Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Adibah AB, Darlina MN
    Genet. Mol. Res., 2014;13(4):8094-104.
    PMID: 25299194 DOI: 10.4238/2014.October.7.4
    For centuries, morphology-based fish identification has been applied without molecular evaluation. Many studies showed that specimens with a similar morphology are frequently found to be quite genetically distinct. One of the fish species that still remains taxonomically problematic is a commercial snapper species, Lutjanus johnii. Because of morphological ambiguities among local fish taxonomists in Malaysia, we examined the ability of the cytochrome oxidase I (COI) gene to genetically examine the taxonomic status of L. johnii. A 626-base pair COI region was successfully amplified and aligned with conspecific sequences that were retrieved from GenBank. The phylogenetic tree obtained showed two major clusters; the first cluster consists of L. johnii from Straits of Malacca, Thailand, Australia, and China while the second cluster comprises L. johnii from China and India. The latter group showed sequence divergence greater than 3.5%. After observing this, we suspected that there might be a cryptic species between the South China Sea and Indian Ocean. This is the first molecular report concerning the commercial species of snapper, L. johnii, in Malaysia, which had only gained provisional recognition from morphological examination.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  2. Ambrose L, Cooper RD, Russell TL, Burkot TR, Lobo NF, Collins FH, et al.
    Int J Parasitol, 2014 Mar;44(3-4):225-33.
    PMID: 24440418 DOI: 10.1016/j.ijpara.2013.12.001
    Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  3. Anderson DL, Trueman JW
    Exp Appl Acarol, 2000 Mar;24(3):165-89.
    PMID: 11108385
    Varroa jacobsoni was first described as a natural ectoparasitic mite of the Eastern honeybee (Apis cerana) throughout Asia. It later switched host to the Western honeybee (A. mellifera) and has now become a serious pest of that bee worldwide. The studies reported here on genotypic, phenotypic and reproductive variation among V. jacobsoni infesting A. cerana throughout Asia demonstrate that V. jacobsoni is a complex of at least two different species. In a new classification V. jacobsoni is here redefined as encompassing nine haplotypes (mites with distinct mtDNA CO-I gene sequences) that infest A. cerana in the Malaysia Indonesia region. Included is a Java haplotype, specimens of which were used to first describe V. jacobsoni at the beginning of this century. A new name, V. destructor n. sp., is given to six haplotypes that infest A. cerana on mainland Asia. Adult females of V. destructor are significantly larger and less spherical in shape than females of V. jacobsoni and they are also reproductively isolated from females of V. jacobsoni. The taxonomic positions of a further three unique haplotypes that infest A. cerana in the Philippines is uncertain and requires further study. Other studies reported here also show that only two of the 18 different haplotypes concealed within the complex of mites infesting A. cerana have become pests of A. mellifera worldwide. Both belong to V. destructor, and they are not V. jacobsoni. The most common is a Korea haplotype, so-called because it was also found parasitizing A. cerana in South Korea. It was identified on A. mellifera in Europe, the Middle East, Africa, Asia, and the Americas. Less common is a Japan/Thailand haplotype, so-called because it was also found parasitizing A. cerana in Japan and Thailand. It was identified on A. mellifera in Japan, Thailand and the Americas. Our results imply that the findings of past research on V. jacobsoni are applicable mostly to V. destructor. Our results will also influence quarantine protocols for bee mites, and may present new strategies for mite control.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  4. Ang JXD, Kadir KA, Mohamad DSA, Matusop A, Divis PCS, Yaman K, et al.
    Parasit Vectors, 2020 Sep 15;13(1):472.
    PMID: 32933567 DOI: 10.1186/s13071-020-04345-2
    BACKGROUND: Plasmodium knowlesi is a significant cause of human malaria in Sarawak, Malaysian Borneo. Only one study has been previously undertaken in Sarawak to identify vectors of P. knowlesi, where Anopheles latens was incriminated as the vector in Kapit, central Sarawak. A study was therefore undertaken to identify malaria vectors in a different location in Sarawak.

    METHODS: Mosquitoes found landing on humans and resting on leaves over a 5-day period at two sites in the Lawas District of northern Sarawak were collected and identified. DNA samples extracted from salivary glands of Anopheles mosquitoes were subjected to nested PCR malaria-detection assays. The small subunit ribosomal RNA (SSU rRNA) gene of Plasmodium was sequenced, and the internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the mosquitoes were sequenced from the Plasmodium-positive samples for phylogenetic analysis.

    RESULTS: Totals of 65 anophelines and 127 culicines were collected. By PCR, 6 An. balabacensis and 5 An. donaldi were found to have single P. knowlesi infections while 3 other An. balabacensis had either single, double or triple infections with P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Phylogenetic analysis of the Plasmodium SSU rRNA gene confirmed 3 An. donaldi and 3 An. balabacensis with single P. knowlesi infections, while 3 other An. balabacensis had two or more Plasmodium species of P. inui, P. knowlesi, P. cynomolgi and some species of Plasmodium that could not be conclusively identified. Phylogenies inferred from the ITS2 and/or cox1 sequences of An. balabacensis and An. donaldi indicate that they are genetically indistinguishable from An. balabacensis and An. donaldi, respectively, found in Sabah, Malaysian Borneo.

    CONCLUSIONS: Previously An. latens was identified as the vector for P. knowlesi in Kapit, central Sarawak, Malaysian Borneo, and now An. balabacensis and An. donaldi have been incriminated as vectors for zoonotic malaria in Lawas, northern Sarawak.

    Matched MeSH terms: Electron Transport Complex IV/genetics
  5. Aziz NMA, Esa Y, Arshad A
    J Environ Biol, 2016 07;37(4 Spec No):725-33.
    PMID: 28779732
    The present study was carried out to examine the species identification and phylogenetic relationships of groupers in Malaysia using mitochondrial Cytochrome c Oxidase I (COI) gene, commonly known as barcoding gene. A total of 63 individuals comprising 10 species from three genera were collected from the coastal areas of Johor, Kelantan, Pahang, Perak, Selangor and Terengganu. All the individuals were morphologically identified and molecular works involved polymerase chain reaction (PCR) and sequencing of COI barcoding fragment (655 base pairs). Results from the BLAST search showed that 55 sequences could be assigned to 10 grouper species with high percentage identity index (≥95% to 100%), while eight grouper individuals showed discrepancies in their taxonomic identification based on the morphology and the COI barcoding results. The histogram of distances showed that there was a clear-cut barcode gap present in the sequences indicating a clear separation between intraspecific and interspecific distances. The pairwise genetic distances showed lowest pairwise distance between P. leopardus and P. maculatus (4.4%), while the highest pairwise distance was between E. bleekeri and P. maculatus (23.5%), supporting their morphological and habitat similarities and differences. Phylogenetic analysis (Neighbor-Joining) showed the presence of two major clades (1) genus Epinephelus vs (2) genus Plectropomus and Cephalopholis). In conclusion, the present study has managed to show the accuracy of DNA barcoding method for species identification, and utilization of COI gene for phylogenetic study among groupers. ?
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  6. Blair D, Agatsuma T, Watanobe T, Okamoto M, Ito A
    Parasitology, 1997 Oct;115 ( Pt 4):411-7.
    PMID: 9364568
    Nucleotide sequences were obtained for the second internal transcribed spacer of the ribosomal gene repeat and for part of the mitochondrial-cytochrome c oxidase subunit I gene from geographical isolates of Paragonimus westermani from Japan, China, Korea, Taiwan, the Philippines, peninsular Malaysia and Thailand. Sequences were obtained from several other species of Paragonimus for comparative purposes. Two groups were recognized within P. westermani: an NE group (China, Japan, Korea, Taiwan) which was relatively uniform and included both diploid and triploid forms, and a southern group (Malaysia, Thailand, Philippines), members of which were genetically distant from one another. According to both ITS2 and COI data, genetic distances among P. westermani isolates equalled or exceeded those between some distinct species of Paragonimus. The ITS2 sequences were conserved relative to COI sequences. Substitutions among the latter may be approaching saturation within the genus Paragonimus.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  7. Bolotov IN, Kondakov AV, Vikhrev IV, Aksenova OV, Bespalaya YV, Gofarov MY, et al.
    Sci Rep, 2017 05 18;7(1):2135.
    PMID: 28522869 DOI: 10.1038/s41598-017-02312-z
    The concept of long-lived (ancient) lakes has had a great influence on the development of evolutionary biogeography. According to this insight, a number of lakes on Earth have existed for several million years (e.g., Baikal and Tanganyika) and represent unique evolutionary hotspots with multiple intra-basin radiations. In contrast, rivers are usually considered to be variable systems, and the possibility of their long-term existence during geological epochs has never been tested. In this study, we reconstruct the history of freshwater basin interactions across continents based on the multi-locus fossil-calibrated phylogeny of freshwater mussels (Unionidae). These mussels most likely originated in Southeast and East Asia in the Jurassic, with the earliest expansions into North America and Africa (since the mid-Cretaceous) following the colonization of Europe and India (since the Paleocene). We discovered two ancient monophyletic mussel radiations (mean age ~51-55 Ma) within the paleo-Mekong catchment (i.e., the Mekong, Siam, and Malacca Straits paleo-river drainage basins). Our findings reveal that the Mekong may be considered a long-lived river that has existed throughout the entire Cenozoic epoch.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  8. Chee SY, Mohd Nor SA
    PMID: 25471442 DOI: 10.3109/19401736.2014.987237
    This is the first study to identify and determine the phylogenetics of neritids found in Malaysia. In total, twelve species from the family Neritidae were recorded. Ten species were from the genus Nerita and two species were from the genus Neritina. DNA barcodes were successfully assigned to each species. Although some of these species were previously reported in the region, three are only presently reported in this study. The dendrogram showed Nerita and Neritina strongly supported in their respective monophyletic clades. Phylogenetic positions of some species appeared unstable in the trees. This could be due to the differences in a small number of nucleotides, thus minimizing genetic variation between each specimen and species.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  9. Chee SY
    Genet. Mol. Res., 2015;14(2):5677-84.
    PMID: 26125766 DOI: 10.4238/2015.May.25.20
    The mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) gene has been universally and successfully utilized as a barcoding gene, mainly because it can be amplified easily, applied across a wide range of taxa, and results can be obtained cheaply and quickly. However, in rare cases, the gene can fail to distinguish between species, particularly when exposed to highly sensitive methods of data analysis, such as the Bayesian method, or when taxa have undergone introgressive hybridization, over-splitting, or incomplete lineage sorting. Such cases require the use of alternative markers, and nuclear DNA markers are commonly used. In this study, a dendrogram produced by Bayesian analysis of an mtDNA COI dataset was compared with that of a nuclear DNA ATPS-α dataset, in order to evaluate the efficiency of COI in barcoding Malaysian nerites (Neritidae). In the COI dendrogram, most of the species were in individual clusters, except for two species: Nerita chamaeleon and N. histrio. These two species were placed in the same subcluster, whereas in the ATPS-α dendrogram they were in their own subclusters. Analysis of the ATPS-α gene also placed the two genera of nerites (Nerita and Neritina) in separate clusters, whereas COI gene analysis placed both genera in the same cluster. Therefore, in the case of the Neritidae, the ATPS-α gene is a better barcoding gene than the COI gene.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  10. Cheng S, Thinagaran D, Mohanna SZ, Noh NA
    Environ Entomol, 2014 Aug;43(4):1105-16.
    PMID: 24915136 DOI: 10.1603/EN13318
    Coptotermes gestroi (Wasmann) or the Asian subterranean termite is a serious structural pest in urban settlements in Southeast Asia that has been introduced to other parts of the world through human commerce. Although mitochondrial DNA markers were previously used to shed light on the dispersal history of the Asian subterranean termite, there were limited attempts to analyze or include populations of the termite found in the wild in Southeast Asia. In this study, we analyzed the 16S ribosomal RNA (16S rRNA) and cytochrome c oxidase subunit 1 (cox1) genes of Asian subterranean termite colonies found in mangrove swamps, beach forests, plantations, and buildings in semi-urban and urban areas to determine the relationship between colonies found in the wild and the urban habitat, and to investigate the possibility of different ecotypes of the termite in Peninsular Malaysia. Our findings show that the 16S rRNA haplotypes recovered from this study clustered into eastern, western, and southern populations of the termite, while the cox1 haplotypes were often specific to an area or site. The 16S rRNA and cox1 genes or haplotypes showed that the most abundant haplotype occupied a wide range of environments or habitats. In addition, the cox1 tree showed evidence of historical biogeography where basal haplotypes inhabited a wide range of habitats, while apical haplotypes were restricted to mangrove swamps and beach forests. Information on the haplotype-habitat association of C. gestroi will enable the prediction of habitats that may harbor or be at risk of invasion in areas where they have been introduced.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  11. Cheng S, Kirton LG, Panandam JM, Siraj SS, Ng KK, Tan SG
    PLoS One, 2011;6(6):e20992.
    PMID: 21687629 DOI: 10.1371/journal.pone.0020992
    Termites of the genus Odontotermes are important decomposers in the Old World tropics and are sometimes important pests of crops, timber and trees. The species within the genus often have overlapping size ranges and are difficult to differentiate based on morphology. As a result, the taxonomy of Odontotermes in Peninsular Malaysia has not been adequately worked out. In this study, we examined the phylogeny of 40 samples of Odontotermes from Peninsular Malaysia using two mitochondrial DNA regions, that is, the 16S ribosomal RNA and cytochrome oxidase subunit I genes, to aid in elucidating the number of species in the peninsula. Phylogenies were reconstructed from the individual gene and combined gene data sets using parsimony and likelihood criteria. The phylogenies supported the presence of up to eleven species in Peninsular Malaysia, which were identified as O. escherichi, O. hainanensis, O. javanicus, O. longignathus, O. malaccensis, O. oblongatus, O. paraoblongatus, O. sarawakensis, and three possibly new species. Additionally, some of our taxa are thought to comprise a complex of two or more species. The number of species found in this study using DNA methods was more than the initial nine species thought to occur in Peninsular Malaysia. The support values for the clades and morphology of the soldiers provided further evidence for the existence of eleven or more species. Higher resolution genetic markers such as microsatellites would be required to confirm the presence of cryptic species in some taxa.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  12. Chong LK, Ong AH, Tan SG, Taranjeet KA, Peris MM, Sana AM, et al.
    Biochem Genet, 2014 Jun;52(5-6):283-95.
    PMID: 24535156 DOI: 10.1007/s10528-014-9647-8
    In this study the genetic diversity of local freshwater leeches (Hirudinaria spp.) was inferred using mtDNA COI gene analysis and compared with the gross external variations of 26 freshwater leech specimens obtained from the wild and leech farms. Based on a neighbor-joining tree generated from 516 COI base sequences, four distinct clades of Hirudinaria were seen with interspecific genetic divergence in the range of 7.6-14.5%. The external morphological variations based on the presence of stripes, location of gonopores, and anus separated the samples into four morphologically distinct groups matching the four clades obtained from the molecular data. Two black stripes at the ventral region were observed only in specimens found clustered with clades that contained the GenBank-reported H. manillensis, whereas the brown or dark green coloration without stripes on the ventral region was seen in samples that clustered with H. javanica and H. bpling clades.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  13. Chua TH, Chong YV, Lim SH
    Pest Manag Sci, 2010 Apr;66(4):379-84.
    PMID: 19946858 DOI: 10.1002/ps.1886
    Identification of Bactrocera carambolae Drew and Hancock, B. papayae Drew and Hancock, B. tau Walker, B. latifrons Hendel, B. cucurbitae Coquillett, B. umbrosa Fabricius and B. caudata Fabricius would pose a problem if only a body part or an immature stage were available. Analysis of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of cytochrome oxidase I (COI) gene using primers COIR, COIF, UEA7 and UEA10 and restriction enzymes (MseI, RsaI and Alu1) was carried out. The banding profiles in the electrophoresis gel were analysed.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  14. Chua TH, Song BK, Chong YV
    J Econ Entomol, 2010 Dec;103(6):1994-9.
    PMID: 21309218
    Differentiation of Bactrocera papayae Drew & Hancock and Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae) based on morphological characters has often been problematical. We describe here a single-nucleotide polymorphism (SNP)-based polymerase chain reaction (PCR) assay to differentiate between these two species. For detection of SNPs, fragments derived from each species were amplified using two primer pairs, COIF/COIR and UEA7/UEA10, sequenced, and aligned to obtain a contiguous 1,517-bp segment. Two new sets of primers were designed based on the 11 SNPs identified in the region. Results of the SNP-PCR test using any one of these species-specific primer sets indicate that these two species could be differentiated on basis of presence or absence of a band in the gel profile. We also tested the SNP-PCR primers on Bactrocera umbrosa F., Bactrocera cucurbitae Coquillett, Bactrocera latifrons Hendel, and Bactrocera tau (Walker) but did not detect any band in the gel, indicating the likelihood of a false positive for B. papayae is nil. This SNP-PCR method is efficient and useful, especially for immature life stages or when only adult body parts of the two species are available for identification, as encountered often in quarantine work.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  15. Eamsobhana P, Song SL, Yong HS, Prasartvit A, Boonyong S, Tungtrongchitr A
    Acta Trop, 2017 Jul;171:141-145.
    PMID: 28347653 DOI: 10.1016/j.actatropica.2017.03.020
    The rat lungworm Angiostrongylus cantonensis is a food-borne zoonotic parasite of public health importance worldwide. It is the primary etiologic agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans in many countries. It is highly endemic in Thailand especially in the northeast region. In this study, A. cantonensis adult worms recovered from the lungs of wild rats in different geographical regions/provinces in Thailand were used to determine their haplotype by means of the mitochondrial partial cytochrome c oxidase subunit I (COI) gene sequence. The results revealed three additional COI haplotypes of A. cantonensis. The geographical isolates of A. cantonensis from Thailand and other countries formed a monophyletic clade distinct from the closely related A. malaysiensis. In the present study, distinct haplotypes were identified in seven regions of Thailand - AC10 in Phitsanulok (northern region), AC11 in Nakhon Phanom (northeastern region), AC15 in Trat (eastern region), AC16 in Chantaburi (eastern region), AC4 in Samut Prakan (central region), AC14 in Kanchanaburi (western region), and AC13 in Ranong (southern region). Phylogenetic analysis revealed that these haplotypes formed distinct lineages. In general, the COI sequences did not differentiate the worldwide geographical isolates of A. cantonensis. This study has further confirmed the presence of COI haplotype diversity in various geographical isolates of A. cantonensis. The COI gene sequence will be a suitable marker for studying population structure, phylogeography and genetic diversity of the rat lungworm.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  16. Eamsobhana P, Yong HS, Song SL, Prasartvit A, Boonyong S, Tungtrongchitr A
    J Helminthol, 2018 Mar;92(2):254-259.
    PMID: 28330511 DOI: 10.1017/S0022149X17000244
    The rat lungworm Angiostrongylus malaysiensis is a metastrongyloid nematode parasite. It has been reported in Malaysia, Thailand, Laos, Myanmar, Indonesia and Japan. In this study, A. malaysiensis adult worms recovered from the lungs of wild rats in different geographical regions/provinces in Thailand were used to determine their haplotype by means of the mitochondrial partial cytochrome c oxidase subunit I (COI) gene sequence. The results revealed high COI haplotype diversity of A. malaysiensis from Thailand. The geographical isolates of A. malaysiensis from Thailand and other countries formed a monophyletic clade distinct from the closely related A. cantonensis. In the present study, five new haplotypes were identified in addition to the four haplotypes reported in the literature. Phylogenetic analysis revealed that four of these five new haplotypes - one from Mae Hong Song (northern region), two from Tak (western region) and one from Phang Nga (southern region) - formed a distinct clade with those from Phatthalung (southern region) and Malaysia. The haplotype from Malaysia was identical to that of Phatthalung (haplotype AM1). In general, the COI sequences did not differentiate unambiguously the various geographical isolates of A. malaysiensis. This study has confirmed the presence of high COI genetic diversity in various geographical isolates of A. malaysiensis. The COI gene sequence will be suitable for studying genetic diversity, population structure and phylogeography.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  17. Fayle TM, Scholtz O, Dumbrell AJ, Russell S, Segar ST, Eggleton P
    PLoS One, 2015;10(4):e0122533.
    PMID: 25853549 DOI: 10.1371/journal.pone.0122533
    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  18. Feldhaar H, Fiala B, Gadau J, Mohamed M, Maschwitz U
    Mol Phylogenet Evol, 2003 Jun;27(3):441-52.
    PMID: 12742749
    To elucidate the evolution of one of the most species-rich ant-plant symbiotic systems, the association between Crematogaster (Myrmicinae) and Macaranga (Euphorbiaceae) in South-East Asia, we conducted a phylogenetic analysis of the ant partners. For the phylogenetic analysis partial mitochondrial cytochrome oxidase I and II were sequenced and Maximum Parsimony analysis was performed. The analyzed Crematogaster of the subgenus Decacrema fell into three distinct clades which are also characterized by specific morphological and ecological traits (queen morphology, host-plants, and colony structure). Our results supported the validity of our currently used morphospecies concept for Peninsula Malaysia. However, on a wider geographic range (including North and North-East Borneo) some morphospecies turned out to be species complexes with genetically quite distinct taxa. Our phylogenetic analysis and host association studies do not indicate strict cocladogenesis between the subgenus Decacrema and their Macaranga host-plants because multiple ant taxa occur on quite distinct host-plants belonging to different clades within in the genus Macaranga. These results support the view that host-shifting or host-expansion is common in the ants colonizing Macaranga. Additionally, the considerable geographic substructuring found in the phylogenetic trees of the ants suggests that allopatric speciation has also played a role in the diversification and the current distribution of the Decacrema ants.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  19. Fong MY, Lau YL, Chin LC, Al-Mekhlafi AM
    Trop Biomed, 2011 Aug;28(2):457-63.
    PMID: 22041769
    The cytochrome oxidase subunit I (COXI) gene sequences of three recent (2007-2008) clinical Plasmodium knowlesi isolates from Klang Valley, peninsular Malaysia, were determined and compared with those of older (1960's) peninsular Malaysia, recent isolates from Sarawak (on Borneo Island), and an isolate from Thailand. Multiple alignment of the sequences showed that the three clinical isolates were more similar to the older peninsular Malaysia isolates than to those from Sarawak and Thailand. Phylogenetic tree based on the COXI sequences revealed three distinct clusters of P. knowlesi. The first cluster consisted of isolates from peninsular Malaysia, the second consisted of Sarawak isolates and the third composed of the Thailand isolate. The findings of this study highlight the usefulness of mitochondrial COXI gene as a suitable marker for phylogeographic studies of P. knowlesi.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  20. Freeman MA, Anshary H, Ogawa K
    Parasit Vectors, 2013;6(1):336.
    PMID: 24286135 DOI: 10.1186/1756-3305-6-336
    The Caligidae is a family of parasitic copepods containing over 30 recognised genera. They are commercially important parasites as they cause disease in numerous finfish aquaculture facilities globally. Morphological features are used to distinguish between the genera and Pseudocaligus has traditionally been differentiated from Caligus solely by the presence of a much reduced form of the fourth thoracic leg. Currently there are numerous DNA sequences available for Caligus spp. but only the type species, Pseudocaligus brevipedis, has molecular data available, so systematic studies using molecular phylogenetic analyses have been limited.
    Matched MeSH terms: Electron Transport Complex IV/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links