Displaying publications 1 - 20 of 355 in total

Abstract:
Sort:
  1. Nur Jannah Azman, Wan Mohd Rizlan Wan Idris, Alice Shanthi
    Jurnal Inovasi Malaysia, 2019;2(2):111-122.
    MyJurnal
    Circular 10/2016 issued by UiTM Vice-Chancellor’s office comprises a clear guideline for 2017 Strategic Budget Planning. The guidelines can help the Head of PTJ’s to plan and take necessary cost effective measures to reduce on utility expenditure especially to counter the rising monthly electricity bills related to the use of air conditioners on campuses. Looking at the figures drawn from the energy management office in UiTM Negeri Sembilan Branch, UiTM Kuala Pilah campus has spent an average of RM153, 028.88 monthly in 2016. As of August 2016, the cost of electricity consumption in UiTM Kuala Pilah has reached RM1,224,231.03. This amount has surpassed the overall approved allocation of RM 800,000.00 for 2016 electricity bill. In order to reduce spending and encourage saving, as well as responding to the ‘Energy Savings Campaign’ held at the campus level, various efforts have been taken at the departmental levels. One of the innovative products that came about from the campaign is the ‘Smartfan’ project pioneered by the Physics and Materials Science Unit. The main objective of this project is the production of a “smartfan” or a mini air conditioner which is a simple, cost-effective and an energy saving device. In addition, products and ideas from the campaign can be piloted and taken to innovative, inventions and design contests at national and international levels.
    Matched MeSH terms: Electricity
  2. Ngadiman NH, Idris A, Irfan M, Kurniawan D, Yusof NM, Nasiri R
    J Mech Behav Biomed Mater, 2015 Sep;49:90-104.
    PMID: 26002419 DOI: 10.1016/j.jmbbm.2015.04.029
    Maghemite (γ-Fe2O3) nanoparticle with its unique magnetic properties is recently known to enhance the cell growth rate. In this study, γ-Fe2O3 is mixed into polyvinyl alcohol (PVA) matrix and then electrospun to form nanofibers. Design of experiments was used to determine the optimum parameter settings for the electrospinning process so as to produce elctrospun mats with the preferred characteristics such as good morphology, Young's modulus and porosity. The input factors of the electrospinnning process were nanoparticles content (1-5%), voltage (25-35 kV), and flow rate (1-3 ml/h) while the responses considered were Young's modulus and porosity. Empirical models for both responses as a function of the input factors were developed and the optimum input factors setting were determined, and found to be at 5% nanoparticle content, 35 kV voltage, and 1 ml/h volume flow rate. The characteristics and performance of the optimum PVA/γ-Fe2O3 nanofiber mats were compared with those of neat PVA nanofiber mats in terms of morphology, thermal properties, and hydrophilicity. The PVA/γ-Fe2O3 nanofiber mats exhibited higher fiber diameter and surface roughness yet similar thermal properties and hydrophilicity compared to neat PVA PVA/γ-Fe2O3 nanofiber mats. Biocompatibility test by exposing the nanofiber mats with human blood cells was performed. In terms of clotting time, the PVA/γ-Fe2O3 nanofibers exhibited similar behavior with neat PVA. The PVA/γ-Fe2O3 nanofibers also showed higher cells proliferation rate when MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was done using human skin fibroblast cells. Thus, the PVA/γ-Fe2O3 electrospun nanofibers can be a promising biomaterial for tissue engineering scaffolds.
    Matched MeSH terms: Electricity
  3. Setifi Z, Kwong HC, Tiekink ERT, Maris T, Setifi F
    Acta Crystallogr E Crystallogr Commun, 2020 Jun 01;76(Pt 6):835-840.
    PMID: 32523750 DOI: 10.1107/S2056989020006271
    The CoII atom in the title complex, [Co(SO4)(C12H8N2)(H2O)3] (or C12H14CoN2O7S), is octa-hedrally coordinated within a cis-N2O4 donor set defined by the chelating N-donors of the 1,10-phenanthroline ligand, sulfate-O and three aqua-O atoms, the latter occupying an octa-hedral face. In the crystal, supra-molecular layers lying parallel to (110) are sustained by aqua-O-H⋯O(sulfate) hydrogen bonding. The layers stack along the c-axis direction with the closest directional inter-action between them being a weak phenanthroline-C-H⋯O(sulfate) contact. There are four significant types of contact contributing to the calculated Hirshfeld surface: at 44.5%, the major contribution comes from O-H⋯O contacts followed by H⋯H (28.6%), H⋯C/C⋯H (19.5%) and C⋯C (5.7%) contacts. The dominance of the electrostatic potential force in the mol-ecular packing is also evident in the calculated energy frameworks. The title complex is isostructural with its manganese, zinc and cadmium containing analogues and isomeric with its mer-tri-aqua analogue.
    Matched MeSH terms: Static Electricity
  4. Lim SS, Fontmorin JM, Pham HT, Milner E, Abdul PM, Scott K, et al.
    Sci Total Environ, 2021 Jul 01;776:145934.
    PMID: 33647656 DOI: 10.1016/j.scitotenv.2021.145934
    Microbial fuel cells (MFCs) that simultaneously remove organic contaminants and recovering metals provide a potential route for industry to adopt clean technologies. In this work, two goals were set: to study the feasibility of zinc removal from industrial effluents using MFCs and to understand the removal process by using reaction rate models. The removal of Zn2+ in MFC was over 96% for synthetic and industrial samples with initial Zn2+ concentrations less than 2.0 mM after 22 h of operation. However, only 83 and 42% of the zinc recovered from synthetic and industrial samples, respectively, was attached on the cathode surface of the MFCs. The results marked the domination of electroprecipitation rather than the electrodeposition process in the industrial samples. Energy dispersive X-ray (EDX) analysis showed that the recovered compound contained not only Zn but also O, evidence that Zn(OH)2 could be formed. The removal of Zn2+ in the MFC followed a mechanism where oxygen was reduced to hydroxide before reacting with Zn2+. Nernst equations and rate law expressions were derived to understand the mechanism and used to estimate the Zn2+ concentration and removal efficiency. The zero-, first- and second-order rate equations successfully fitted the data, predicted the final Zn2+ removal efficiency, and suggested that possible mechanistic reactions occurred in the electrolysis cell (direct reduction), MFC (O2 reduction), and control (chemisorption) modes. The half-life, t1/2, of the Zn2+ removal reaction using synthetic and industrial samples was estimated to be 7.0 and 2.7 h, respectively. The t1/2 values of the controls (without the power input from the MFC bioanode) were much slower and were recorded as 21.5 and 7.3 h for synthetic and industrial samples, respectively. The study suggests that MFCs can act as a sustainable and environmentally friendly technology for heavy metal removal without electrical energy input or the addition of chemicals.
    Matched MeSH terms: Electricity
  5. Siddiquee S, Saallah S, Bohari NA, Ringgit G, Roslan J, Naher L, et al.
    Nanomaterials (Basel), 2021 Apr 28;11(5).
    PMID: 33924923 DOI: 10.3390/nano11051142
    The present study reported a facile method for the determination of melamine in milk powder products based on the aggregation of reactant-free 5 nm gold nanoparticles (AuNPs). The strong electrostatic attraction between the positively charged exocyclic amine groups present in the melamine molecule and the negatively charged ions bound to the AuNPs induced aggregation of the AuNPs, resulting in visible color changes that could be seen with the naked eye and monitored by ultraviolet-visible (UV-Vis) absorbance spectra. The method shows high sensitivity with detection limits of 1 × 10-9 M for visual detection and 1 × 10-11 M for UV-Vis analysis, which is far below the safety limit of melamine ingestion in infant formula (1 ppm = 7.9 × 10-6 M) and the detection limit acquired by most AuNP-based melamine detection methods. Good recoveries were obtained over the range of 94.7-95.5% with a relative standard deviation of mean recovery (RSD) ranging from 1.40 to 5.81. The method provides a simple, feasible, fast and real-time detection of melamine adulterants in infant formula by the naked eye, without the aid of advanced instruments.
    Matched MeSH terms: Static Electricity
  6. Rashid SS, Liu YQ, Zhang C
    Sci Total Environ, 2020 Dec 20;749:141465.
    PMID: 32827824 DOI: 10.1016/j.scitotenv.2020.141465
    Although nutrient removal and recovery from municipal wastewater are desirable to protect phosphorus resource and water-bodies from eutrophication, it is unclear how much environmental and economic benefits and burdens it might cause. This study evaluated the environmental and economic life cycle performance of three different upgraded Processes A, B and C with commercially available technologies for nutrient removal and phosphorus recovery based on an existing Malaysian wastewater treatment plant with a sequencing batch reactor technology and diluted municipal wastewater. It is found that the integration of nutrient removal, phosphorus recovery and electricity generation in all upgraded processes reduced eutrophication potential by 62-76%, and global warming potential by 7-22%, which, however, were gained at the cost of increases in human toxicity, acidification, abiotic depletion (fossil fuel) and freshwater ecotoxicity potentials by an average of 23%. New technologies for nutrient removal and phosphorus recovery are thus needed to achieve holistic rather than some environmental benefits at the expense of others. In addition, the study on two different functional units (FU), i.e. per m3 treated wastewater and per kg struvite recovered, shows that FU affected environmental assessment results, but the upgraded Process C had the least overall environmental burden with either of FUs, suggesting the necessity to use different functional units when comparing and selecting different technologies with two functions such as wastewater treatment and struvite production to confirm the best process configuration. The total life cycle costs of Processes A, B and C were 10.7%, 29.8% and 28.1%, respectively, higher than the existing process due to increased capital and operating costs. Therefore, a trade-off between environmental benefits and cost has to be balanced for technology selection or new integrated technologies have to be developed to achieve environmentally sustainable wastewater treatment economically.
    Matched MeSH terms: Electricity
  7. Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, et al.
    Bioresour Technol, 2018 Oct;266:97-108.
    PMID: 29957296 DOI: 10.1016/j.biortech.2018.06.035
    This study explored the influence of azo dye concentration, salinity (with and without aeration) and nitrate concentration on bioelectricity generation and treatment performance in the up-flow constructed wetland-microbial fuel cell (UFCW-MFC) system. The decolourisation efficiencies were up to 91% for 500 mg/L of Acid Red 18 (AR18). However, the power density declined with the increment in azo dye concentration. The results suggest that the combination of salinity and aeration at an optimum level improved the power performance. The highest power density achieved was 8.67 mW/m2. The increase of nitrate by 3-fold led to decrease in decolourisation and power density of the system. The findings revealed that the electron acceptors (AR18, nitrate and anode) competed at the anodic region for electrons and the electron transfer pathways would directly influence the treatment and power performance of UFCW-MFC. The planted UFCW-MFC significantly outweighed the plant-free control in power performance.
    Matched MeSH terms: Electricity
  8. Maidur SR, Patil PS, Katturi NK, Soma VR, Ai Wong Q, Quah CK
    J Phys Chem B, 2021 Apr 22;125(15):3883-3898.
    PMID: 33830758 DOI: 10.1021/acs.jpcb.1c01243
    The structural, thermal, linear, and femtosecond third-order nonlinear optical (NLO) properties of two pyridine-based anthracene chalcones, (2E)-1-(anthracen-9-yl)-3-(pyridin-2-yl)prop-2-en-1-one (2PANC) and (2E)-1-(anthracen-9-yl)-3-(pyridin-3-yl)prop-2-en-1-one (3PANC), were investigated. These two chalcones were synthesized following the Claisen-Schmidt condensation method. Optically transparent single crystals were achieved using a slow evaporation solution growth technique. The presence of functional groups in these molecules was established by Fourier transform infrared and NMR spectroscopic data. The detailed solid-state structure of both chalcones was determined from the single-crystal X-ray diffraction data. Both crystals crystallized in the centrosymmetric triclinic space group P1̅ with the nuance of unit cell parameters. The crystals (labeled as 2PANC and 3PANC) have been found to be transparent optically [in the entire visible spectral region] and were found to be thermally stable up to 169 and 194 °C, respectively. The intermolecular interactions were investigated using the Hirshfeld surface analysis, and the band structures (highest occupied molecular orbital-lowest unoccupied molecular orbital, excited-state energies, global chemical reactivity descriptors, and molecular electrostatic potentials) were studied using density functional theory (DFT) techniques. The ultrafast third-order NLO properties were investigated using (a) Z-scan and (b) degenerate four-wave mixing (DFWM) techniques using ∼50 fs pulses at 800 nm (1 kHz, ∼4 mJ) from a Ti:sapphire laser amplifier. Two-photon-assisted reverse saturable absorption, self-focusing nonlinear refraction, optical limiting, and optical switching behaviors were witnessed from the Z-scan data. 3PANC demonstrated a stronger two-photon absorption coefficient, while 2PANC depicted a stronger nonlinear refractive index among the two. The time-resolved DFWM data demonstrated that the decay times of 2PANC and 3PANC were ∼162 and ∼180 fs, respectively. The second hyperpolarizability (γ) values determined by DFT, Z-scan, and DFWM were found to be in good correlation (with a magnitude of ∼10-34 esu). The ultrafast third-order NLO response, significant NLO properties, and thermal stability of these chalcones brands them as potential candidates for optical power limiting and switching applications.
    Matched MeSH terms: Static Electricity
  9. Imran M, Rehman ZU, Hogarth G, Tocher DA, Chaudhry GE, Butler IS, et al.
    Dalton Trans, 2020 Nov 10;49(43):15385-15396.
    PMID: 33140800 DOI: 10.1039/d0dt03018j
    The syntheses of two platinum(ii) dithiocarbamate complexes (1 and 2) that show quinoplatin- and phenanthriplatin-type axial protection of the Pt-plane are described. The Pt-plane of complex 2 is axially more protected than that of complex 1. Furthermore, both complexes adopt two different stereochemical conformations in the solid state (based on single-crystal X-ray structures) owing to the structurally flexible piperazine backbone; i.e., C-e,e-Anti (1) and C-e,a-Syn (2), where "C" stands for the chair configuration, "e" and "a" stand for the equatorial and axial positions and "Anti" (opposite side) and "Syn" (same side) represent the relative orientations in space of the terminal substituents on the piperazine ring. In complex 2, the C-e,a-Syn conformation may provide additional steric hindrance to the Pt-plane. Despite the lower lipophilicity of 2 as compared to that of 1, the in vitro anticancer action against selected cancer cell lines is better for the former revealing the superior role of the axial protection over lipophilicity in modulating anticancer activity. The activity against the cancer promoting protein NF-κB signifies that the mode of cancer cell death may be the result of hindering the activity of NF-κB in the initiation of apoptosis. The apoptotic mode of cell death has been established earlier in a study using Annexin V-FITC. Finally, DNA binding studies revealed that the complex-DNA adduct formation is spontaneous and the mode of interaction is non-intercalative (electrostatic/covalent).
    Matched MeSH terms: Static Electricity
  10. Oladzadabbasabadi N, Dheyab MA, Nafchi AM, Ghasemlou M, Ivanova EP, Adhikari B
    Adv Colloid Interface Sci, 2023 Nov;321:103020.
    PMID: 37871382 DOI: 10.1016/j.cis.2023.103020
    Carbon dots (CDs) are a recent addition to the nanocarbon family, encompassing both crystalline and amorphous phases. They have sparked significant research interest due to their unique electrical and optical properties, remarkable biocompatibility, outstanding mechanical characteristics, customizable surface chemistry, and negligible cytotoxicity. Their current applications are mainly limited to flexible photonic and biomedical devices, but they have also garnered attention for their potential use in intelligent packaging. The conversion of food waste into CDs further contributes to the concept of the circular economy. It provides a comprehensive overview of emerging green technologies, energy-saving reactions, and cost-effective starting materials involved in the synthesis of CDs. It also highlights the unique properties of biomass-derived CDs, focusing on their structural performance, cellular toxicity, and functional characteristics. The application of CDs in the food industry, including food packaging, is summarized in a concise manner. This paper sheds light on the current challenges and prospects of utilizing CDs in the packaging industry. It aims to provide researchers with a roadmap to tailor the properties of CDs to suit specific applications in the food industry, particularly in food packaging.
    Matched MeSH terms: Electricity
  11. Yap CJ, Lam SM, Sin JC, Zeng H, Li H, Huang L, et al.
    Environ Sci Pollut Res Int, 2023 Sep;30(42):96272-96289.
    PMID: 37566326 DOI: 10.1007/s11356-023-29165-6
    Attributable to the prosperous production growth of palm oil in Malaysia, the generated palm oil mill effluent (POME) poses a high threat owing to its highly polluted characteristic. Urged by the escalating concern of environmental conservation, POME pollution abatement and potential energy recovery from the effluent are flagged up as a research topic of interest. In this study, a cutting-edge photocatalytic fuel cell (PFC) system with employment of ZnO/Zn nanorod array (NRA) photoanode, CuO/Cu cathode, and persulfate (PS) oxidant was successfully designed to improve the treatment of POME and simultaneous energy production. The photoelectrodes were fabricated and characterized by field emission scanning electron microscopy with energy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Brunauer, Emmett, and Teller analysis (BET). Owing to the properties of strong oxidant of PS, the proposed PFC/PS system has exhibited exceptional performance, attaining chemical oxygen demand (COD) removal efficiency of 96.2%, open circuit voltage (Voc) of 740.0 mV, short circuit current density (Jsc) of 146.7 μA cm-2, and power density (Pmax) of 35.6 μW cm-2. The pre-eminent PFC/PS system performance was yielded under optimal conditions of 2.5 mM of persulfate oxidant, POME dilution factor of 1:20, and natural solution pH of 8.51. Subsequently, the postulated photoelectrocatalytic POME treatment mechanism was elucidated by the radical scavenging study and Mott-Schottky (M-S) analysis. The following recycling test affirmed the stability and durability of the photoanode after four continuous repetition usages while the assessed electrical energy efficiency revealed the economic viability of PFC system serving as a post-treatment for abatement of POME. These findings contributed toward enhancing the sustainability criteria and economic viability of palm oil by adopting sustainable and efficient POME post-treatment technology.
    Matched MeSH terms: Electricity*
  12. Mirza IA, Abdulhameed M, Vieru D, Shafie S
    Comput Methods Programs Biomed, 2016 Dec;137:149-166.
    PMID: 28110721 DOI: 10.1016/j.cmpb.2016.09.014
    Therapies with magnetic/electromagnetic field are employed to relieve pains or, to accelerate flow of blood-particles, particularly during the surgery. In this paper, a theoretical study of the blood flow along with particles suspension through capillary was made by the electro-magneto-hydrodynamic approach. Analytical solutions to the non-dimensional blood velocity and non-dimensional particles velocity are obtained by means of the Laplace transform with respect to the time variable and the finite Hankel transform with respect to the radial coordinate. The study of thermally transfer characteristics is based on the energy equation for two-phase thermal transport of blood and particles suspension with viscous dissipation, the volumetric heat generation due to Joule heating effect and electromagnetic couple effect. The solution of the nonlinear heat transfer problem is derived by using the velocity field and the integral transform method. The influence of dimensionless system parameters like the electrokinetic width, the Hartman number, Prandtl number, the coefficient of heat generation due to Joule heating and Eckert number on the velocity and temperature fields was studied using the Mathcad software. Results are presented by graphical illustrations.
    Matched MeSH terms: Static Electricity
  13. Mohd Aizam Talib, Nor Asiah Muhamad, Zulkurnain Abdul Malek
    MyJurnal
    Preventive tests and diagnosis of in-service power transformer are important for early fault prediction and increased reliability of electricity supply. However, some existing diagnostic techniques require transformer outage before the measurement can be performed and need expert knowledge and experiences to interpret the measurement results. Other measurement techniques such as chemical analyses of insulating oil may cause significant variance to measurement results due to different practices in oil sampling, storage, handling and transportation of oil. A cost-effective measuring technique, which is simple, providing fast and an accurate measurement results, is therefore highly required. The extended application of Polarisation and Depolarisation (PDC) measurement for characterisation of different faults conditions in-service power transformer has been presented in this paper. Earlier studies on polarisation and depolarisation current of oil samples from in-service power transformer shows that depolarisation has provided significant information about the change of material properties due to faults in power transformer. In this paper, a new approach based on Depolarisation Current Ratio Index (DRI) was developed for identifying and classifying different transformer fault conditions. The DRI at time interval of 4s to 100s was analysed and the results show that DRI of depolarisation current between 5/100s and 10/100s provides higher correlation on the incipient faults in power transformer.
    Matched MeSH terms: Electricity
  14. Alavi SE, Soltanian MR, Amiri IS, Khalily M, Supa'at AS, Ahmad H
    Sci Rep, 2016 Jan 27;6:19891.
    PMID: 26814621 DOI: 10.1038/srep19891
    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.
    Matched MeSH terms: Electricity
  15. Hannan MA, Lipu MSH, Hussain A, Ker PJ, Mahlia TMI, Mansor M, et al.
    Sci Rep, 2020 Mar 13;10(1):4687.
    PMID: 32170100 DOI: 10.1038/s41598-020-61464-7
    State of charge (SOC) is a crucial index used in the assessment of electric vehicle (EV) battery storage systems. Thus, SOC estimation of lithium-ion batteries has been widely investigated because of their fast charging, long-life cycle, and high energy density characteristics. However, precise SOC assessment of lithium-ion batteries remains challenging because of their varying characteristics under different working environments. Machine learning techniques have been widely used to design an advanced SOC estimation method without the information of battery chemical reactions, battery models, internal properties, and additional filters. Here, the capacity of optimized machine learning techniques are presented toward enhanced SOC estimation in terms of learning capability, accuracy, generalization performance, and convergence speed. We validate the proposed method through lithium-ion battery experiments, EV drive cycles, temperature, noise, and aging effects. We show that the proposed method outperforms several state-of-the-art approaches in terms of accuracy, adaptability, and robustness under diverse operating conditions.
    Matched MeSH terms: Electricity
  16. Roslan, M.H., Azis, N., Jasni, J., Ibrahim, Z.
    MyJurnal
    Top-Oil Temperature (TOT) is one of the basic components to estimate the Hot-Spot temperature (HST) of the transformers. This paper presents an alternative TOT model based on the heat transfer theory that utilises Nonlinear Thermal Resistance (NTR) and Lumped Capacitance (LC) approaches. It is applied in a thermal-electrical analogy and the heat transfer equivalent equation is determined. This model is tested on a measured TOT of 250 MVA ONAF and 400 MVA ONAF transformers obtained from IEC 60076-7 and previous research. A comparison of TOT is carried out with the existing models IEC 60076-7 exponential and IEEE Loading Guide clause 7 methods. It is found that the thermal model based on the NTR and LC approach could determine the measured TOT closer than the existing methods available in the standards.
    Matched MeSH terms: Electricity
  17. M Nuzaihan MN, Hashim U, Md Arshad MK, Rahim Ruslinda A, Rahman SF, Fathil MF, et al.
    PLoS One, 2016;11(3):e0152318.
    PMID: 27022732 DOI: 10.1371/journal.pone.0152318
    A top-down nanofabrication approach is used to develop silicon nanowires from silicon-on-insulator (SOI) wafers and involves direct-write electron beam lithography (EBL), inductively coupled plasma-reactive ion etching (ICP-RIE) and a size reduction process. To achieve nanometer scale size, the crucial factors contributing to the EBL and size reduction processes are highlighted. The resulting silicon nanowires, which are 20 nm in width and 30 nm in height (with a triangular shape) and have a straight structure over the length of 400 μm, are fabricated precisely at the designed location on the device. The device is applied in biomolecule detection based on the changes in drain current (Ids), electrical resistance and conductance of the silicon nanowires upon hybridization to complementary target deoxyribonucleic acid (DNA). In this context, the scaled-down device exhibited superior performances in terms of good specificity and high sensitivity, with a limit of detection (LOD) of 10 fM, enables for efficient label-free, direct and higher-accuracy DNA molecules detection. Thus, this silicon nanowire can be used as an improved transducer and serves as novel biosensor for future biomedical diagnostic applications.
    Matched MeSH terms: Electricity
  18. Poznanski RR
    Phys Rev E Stat Nonlin Soft Matter Phys, 2010 Feb;81(2 Pt 1):021902.
    PMID: 20365590
    An assumption commonly used in cable theory is revised by taking into account electrical amplification due to intracellular capacitive effects in passive dendritic cables. A generalized cable equation for a cylindrical volume representation of a dendritic segment is derived from Maxwell's equations under assumptions: (i) the electric-field polarization is restricted longitudinally along the cable length; (ii) extracellular isopotentiality; (iii) quasielectrostatic conditions; and (iv) homogeneous medium with constant conductivity and permittivity. The generalized cable equation is identical to Barenblatt's equation arising in the theory of infiltration in fissured strata with a known analytical solution expressed in terms of a definite integral involving a modified Bessel function and the solution to a linear one-dimensional classical cable equation. Its solution is used to determine the impact of thermal noise on voltage attenuation with distance at any particular time. A regular perturbation expansion for the membrane potential about the linear one-dimensional classical cable equation solution is derived in terms of a Green's function in order to describe the dynamics of free charge within the Debye layer of endogenous structures in passive dendritic cables. The asymptotic value of the first perturbative term is explicitly evaluated for small values of time to predict how the slowly fluctuating (in submillisecond range) electric field attributed to intracellular capacitive effects alters the amplitude of the membrane potential. It was found that capacitive effects are almost negligible for cables with electrotonic lengths L>0.5 , contributes up to 10% of the signal for cables with electrotonic lengths in the range between 0.25
    Matched MeSH terms: Electricity
  19. Kasim NFA, W Idris WF, Abdullah AH, Yusoh K, Ismail Z
    Int J Biol Macromol, 2020 Jun 15;153:1211-1219.
    PMID: 31756469 DOI: 10.1016/j.ijbiomac.2019.10.251
    A sonication of graphite in polysaccharide (pullulan, chitosan and alginate) is one of the viable methods for the preparation of few-layer graphene. However, the effect of these adsorbed polysaccharides on the electrical performance of the produced graphene so far is not yet clear. In order to investigate the present effect of pullulan, chitosan and alginate on the electrical characteristic of resulted graphene, we have produced few-layer graphene using bath sonication of graphite in pullulan, chitosan and alginate medium for the application as electrical conductive ink in strain-sensitive. Data from the TEM reveals the appearance of folded few-layer graphene flakes after sonication for 150 min while the XPS data shows that the chitosan-based graphene possesses the highest carbon-oxygen ratio of 7.2 as compared to that of the pullulan and alginate-based graphene. By subjecting the produced graphene as the ink for paper-based strain sensor, we have discovered that the chitosan-graphene has the best resistivity value (1.66 × 10-3 Ω⋅cm) and demonstrate the highest sensitivity towards strain (GF: 18.6). This result interestingly implies the potential of the reported chitosan-based conductive ink as a strain-sensitive material for future food packaging.
    Matched MeSH terms: Electricity
  20. Tarusan SAA, Jidin A, Jamil MLM
    ISA Trans, 2021 Apr 16.
    PMID: 33931170 DOI: 10.1016/j.isatra.2021.04.005
    Direct Torque Control (DTC) scheme introduces a robust and simple control of electrical drive. However, its shortcomings such as broad torque ripple and variable switching frequency have offered several improvements like Space Vector Modulation (SVM) strategy, multilevel inverter (MLI) topology, etc. The conventional DTC which is fed by the two-level inverter has limited voltage vector, results in some difficulties to optimize the operation, especially at low operating speed. In contrast to MLI, the abundant of voltage vector has provided various amplitudes and angles that can overcome the problem of conventional DTC. Thus, this paper introduces the selected optimal voltage vector obtained from five-level Cascaded H-Bridge (CHB) inverter that employs in DTC hysteresis-based to achieve better optimization that similar to the DTC-SVM. Initially, the research work begins with an investigation on the performance comparison between a DTC hysteresis-based between two-level inverter (conventional method) and a five-level CHB inverter (proposed method). Here, a DC generator acted as a load is employed to control the operating speed instead of the speed controller (speed controller is negligible). Hence, the DTC method is optimized by minimizing the torque ripple as well as retaining the torque control capability at constant torque region on several operating speed. The selected optimal vector from the look-up table DTC of five-level CHB inverter must be dynamically appropriate to any change of torque (increased or decreased torque). For simplicity, this paper will only discuss the experimental results for both topologies of drive system. From the experimental results, it is verified that the torque ripples by the proposed method have achieved 10% and 50% reduction at high and low operating speed respectively. It is found that the DTC hysteresis-based result simpler control method than DTC-SVM while maintaining similar output performance.
    Matched MeSH terms: Electricity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links