Displaying publications 1 - 20 of 149 in total

Abstract:
Sort:
  1. Khan MA, Mehmood S, Ullah F, Khattak A, Zeb MA
    Sains Malaysiana, 2017;46:917-924.
    The present study investigated the concentration of metals in commonly grown vegetables (Luffa acutangula L., Zea mays L., Solanum melongena L.) irrigated with waste water in District Bannu, Khyber Pakhtunkhwa, Pakistan. The pH (5.80) and electrical conductivity (13 dS/m) of waste water indicated the acidic nature that is not suitable for irrigation purposes. Soil and vegetables samples were analyzed for metals concentration through flame atomic absorption spectrometry (Varian FAAS-240). The findings showed that waste water irrigated soil was highly contaminated with Cd (4.62 mg/kg) which was above permissible limits set by European Union Standard (EU 2006, 2002). The concentrations of heavy metals such as Cr and Cd in vegetables were higher than the permissible limits set by World Health Organization/Food and Agriculture Organization U.S.A guidelines 2001. The health hazard quotient (HQ) of waste water irrigated vegetables was observed higher for Ni (0.699-0.1029 mg/kg), (0.0456-0.1040 mg/kg), (0.731-0.0994 mg/kg) in Luffa acutangula, Solanum melongena and Zea mays, respectively. The study concluded that the consumption of commonly grown vegetables in waste water zone of the study area may pose potential health threats in local population.
    Matched MeSH terms: Electric Conductivity
  2. Ashraf MA, Maah MJ, Yusoff I
    ScientificWorldJournal, 2012;2012:369206.
    PMID: 22761549 DOI: 10.1100/2012/369206
    Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river.
    Matched MeSH terms: Electric Conductivity
  3. Tarawneh MA, Saraireh SA, Chen RS, Ahmad SH, Al-Tarawni MAM, Yu LJ
    Radiat Phys Chem Oxf Engl 1993, 2021 Feb;179:109168.
    PMID: 33100612 DOI: 10.1016/j.radphyschem.2020.109168
    A thermoplastic elastomer (TPE) based nanocomposite with the same weight ratio of hybrid nanofillers composed of carbon nanotubes (CNTs) and montmorillonite nanoclay (DK4) was prepared using a melt blending technique with an internal mixer. The TPE composite was blended from polylactic acid (PLA), liquid natural rubber (LNR) as a compatibilizer and natural rubber (NR) in a volume ratio of 70:10:20, respectively. The weight ratio of CNTs and DK4 was 2.5 wt%. The prepared samples were exposed to gamma radiation at range of 0-250 kGy. After exposure to gamma radiation, the mechanical, thermo-mechanical, thermal and electrical conductivity properties of the composites were significantly higher than unirradiated TPE composites as the irradiation doses increased up to 150 kGy. Transmission electron microscopy (TEM) micrographs revealed the good distribution and interaction between the nano-fillers and the matrix in the prepared TPE hybrid nanocomposites. In summary, the findings from this work definite that gamma irradiation might be a viable treatment to improve the properties of TPE nanocomposite for electronic packaging applications.
    Matched MeSH terms: Electric Conductivity
  4. Chew KM, Seman N, Sudirman R, Yong CY
    Biomed Mater Eng, 2014;24(6):2161-7.
    PMID: 25226914 DOI: 10.3233/BME-141027
    The development of human-like brain phantom is important for data acquisition in microwave imaging. The characteristics of the phantom should be based on the real human body dielectric properties such as relative permittivity. The development of phantom includes the greymatter and whitematter regions, each with a relative permittivity of 38 and 28 respectively at 10 GHz frequency. Results were compared with the value obtained from the standard library of Computer Simulation Technology (CST) simulation application and the existing research by Fernandez and Gabriel. Our experimental results show a positive outcome, in which the proposed mixture was adequate to represent real human brain for data acquisition.
    Matched MeSH terms: Electric Conductivity
  5. Yan Q, Li X, Ma B, Zou Y, Wang Y, Liao X, et al.
    Front Microbiol, 2018;9:3129.
    PMID: 30619199 DOI: 10.3389/fmicb.2018.03129
    Antibiotic residues that enter the soil through swine manure could disturb the number, community structure and functions of microbiota which could also degrade antibiotics in soil. Five different concentrations of doxycycline (DOX) incorporated into swine manure were added to soil to explore the effects of DOX on microbiota in soil and degradation itself. The results showed that the soil microbiome evolved an adaptation to the soil containing DOX by generating resistance genes. Moreover, some of the organisms within the soil microbiome played crucial roles in the degradation of DOX. The average degradation half-life of DOX in non-sterile groups was 13.85 ± 0.45 days, which was significantly shorter than the 29.26 ± 0.98 days in the group with sterilized soil (P < 0.01), indicating that the soil microbiome promoted DOX degradation. DOX addition affected the number of tetracycline resistance genes, depending on the type of gene and the DOX concentration. Among these genes, tetA, tetM, tetW, and tetX had significantly higher copy numbers when the concentration of DOX was higher. In contrast, a lower concentration of DOX had an inhibitory effect on tetG. At the same time, the microbial compositions were affected by the initial concentration of DOX and the different experimental periods. The soil chemical indicators also affected the microbial diversity changes, mainly because some microorganisms could survive in adversity and become dominant bacterial groups, such as the genera Vagococcus and Enterococcus (which were associated with electrical conductivity) and Caldicoprobacter spp. (which were positively correlated with pH). Our study mainly revealed soil microbiota and DOX degradation answered differently under variable concentrations of DOX mixed with swine manure in soil.
    Matched MeSH terms: Electric Conductivity
  6. Dannoun EMA, Aziz SB, Brza MA, M Nofal M, Asnawi ASFM, Yusof YM, et al.
    Polymers (Basel), 2020 Oct 29;12(11).
    PMID: 33138114 DOI: 10.3390/polym12112531
    In this work, plasticized magnesium ion-conducting polymer blend electrolytes based on chitosan:methylcellulose (CS:MC) were prepared using a solution cast technique. Magnesium acetate [Mg(CH3COO)2] was used as a source of the ions. Nickel metal-complex [Ni(II)-complex)] was employed to expand the amorphous phase. For the ions dissociation enhancement, glycerol plasticizer was also engaged. Incorporating 42 wt% of the glycerol into the electrolyte system has been shown to improve the conductivity to 1.02 × 10-4 S cm-1. X-ray diffraction (XRD) analysis showed that the electrolyte with the highest conductivity has a minimum crystallinity degree. The ionic transference number was estimated to be more than the electronic transference number. It is concluded that in CS:MC:Mg(CH3COO)2:Ni(II)-complex:glycerol, ions are the primary charge carriers. Results from linear sweep voltammetry (LSV) showed electrochemical stability to be 2.48 V. An electric double-layer capacitor (EDLC) based on activated carbon electrode and a prepared solid polymer electrolyte was constructed. The EDLC cell was then analyzed by cyclic voltammetry (CV) and galvanostatic charge-discharge methods. The CV test disclosed rectangular shapes with slight distortion, and there was no appearance of any redox currents on both anodic and cathodic parts, signifying a typical behavior of EDLC. The EDLC cell indicated a good cyclability of about (95%) for throughout of 200 cycles with a specific capacitance of 47.4 F/g.
    Matched MeSH terms: Electric Conductivity
  7. Li Y, Ren S, Yan B, Zainal Abidin IM, Wang Y
    Sensors (Basel), 2017 Jul 31;17(8).
    PMID: 28758985 DOI: 10.3390/s17081747
    A corrosive environment leaves in-service conductive structures prone to subsurface corrosion which poses a severe threat to the structural integrity. It is indispensable to detect and quantitatively evaluate subsurface corrosion via non-destructive evaluation techniques. Although the gradient-field pulsed eddy current technique (GPEC) has been found to be superior in the evaluation of corrosion in conductors, it suffers from a technical drawback resulting from the non-uniform field excited by the conventional pancake coil. In light of this, a new GPEC probe with uniform field excitation for the imaging of subsurface corrosion is proposed in this paper. The excited uniform field makes the GPEC signal correspond only to the field perturbation due to the presence of subsurface corrosion, which benefits the corrosion profiling and sizing. A 3D analytical model of GPEC is established to analyze the characteristics of the uniform field induced within a conductor. Following this, experiments regarding the imaging of subsurface corrosion via GPEC have been carried out. It has been found from the results that the proposed GPEC probe with uniform field excitation not only applies to the imaging of subsurface corrosion in conductive structures, but provides high-sensitivity imaging results regarding the corrosion profile and opening size.
    Matched MeSH terms: Electric Conductivity
  8. Liew JWY, Loh KS, Ahmad A, Lim KL, Wan Daud WR
    PLoS One, 2017;12(9):e0185313.
    PMID: 28957374 DOI: 10.1371/journal.pone.0185313
    Polymer electrolyte membranes based on the natural polymer κ-carrageenan were modified and characterized for application in electrochemical devices. In general, pure κ-carrageenan membranes show a low ionic conductivity. New membranes were developed by chemically modifying κ-carrageenan via phosphorylation to produce O-methylene phosphonic κ-carrageenan (OMPC), which showed enhanced membrane conductivity. The membranes were prepared by a solution casting method. The chemical structure of OMPC samples were characterized using Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR) spectroscopy and 31P nuclear magnetic resonance (31P NMR) spectroscopy. The conductivity properties of the membranes were investigated by electrochemical impedance spectroscopy (EIS). The characterization demonstrated that the membranes had been successfully produced. The ionic conductivity of κ-carrageenan and OMPC were 2.79 × 10-6 S cm-1 and 1.54 × 10-5 S cm-1, respectively. The hydrated membranes showed a two orders of magnitude higher ionic conductivity than the dried membranes.
    Matched MeSH terms: Electric Conductivity
  9. R. Abd-Shukor, W.Y. Lim
    ASM Science Journal, 2013;7(1):18-22.
    MyJurnal
    The electron-phonon coupling constant of the copper oxide-based high temperature superconductors in the van Hove scenario was calculated using three known models and by employing various acoustic data. Three expressions for the transition temperature from the models were used to calculate the constants. All three models assumed a logarithmic singularity in the density of states near the Fermi surface. The calculated electron-phonon coupling constant ranged from 0.06 to 0.28. The constants increased with the transition temperature indicating a strong correlation between electron-phonon coupling and superconductivity in these materials. These values were smaller than the values estimated for the conventional three-dimensional BCS theory. The results were compared with previous reports on direct measurements of electron-phonon coupling constants in the copper oxide based superconductors.
    Matched MeSH terms: Electric Conductivity
  10. Mohd Radzuan NA, Sulong AB, Hui D, Verma A
    Polymers (Basel), 2019 Aug 30;11(9).
    PMID: 31480276 DOI: 10.3390/polym11091425
    Polymer composites have been extensively fabricated given that they are well-fitted for a variety of applications, especially concerning their mechanical properties. However, inadequate outcomes, mainly regarding their electrical performance, have limited their significant potential. Hence, this study proposed the use of multiple fillers, with different geometries, in order to improve the electrical conductivity of a polymer composite. The fabricated composite was mixed, using the ball milling method, before being compressed by a hot press machine at 3 MPa for 10 min. The composite plate was then measured for both its in-plane and through-plane conductivities, which were 3.3 S/cm, and 0.79 S/cm, respectively. Furthermore, the experimental data were then verified using a predicted electrical conductivity model, known as a modified fibre contact model, which considered the manufacturing process, including the shear rate and flow rate. The study indicated that the predicted model had a significant trend and value, compared to the experimental model (0.65 S/cm for sample S1). The resultant fabricated composite materials were found to possess an excellent network formation, and good electrical conductivity for bipolar plate application, when applying compression pressure of 3 MPa for 10 min.
    Matched MeSH terms: Electric Conductivity
  11. Alani AH, Toh CG
    Oper Dent, 1997 Jul-Aug;22(4):173-85.
    PMID: 9484158
    Matched MeSH terms: Electric Conductivity
  12. Lim, Wei Jie, Chin, Nyuk Ling, Yus AnizaYusof, Azmi Yahya, Tee, Tuan Poy
    MyJurnal
    Anaerobic composting is a promising method to fully transform food wastes into useful
    materials such as biofertilizer and biogas. In this study, the optimum proportions of food
    wastes containing vegetable, fruit and meat wastes with dry leaves or cow manure for
    composting were determined using the simplex centroid design and response optimizer.
    The effectiveness of the pilot-scale composting process was evaluated based on the targeted
    compost quality of C/N ratio at 21, pH value at 8 and electrical conductivity of 1 dS/m.
    Food wastes composting formulation with dry leaves suggested high percentage of dry
    leaves, 86.9% with low food wastes composition of 13.1% constituted by vegetable waste
    (1.1%), fruit waste (4.9%) and meat waste (7.1%). With cow manure formulation, only
    6% of cow manure was recommended with
    another 94.0% of food wastes contributed
    by a fair mix of vegetable waste (23.2%),
    fruit waste (34.3%) and meat waste (36.5%).
    The developed regression models were
    experimentally validated with predicted
    responses obtained in acceptable ranges for
    C/N ratio (21.2 - 21.8), pH (7.92 - 7.99) and
    electrical conductivity (0.97 - 1.03 dS/m).
    Matched MeSH terms: Electric Conductivity
  13. Gupta M, Hawari HF, Kumar P, Burhanudin ZA, Tansu N
    Nanomaterials (Basel), 2021 Mar 03;11(3).
    PMID: 33802318 DOI: 10.3390/nano11030623
    The demand for carbon dioxide (CO2) gas detection is increasing nowadays. However, its fast detection at room temperature (RT) is a major challenge. Graphene is found to be the most promising sensing material for RT detection, owing to its high surface area and electrical conductivity. In this work, we report a highly edge functionalized chemically synthesized reduced graphene oxide (rGO) thin films to achieve fast sensing response for CO2 gas at room temperature. The high amount of edge functional groups is prominent for the sorption of CO2 molecules. Initially, rGO is synthesized by reduction of GO using ascorbic acid (AA) as a reducing agent. Three different concentrations of rGO are prepared using three AA concentrations (25, 50, and 100 mg) to optimize the material properties such as functional groups and conductivity. Thin films of three different AA reduced rGO suspensions (AArGO25, AArGO50, AArGO100) are developed and later analyzed using standard FTIR, XRD, Raman, XPS, TEM, SEM, and four-point probe measurement techniques. We find that the highest edge functionality is achieved by the AArGO25 sample with a conductivity of ~1389 S/cm. The functionalized AArGO25 gas sensor shows recordable high sensing properties (response and recovery time) with good repeatability for CO2 at room temperature at 500 ppm and 50 ppm. Short response and recovery time of ~26 s and ~10 s, respectively, are achieved for 500 ppm CO2 gas with the sensitivity of ~50 Hz/µg. We believe that a highly functionalized AArGO CO2 gas sensor could be applicable for enhanced oil recovery, industrial and domestic safety applications.
    Matched MeSH terms: Electric Conductivity
  14. Yee CN, Ooi CHR, Tan LP, Misran M, Tang NT
    PLoS One, 2019;14(3):e0213697.
    PMID: 30913207 DOI: 10.1371/journal.pone.0213697
    That water may not be an inert medium was indicated by the presence at water's interfaces a negatively charged solute free zone of several hundred microns in thickness called the exclusion zone (EZ). Further evidence was demonstrated by Ovchinnikova's experiments (2009) showing that water can store and release substantial amount of charge. We demonstrate that the charge storage capacity of water arises from highly stable large-scale ionic structures with measurable charge imbalances and discrete levels of charge density. We also show evidence that the charge zones formation requires ionic solutes, and their formation correlate to large change in conductivity, by as much as 250%. Our experiments indicate that large-scale structuring plays a pivotal role in electrolysis and conductivity in ionic solution. We propose that water is an electrochemically active medium and present a new model of electrolysis and conductivity in ionic solution.
    Matched MeSH terms: Electric Conductivity
  15. Srikanta Murthy A, Azis N, Jasni J, Othman ML, Mohd Yousof MF, Talib MA
    PLoS One, 2020;15(8):e0236409.
    PMID: 32853253 DOI: 10.1371/journal.pone.0236409
    This paper proposes an alternative approach to extract transformer's winding parameters of resistance (R), inductance (L), capacitance (C) and conductance (G) based on Finite Element Method (FEM). The capacitance and conductance were computed based on Fast Multiple Method (FMM) and Method of Moment (MoM) through quasi-electrostatics approach. The AC resistances and inductances were computed based on MoM through quasi-magnetostatics approach. Maxwell's equations were used to compute the DC resistances and inductances. Based on the FEM computed parameters, the frequency response of the winding was obtained through the Bode plot function. The simulated frequency response by FEM model was compared with the simulated frequency response based on the Multi-conductor Transmission Line (MTL) model and the measured frequency response of a 33/11 kV, 30 MVA transformer. The statistical indices such as Root Mean Square Error (RMSE) and Absolute Sum of Logarithmic Error (ASLE) were used to analyze the performance of the proposed FEM model. It is found that the simulated frequency response by FEM model is quite close to measured frequency response at low and mid frequency regions as compared to simulated frequency response by MTL model based on RMSE and ASLE analysis.
    Matched MeSH terms: Electric Conductivity
  16. Reshak AH, Shahimin MM, Juhari N, Suppiah S
    Prog Biophys Mol Biol, 2013 Nov;113(2):289-94.
    PMID: 24080185 DOI: 10.1016/j.pbiomolbio.2013.09.002
    The potential of organic semiconductor based devices for light generation is demonstrated by the commercialisation of display technologies using organic light emitting diode (OLED). In OLED, organic materials plays an important role of emitting light once the current is passed through. However OLED have drawbacks whereby it suffers from photon loss and exciton quenching. Organic light emitting transistor (OLET) emerged as a new technology to compensate the efficiency and brightness loss encountered in OLED. The structure has combinational capability to switch the electronic signal such as the field effect transistor (FET) as well as to generate light. Different colours of light could be generated by using different types of organic material. The light emission could also be tuned and scanned in OLET. The studies carried out in this paper focuses on investigation of fabricated MEH-PPV based OLED and also OLET via current voltage characteristics. These studies will continue with a view to develop an optimised MEH-PPV based OLET.
    Matched MeSH terms: Electric Conductivity
  17. Ahmed AM, Sulaiman WN
    Environ Manage, 2001 Nov;28(5):655-63.
    PMID: 11568845
    Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L-L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.
    Matched MeSH terms: Electric Conductivity
  18. Talib AT, Mokhtar MN, Baharuddin AS, Sulaiman A
    Bioresour Technol, 2014 Oct;169:428-38.
    PMID: 25079208 DOI: 10.1016/j.biortech.2014.07.033
    The effect of different aeration rates on the organic matter (OM) degradation during the active phase of oil palm empty fruit bunch (EFB)-rabbit manure co-composting process under constant forced-aeration system has been studied. Four different aeration rates, 0.13 L min(-1) kg(DM)(-1),0.26 L min(-1) kg(DM)(-1),0.49 L min(-1) kg(DM)(-1) and 0.74 L min(-1) kg(DM)(-1) were applied. 0.26 L min(-1) kg(DM)(-1) provided enough oxygen level (10%) for the rest of composting period, showing 40.5% of OM reduction that is better than other aeration rates. A dynamic mathematical model describing OM degradation, based on the ratio between OM content and initial OM content with correction functions of moisture content, free air space, oxygen and temperature has been proposed.
    Matched MeSH terms: Electric Conductivity
  19. Mawad D, Mansfield C, Lauto A, Perbellini F, Nelson GW, Tonkin J, et al.
    Sci Adv, 2016 Nov;2(11):e1601007.
    PMID: 28138526 DOI: 10.1126/sciadv.1601007
    Electrically active constructs can have a beneficial effect on electroresponsive tissues, such as the brain, heart, and nervous system. Conducting polymers (CPs) are being considered as components of these constructs because of their intrinsic electroactive and flexible nature. However, their clinical application has been largely hampered by their short operational time due to a decrease in their electronic properties. We show that, by immobilizing the dopant in the conductive scaffold, we can prevent its electric deterioration. We grew polyaniline (PANI) doped with phytic acid on the surface of a chitosan film. The strong chelation between phytic acid and chitosan led to a conductive patch with retained electroactivity, low surface resistivity (35.85 ± 9.40 kilohms per square), and oxidized form after 2 weeks of incubation in physiological medium. Ex vivo experiments revealed that the conductive nature of the patch has an immediate effect on the electrophysiology of the heart. Preliminary in vivo experiments showed that the conductive patch does not induce proarrhythmogenic activities in the heart. Our findings set the foundation for the design of electronically stable CP-based scaffolds. This provides a robust conductive system that could be used at the interface with electroresponsive tissue to better understand the interaction and effect of these materials on the electrophysiology of these tissues.
    Matched MeSH terms: Electric Conductivity
  20. Fahmi AH, Samsuri AW, Jol H, Singh D
    R Soc Open Sci, 2018 Nov;5(11):181328.
    PMID: 30564418 DOI: 10.1098/rsos.181328
    Biochars have been successfully used to reduce bioavailability and leaching of heavy metals in contaminated soils. The efficiency of biochar to immobilize heavy metals can be increased by reducing the particle size, which can increase the surface area and the cation exchange capacity (CEC). In this study, the empty fruit bunch biochar (EFBB) of oil palm was separated into two particle sizes, namely, fine (F-EFBB < 50 µm) and coarse (C-EFBB > 2 mm), to treat the contaminated soil with Cd and Pb. Results revealed that the addition of C-EFBB and F-EFBB increased the pH, electrical conductivity and CEC of the contaminated soil. The amounts of synthetic rainwater extractable and leachable Cd and Pb significantly decreased with the EFBB application. The lowest extractable and leachable Cd and Pb were observed from 1% F-EFBB-treated soil. The amount of extractable and leachable Cd and Pb decreased with increasing incubation times and leaching cycles. The application of F-EFBB to Cd and Pb-contaminated soil can immobilize the heavy metals more than that of C-EFBB. Therefore, the EFBB can be recommended for the remediation of heavy metal-contaminated soils, and a finer particle size can be applied at a lower application rate than the coarser biochar to achieve these goals.
    Matched MeSH terms: Electric Conductivity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links