilizing the different shapes of CIPs even when the material is fading.
    Matched MeSH terms: Elastomers
  15. Norul Azlin, M.Z., Senin, H.B., Kok Sheng, C.
    MyJurnal
    Phenolic resin-silica nanocomposites samples in pellet shape have been successfully prepared by intercalation of polymer solution through the hot pressing method. The phenolic resin is modified with organic elastomers of silica nanoparticles, which is about 20 nanometer in diameter. The change of density and porosity was studied based on the addition of silica content in the phenolic resin composites. The densities of composites increased with the addition of the silica content from 10 wt.% to 40 wt.%. On the other hand, the porosity percentage was decreased with increasing of silica contents. The mechanical properties (Young’s modulus, energy to break and time to failure) of the nanocomposites samples were identified using the Universal Testing Material Machine (UTM). The results of Young’s modulus, energy to break and time to failure of the phenolic resin composites were found to be slightly increased with silica content from 10 wt.% to 30 wt.%. The X-Ray Microtomogaphy (XRM) topographies have shown that the porosity exists on fracture structure for each nanocomposite. The nanocomposites surface structure has been analyzed using Scanning Electron Microscope (SEM). The observation shows that the fracture surface of the pure phenolic resin is relatively smooth and glassy, which is typical for a brittle material, but the phenolic resin- silica composites fracture surface is not smooth at all. The observations indicate the pure phenolic resin is brittle than phenolic resin-silica nanocomposites. Consequently, the physical properties of the phenolic resin-silica nanocomposites were improved with the addition of 10 wt.% to 30 wt.% silica contents, as compared to that of the pure phenolic resin.
    Matched MeSH terms: Elastomers
  16. Johari MAF, Mazlan SA, Nasef MM, Ubaidillah U, Nordin NA, Aziz SAA, et al.
    Sci Rep, 2021 May 25;11(1):10936.
    PMID: 34035434 DOI: 10.1038/s41598-021-90484-0
    The widespread use of magnetorheological elastomer (MRE) materials in various applications has yet to be limited due to the fact that there are substantial deficiencies in current experimental and theoretical research on its microstructural durability behavior. In this study, MRE composed of silicon rubber (SR) and 70 wt% of micron-sized carbonyl iron particles (CIP) was prepared and subjected to stress relaxation evaluation by torsional shear load. The microstructure and particle distribution of the obtained MRE was evaluated by a field emission scanning electron microscopy (FESEM). The influence of constant low strain at 0.01% is the continuing concern within the linear viscoelastic (LVE) region of MRE. Stress relaxation plays a significant role in the life cycle of MRE and revealed that storage modulus was reduced by 8.7%, normal force has weakened by 27%, and stress performance was reduced by 6.88% along approximately 84,000 s test duration time. This time scale was the longest ever reported being undertaken in the MRE stress relaxation study. Novel micro-mechanisms that responsible for the depleted performance of MRE was obtained by microstructurally observation using FESEM and in-phase mode of atomic force microscope (AFM). Attempts have been made to correlate strain localization produced by stress relaxation, with molecular deformation in MRE amorphous matrix. Exceptional attention was focused on the development of molecular slippage, disentanglement, microplasticity, microphase separation, and shear bands. The relation between these microstructural phenomena and the viscoelastic properties of MRE was diffusely defined and discussed. The presented MRE is homogeneous with uniform distribution of CIP. The most significant recent developments of systematic correlation between the effects of microstructural deformation and durability performance of MRE under stress relaxation has been observed and evaluated.
    Matched MeSH terms: Elastomers
  17. Huong KH, Teh CH, Amirul AA
    Int J Biol Macromol, 2017 Aug;101:983-995.
    PMID: 28373050 DOI: 10.1016/j.ijbiomac.2017.03.179
    This study reports the production of P(3HB-co-4HB) [Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)] in possession of high molecular weight and elastomeric properties by Cupriavidus sp. USMAA1020 in single-stage mixed-substrate cultivation system. 1,4-butanediol and 1,6-hexanediol are found to be efficient substrate mixture that has resulted in high copolymer yield, occupying a maximum of 70wt% of the total biomass and producing higher 4HB monomer composition ranging from 31mol% to 41mol%. In substrate mixtures involving 1,6-hexanediol, cleavage of the 6-hydroxyhexanoyl-CoA produces Acetyl-CoA and 4-hydroxybutyryl-CoA. Acetyl-CoA is instrumental in initiating the cell growth in the single-stage fermentation system, preventing 4-hydroxybutyryl-CoA from being utilized via β-oxidation and retained the 4HB monomer at higher ratios. Macroscopic kinetic models of the bioprocesses have revealed that the P(3HB-co-4HB) formation appears to be in the nature of mixed-growth associated with higher formation rate during exponential growth phase; evidenced by higher growth associated constants, α, from 0.0690g/g to 0.4615g/g compared to non-growth associated constants, β, from 0.0092g/g/h to 0.0459g/g/h. The P(3HB-co-31mol% 4HB) produced from the substrate mixture exhibited high weight-average molecular weight, Mwof 927kDa approaching a million Dalton, and possessed elongation at break of 1637% upon cultivation at 0.56wt% C. This is the first report on such properties for the P(3HB-co-4HB) copolymer. The copolymer is highly resistant to polymer deformation after being stretched.
    Matched MeSH terms: Elastomers/metabolism*; Elastomers/chemistry
  18. Sharip NS, Ariffin H, Yasim-Anuar TAT, Andou Y, Shirosaki Y, Jawaid M, et al.
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513876 DOI: 10.3390/polym13030404
    The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young's modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young's modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.
    Matched MeSH terms: Silicone Elastomers
  19. Reza Hashemi Farzad, Azman Hassan, M. Jawaid, M.A.M. Piah
    Sains Malaysiana, 2013;42:801-810.
    Polymeric materials such as polypropylene (PP), polyethylene (PE) and ethylene propylene diene monomer (EPDM) are widely used as insulators for cable applications. We investigated the effect of alumina trihydrate (ATH) loading on the mechanical properties of PP/EPDM blend. Preliminary study showed that PP/EPDM (60:40) was the optimum composition. ATH filled PP/EPDM composites was prepared by using twin screw extruder. In this study, the tensile properties and hardness of the composites were evaluated. The tensile modulus and hardness increased while elongation at break and tensile strength decreased with increasing ATH content. Scanning electron microscope was used to study the morphology of ATH in PP/EPDM blend.
    Matched MeSH terms: Elastomers
  20. Nor Faekah I, Fatihah S, Mohamed ZS
    Heliyon, 2020 Mar;6(3):e03594.
    PMID: 32258460 DOI: 10.1016/j.heliyon.2020.e03594
    A bench-scale model of a partially packed upflow anaerobic fixed film (UAF) reactor was set up and operated at five different hydraulic retention times (HRTs) of (17, 14, 10, 8, and 5) days. The reactor was fed with synthetic rubber wastewater consisting of a chemical oxygen demand (COD) concentration of 6355-6735 mg/L. The results were analyzed using the Monod model, the Modified Stover-Kincannon models, and the Grau Second-Order Model. The Grau Second-Order model was found to best fit the experimental data. The biokinetic constant values, namely the growth yield coefficient (Y) and the endogenous coefficient (Kd) were 0.027 g VSS/g COD and 0.1705 d-1, respectively. The half-saturation constant (Ks) and maximum substrate utilization rate (K) returned values of 84.1 mg/L and 0.371 d-1, respectively, whereas the maximum specific growth rate of the microorganism (μmax) was 0.011 d-1. The constants, Umax and KB, of the Stover-Kincannon model produced values of 6.57 g/L/d and 6.31 g/L/d, respectively. Meanwhile, the average second-order substrate removal rate, ks(2), was 105 d-1. These models gave high correlation coefficients with the value of R2 = 80-99% and these indicated that these models can be used in designing UAF reactor consequently predicting the behaviour of the reactor.
    Matched MeSH terms: Elastomers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links