Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Hashimoto K, Watanobe T, Liu CX, Init I, Blair D, Ohnishi S, et al.
    Parasitol Res, 1997;83(3):220-5.
    PMID: 9089716
    For elucidation of the taxonomic status of the Japanese Fasciola species, whole mitochondrial DNA of Fasciola hepatica from Australia, F. gigantica from Malaysia, and Fasciola sp. from Japan was digested with three four-base-cutting endonucleases: HinfI, MspI, and RsaI. The resulting digestion patterns showed that for each enzyme there were some bands specific for each geographical isolate and that the Japanese Fasciola sp. shared more bands with F. gigantica than with F. hepatica. Nucleotide sequences of two regions, the second internal transcribed spacer (ITS2) of the nuclear ribosomal RNA cluster and mitochondrial cytochrome c oxidase subunit I (COI), were also compared among them. The ITS2 sequence was highly conserved among the three isolates. F. gigantica and the Japanese Fasciola sp. were identical, but they differed from the Australian F. hepatica at six sites, one of which was a deletion. The COI sequence was less conserved but implied a similar relationship between the isolates. There seems no reason to regard the Japanese Fasciola sp. as anything other than a strain of F. gigantica.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  2. Iwagami M, Ho LY, Su K, Lai PF, Fukushima M, Nakano M, et al.
    J Helminthol, 2000 Dec;74(4):315-22.
    PMID: 11138020
    The lung fluke, Paragonimus westermani (Kerbert, 1878), is widely distributed in Asia, and exhibits much variation in its biological properties. Previous phylogenetic studies using DNA sequences have demonstrated that samples from north-east Asia form a tight group distinct from samples from south Asia (Philippines, Thailand, Malaysia). Among countries from the latter region, considerable molecular diversity was observed. This was investigated further using additional DNA sequences (partial mitochondrial cytochrome c oxidase subunit 1 (COI) and the second internal transcribed spacer of the nuclear ribosomal gene repeat (ITS2)) from additional samples of P. westermani. Phylogenies inferred from these again found three or four groups within P. westermani, depending on the method of analysis. Populations of P. westermani from north-east Asia use snail hosts of the family Pleuroceridae and differ in other biological properties from populations in south Asia (that use snail hosts of the family Thiaridae). It is considered that the populations we sampled can be divided into two species, one in north-east Asia and the other in south Asia.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  3. Fong MY, Lau YL, Chin LC, Al-Mekhlafi AM
    Trop Biomed, 2011 Aug;28(2):457-63.
    PMID: 22041769
    The cytochrome oxidase subunit I (COXI) gene sequences of three recent (2007-2008) clinical Plasmodium knowlesi isolates from Klang Valley, peninsular Malaysia, were determined and compared with those of older (1960's) peninsular Malaysia, recent isolates from Sarawak (on Borneo Island), and an isolate from Thailand. Multiple alignment of the sequences showed that the three clinical isolates were more similar to the older peninsular Malaysia isolates than to those from Sarawak and Thailand. Phylogenetic tree based on the COXI sequences revealed three distinct clusters of P. knowlesi. The first cluster consisted of isolates from peninsular Malaysia, the second consisted of Sarawak isolates and the third composed of the Thailand isolate. The findings of this study highlight the usefulness of mitochondrial COXI gene as a suitable marker for phylogeographic studies of P. knowlesi.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  4. Aziz NMA, Esa Y, Arshad A
    J Environ Biol, 2016 07;37(4 Spec No):725-33.
    PMID: 28779732
    The present study was carried out to examine the species identification and phylogenetic relationships of groupers in Malaysia using mitochondrial Cytochrome c Oxidase I (COI) gene, commonly known as barcoding gene. A total of 63 individuals comprising 10 species from three genera were collected from the coastal areas of Johor, Kelantan, Pahang, Perak, Selangor and Terengganu. All the individuals were morphologically identified and molecular works involved polymerase chain reaction (PCR) and sequencing of COI barcoding fragment (655 base pairs). Results from the BLAST search showed that 55 sequences could be assigned to 10 grouper species with high percentage identity index (≥95% to 100%), while eight grouper individuals showed discrepancies in their taxonomic identification based on the morphology and the COI barcoding results. The histogram of distances showed that there was a clear-cut barcode gap present in the sequences indicating a clear separation between intraspecific and interspecific distances. The pairwise genetic distances showed lowest pairwise distance between P. leopardus and P. maculatus (4.4%), while the highest pairwise distance was between E. bleekeri and P. maculatus (23.5%), supporting their morphological and habitat similarities and differences. Phylogenetic analysis (Neighbor-Joining) showed the presence of two major clades (1) genus Epinephelus vs (2) genus Plectropomus and Cephalopholis). In conclusion, the present study has managed to show the accuracy of DNA barcoding method for species identification, and utilization of COI gene for phylogenetic study among groupers. ?
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  5. Kavitha R, Nazni WA, Tan TC, Lee HL, Isa MN, Azirun MS
    Malays J Pathol, 2012 Dec;34(2):127-32.
    PMID: 23424775 MyJurnal
    Forensic entomology applies knowledge about insects associated with decedent in crime scene investigation. It is possible to calculate a minimum postmortem interval (PMI) by determining the age and species of the oldest blow fly larvae feeding on decedent. This study was conducted in Malaysia to identify maggot specimens collected during crime scene investigations. The usefulness of the molecular and morphological approach in species identifications was evaluated in 10 morphologically identified blow fly larvae sampled from 10 different crime scenes in Malaysia. The molecular identification method involved the sequencing of a total length of 2.2 kilo base pairs encompassing the 'barcode' fragments of the mitochondrial cytochrome oxidase I (COI), cytochrome oxidase II (COII) and t-RNA leucine genes. Phylogenetic analyses confirmed the presence of Chrysomya megacephala, Chrysomya rufifacies and Chrysomya nigripes. In addition, one unidentified blow fly species was found based on phylogenetic tree analysis.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  6. Nurdalila AA, Bunawan H, Kumar SV, Rodrigues KF, Baharum SN
    Int J Mol Sci, 2015 Jul 02;16(7):14884-900.
    PMID: 26147421 DOI: 10.3390/ijms160714884
    Taxonomic confusion exists within the genus Epinephelus due to the lack of morphological specializations and the overwhelming number of species reported in several studies. The homogenous nature of the morphology has created confusion in the Malaysian Marine fish species Epinephelus fuscoguttatus and Epinephelus hexagonatus. In this study, the partial DNA sequence of the 16S gene and mitochondrial nucleotide sequences of two gene regions, Cytochrome Oxidase Subunit I and III were used to investigate the phylogenetic relationship between them. In the phylogenetic trees, E. fuscoguttatus was monophyletic with E. hexagonatus species and morphology examination shows that no significant differences were found in the morphometric features between these two taxa. This suggests that E. fuscoguttatus is not distinguishable from E. hexagonatus species, and that E. fuscoguttatus have been identified to be E. hexagonatus species is likely attributed to differences in environment and ability to camouflage themselves under certain conditions. Interestingly, this finding was also supported by Principal Component Analysis on Attenuated Total Reflectance-Fourier-transform Infrared (ATR-FTIR) data analysis. Molecular, morphological and meristic characteristics were combined with ATR-FTIR analysis used in this study offer new perspectives in fish species identification. To our knowledge, this is the first report of an extensive genetic population study of E. fuscoguttatus in Malaysia and this understanding will play an important role in informing genetic stock-specific strategies for the management and conservation of this highly valued fish.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  7. Maynard AJ, Ambrose L, Cooper RD, Chow WK, Davis JB, Muzari MO, et al.
    PLoS Negl Trop Dis, 2017 04;11(4):e0005546.
    PMID: 28410388 DOI: 10.1371/journal.pntd.0005546
    BACKGROUND: Within the last century, increases in human movement and globalization of trade have facilitated the establishment of several highly invasive mosquito species in new geographic locations with concurrent major environmental, economic and health consequences. The Asian tiger mosquito, Aedes albopictus, is an extremely invasive and aggressive daytime-biting mosquito that is a major public health threat throughout its expanding range.

    METHODOLOGY/PRINCIPAL FINDINGS: We used 13 nuclear microsatellite loci (on 911 individuals) and mitochondrial COI sequences to gain a better understanding of the historical and contemporary movements of Ae. albopictus in the Indo-Pacific region and to characterize its population structure. Approximate Bayesian computation (ABC) was employed to test competing historical routes of invasion of Ae. albopictus within the Southeast (SE) Asian/Australasian region. Our ABC results show that Ae. albopictus was most likely introduced to New Guinea via mainland Southeast Asia, before colonizing the Solomon Islands via either Papua New Guinea or SE Asia. The analysis also supported that the recent incursion into northern Australia's Torres Strait Islands was seeded chiefly from Indonesia. For the first time documented in this invasive species, we provide evidence of a recently colonized population (the Torres Strait Islands) that has undergone rapid temporal changes in its genetic makeup, which could be the result of genetic drift or represent a secondary invasion from an unknown source.

    CONCLUSIONS/SIGNIFICANCE: There appears to be high spatial genetic structure and high gene flow between some geographically distant populations. The species' genetic structure in the region tends to favour a dispersal pattern driven mostly by human movements. Importantly, this study provides a more widespread sampling distribution of the species' native range, revealing more spatial population structure than previously shown. Additionally, we present the most probable invasion history of this species in the Australasian region using ABC analysis.

    Matched MeSH terms: Electron Transport Complex IV/genetics
  8. Ambrose L, Cooper RD, Russell TL, Burkot TR, Lobo NF, Collins FH, et al.
    Int J Parasitol, 2014 Mar;44(3-4):225-33.
    PMID: 24440418 DOI: 10.1016/j.ijpara.2013.12.001
    Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  9. Song LM, Munian K, Abd Rashid Z, Bhassu S
    ScientificWorldJournal, 2013;2013:917506.
    PMID: 24396312 DOI: 10.1155/2013/917506
    Conservation is imperative for the Asian snakeheads Channa striata, as the species has been overfished due to its high market demand. Using maternal markers (mitochondrial cytochrome c oxidase subunit 1 gene (COI)), we discovered that evolutionary forces that drove population divergence did not show any match between the genetic and morphological divergence pattern. However, there is evidence of incomplete divergence patterns between the Borneo population and the populations from Peninsular Malaysia. This supports the claim of historical coalescence of C. striata during Pleistocene glaciations. Ecological heterogeneity caused high phenotypic variance and was not correlated with genetic variance among the populations. Spatial conservation assessments are required to manage different stock units. Results on DNA barcoding show no evidence of cryptic species in C. striata in Malaysia. The newly obtained sequences add to the database of freshwater fish DNA barcodes and in future will provide information relevant to identification of species.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  10. Mohd-Shamsudin MI, Fard MZ, Mather PB, Suleiman Z, Hassan R, Othman RY, et al.
    Gene, 2011 Dec 15;490(1-2):47-53.
    PMID: 21945689 DOI: 10.1016/j.gene.2011.08.025
    Morphological identification of fish taxa can sometimes prove difficult because phenotypic variation is either being affected by environmental factors, phenotypic characters are highly conserved or marker selection has been inappropriate. DNA based markers especially neutral mitochondrial DNA (mtDNA) have been used widely in recent times to provide better resolution of systematic relationships among vertebrate taxa. The Asian Arowana (Scleropages formosus) is a high value ornamental fish belonging to the family Osteoglossidae with a number of different colour variants distributed geographically across different locations around Southeast Asia. Systematic relationships among colour variants still remain unresolved. Partial sequences of the Cytochrome B (Cyt B) and DNA barcoding gene, Cytochrome C Oxidase I (COI) were used here to assess genetic relationships among colour variants and as a tool for molecular identification for differentiating among colour variants in this species. Results of the study show that in general, colour pattern shows no relationship with extent of COI or Cyt B mtDNA differentiation and so cannot be used to identify taxa. Partial sequences of the mtDNA genes were sufficient however, to identify S. formosus from a closely related species within the order Osteoglossidae.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  11. Ismail NA, Dom NC, Ismail R, Ahmad AH, Zaki A, Camalxaman SN
    J Am Mosq Control Assoc, 2015 Dec;31(4):305-12.
    PMID: 26675451 DOI: 10.2987/moco-31-04-305-312.1
    A study was conducted to establish polymorphic variation of the mitochondrial DNA encoding the cytochrome oxidase subunit 1 (CO1) gene in Aedes albopictus isolated from 2 hot spot dengue-infested areas in the Subang Jaya District, Malaysia. A phylogenetic analysis was performed with the use of sequences obtained from USJ6 and Taman Subang Mas (TSM). Comparison of the local CO1 sequences with a laboratory strain (USM), alongside reference strains derived from the GenBank database revealed low genetic variation in terms of nucleotide differences and haplotype diversity. Four methods were used to construct a phylogenetic tree and illustrate the genetic relationship of the 37 Ae. albopictus populations based on the CO1 sequences, namely neighbor-joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian method, which revealed a distinct relationship between isolates from USJ6 and TSM. Our findings provide new information regarding the genetic diversity among morphologically similar Ae. albopictus, which has not been reported to date.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  12. Ismail NA, Adilah-Amrannudin N, Hamsidi M, Ismail R, Dom NC, Ahmad AH, et al.
    J Med Entomol, 2017 11 07;54(6):1573-1581.
    PMID: 28981849 DOI: 10.1093/jme/tjx126
    The global expansion of Ae. albopictus from its native range in Southeast Asia has been implicated in the recent emergence of dengue endemicity in Malaysia. Genetic variability studies of Ae. albopictus are currently lacking in the Malaysian setting, yet are crucial to enhancing the existing vector control strategies. The study was conducted to establish the genetic variability of maternally inherited mitochondrial DNA encoding for cytochrome oxidase subunit 1 (CO1) gene in Ae. albopictus. Twelve localities were selected in the Subang Jaya district based on temporal indices utilizing 120 mosquito samples. Genetic polymorphism and phylogenetic analysis were conducted to unveil the genetic variability and geographic origins of Ae. albopictus. The haplotype network was mapped to determine the genealogical relationship of sequences among groups of population in the Asian region. Comparison of Malaysian CO1 sequences with sequences derived from five Asian countries revealed genetically distinct Ae. albopictus populations. Phylogenetic analysis revealed that all sequences from other Asian countries descended from the same genetic lineage as the Malaysian sequences. Noteworthy, our study highlights the discovery of 20 novel haplotypes within the Malaysian population which to date had not been reported. These findings could help determine the genetic variation of this invasive species, which in turn could possibly improve the current dengue vector surveillance strategies, locally and regionally.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  13. Mat Jaafar TN, Taylor MI, Mohd Nor SA, de Bruyn M, Carvalho GR
    PLoS One, 2012;7(11):e49623.
    PMID: 23209586 DOI: 10.1371/journal.pone.0049623
    DNA barcodes, typically focusing on the cytochrome oxidase I gene (COI) in many animals, have been used widely as a species-identification tool. The ability of DNA barcoding to distinguish species from a range of taxa and to reveal cryptic species has been well documented. Despite the wealth of DNA barcode data for fish from many temperate regions, there are relatively few available from the Southeast Asian region. Here, we target the marine fish Family Carangidae, one of the most commercially-important families from the Indo-Malay Archipelago (IMA), to produce an initial reference DNA barcode library.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  14. Chee SY
    Genet. Mol. Res., 2015;14(2):5677-84.
    PMID: 26125766 DOI: 10.4238/2015.May.25.20
    The mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) gene has been universally and successfully utilized as a barcoding gene, mainly because it can be amplified easily, applied across a wide range of taxa, and results can be obtained cheaply and quickly. However, in rare cases, the gene can fail to distinguish between species, particularly when exposed to highly sensitive methods of data analysis, such as the Bayesian method, or when taxa have undergone introgressive hybridization, over-splitting, or incomplete lineage sorting. Such cases require the use of alternative markers, and nuclear DNA markers are commonly used. In this study, a dendrogram produced by Bayesian analysis of an mtDNA COI dataset was compared with that of a nuclear DNA ATPS-α dataset, in order to evaluate the efficiency of COI in barcoding Malaysian nerites (Neritidae). In the COI dendrogram, most of the species were in individual clusters, except for two species: Nerita chamaeleon and N. histrio. These two species were placed in the same subcluster, whereas in the ATPS-α dendrogram they were in their own subclusters. Analysis of the ATPS-α gene also placed the two genera of nerites (Nerita and Neritina) in separate clusters, whereas COI gene analysis placed both genera in the same cluster. Therefore, in the case of the Neritidae, the ATPS-α gene is a better barcoding gene than the COI gene.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  15. Chua TH, Song BK, Chong YV
    J Econ Entomol, 2010 Dec;103(6):1994-9.
    PMID: 21309218
    Differentiation of Bactrocera papayae Drew & Hancock and Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae) based on morphological characters has often been problematical. We describe here a single-nucleotide polymorphism (SNP)-based polymerase chain reaction (PCR) assay to differentiate between these two species. For detection of SNPs, fragments derived from each species were amplified using two primer pairs, COIF/COIR and UEA7/UEA10, sequenced, and aligned to obtain a contiguous 1,517-bp segment. Two new sets of primers were designed based on the 11 SNPs identified in the region. Results of the SNP-PCR test using any one of these species-specific primer sets indicate that these two species could be differentiated on basis of presence or absence of a band in the gel profile. We also tested the SNP-PCR primers on Bactrocera umbrosa F., Bactrocera cucurbitae Coquillett, Bactrocera latifrons Hendel, and Bactrocera tau (Walker) but did not detect any band in the gel, indicating the likelihood of a false positive for B. papayae is nil. This SNP-PCR method is efficient and useful, especially for immature life stages or when only adult body parts of the two species are available for identification, as encountered often in quarantine work.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  16. Manin BO, Drakeley CJ, Chua TH
    PLoS One, 2018;13(8):e0202905.
    PMID: 30138386 DOI: 10.1371/journal.pone.0202905
    Anopheles balabacensis, the primary vector of Plasmodium knowlesi in Sabah, Malaysia, is both zoophilic and anthropophilic, feeding on macaques as well as humans. It is the dominant Anopheles species found in Kudat Division where it is responsible for all the cases of P. knowlesi. However there is a paucity of basic biological and ecological information on this vector. We investigated the genetic variation of this species using the sequences of cox1 (1,383 bp) and cox2 (685 bp) to gain an insight into the population genetics and inter-population gene flow in Sabah. A total of 71 An. balabacensis were collected from seven districts constituting 14 subpopulations. A total of 17, 10 and 25 haplotypes were detected in the subpopulations respectively using the cox1, cox2 and the combined sequence. Some of the haplotypes were common among the subpopulations due to gene flow occurring between them. AMOVA showed that the genetic variation was high within subpopulations as compared to between subpopulations. Mantel test results showed that the variation between subpopulations was not due to the geographical distance between them. Furthermore, Tajima's D and Fu's Fs tests showed that An. balabacensis in Sabah is experiencing population expansion and growth. High gene flow between the subpopulations was indicated by the low genetic distance and high gene diversity in the cox1, cox2 and the combined sequence. However the population at Lipasu Lama appeared to be isolated possibly due to its higher altitude at 873 m above sea level.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  17. Littlewood DT, Rohde K, Clough KA
    Int J Parasitol, 1997 Nov;27(11):1289-97.
    PMID: 9421713
    Partial nuclear 28S ribosomal RNA and mitochondrial cytochrome c oxidase subunit I (COI) gene sequences (953 and 385 nucleotides, respectively) of one fish monogenean (outgroup) and six polystome monogeneans (four Polystomoides spp. from the oral cavities and urinary bladders of freshwater turtles in Australia and Malaya, two Neopolystoma spp. from the urinary bladder and conjunctival sac of a freshwater turtle in Australia) were used to examine the question of whether congeneric species infecting different sites in the same host species have speciated in that host by adapting to different sites, or whether species infecting a particular site in one host have given rise to species infecting the same site in different hosts. Results show unequivocally that congeneric species infecting the same site, even of host species belonging to different suborders and occurring on different continents, are more closely related than congeneric species infecting different sites of the same host species. This is interpreted as meaning that speciation has not occurred in one host. Morphological evolution of polystomes has been very slow: few differences between species and even genera have evolved over a period of at least 150 Myr, and this is matched by low substitution rates of nucleotides, and the ambiguous position of species of different genera, depending on whether COI or 28S rDNA sequences are used.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  18. Takaoka H, Low VL, Tan TK, Ya'cob Z, Sofian-Azirun M, Dhang Chen C, et al.
    J Med Entomol, 2019 02 25;56(2):432-440.
    PMID: 30597034 DOI: 10.1093/jme/tjy222
    Simulium (Gomphostilbia) yvonneae sp. nov. is described based on adults, pupae, and mature larvae from Vietnam. This new species belongs to the Simulium duolongum subgroup in the S. batoense species-group of the subgenus Gomphostilbia Enderlein. It is distinguished by having a relatively larger number of male upper-eye facets in 16 vertical columns and 16 horizontal rows and a pupal gill with eight filaments arranged as 3+(1+2)+2 from dorsal to ventral, of which two filaments of the ventral pair are 1.8 times as long as the longest filament of the middle and dorsal triplets. Morphological comparisons are made to distinguish this new species from all 22 related species. The genetic distinctiveness of this new species in the S. duolongum subgroup is also presented based on the DNA barcoding COI gene.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  19. Zawani MK, Abu HA, Sazaly AB, Zary SY, Darlina MN
    Genet. Mol. Res., 2014;13(4):8184-96.
    PMID: 25299203 DOI: 10.4238/2014.October.7.13
    The mosquito Aedes albopictus is indigenous to Southeast Asian and is a vector for arbovirus diseases. Studies examining the population genetics structure of A. albopictus have been conducted worldwide; however, there are no documented reports on the population genetic structure of A. albopictus in Malaysia, particularly in Penang. We examined the population genetics of A. albopictus based on a 445-base pair segment of the mitochondrial DNA cytochrome oxidase 1 gene among 77 individuals from 9 localities representing 4 regions (Seberang Perai Utara, Seberang Perai Tengah, Northeast, and Southwest) of Penang. A total of 37 haplotypes were detected, including 28 unique haplotypes. The other 9 haplotypes were shared among various populations. These shared haplotypes reflect the weak population genetic structure of A. albopictus. The phylogenetic tree showed a low bootstrap value with no genetic structure, which was supported by minimum spanning network analysis. Analysis of mismatch distribution showed poor fit of equilibrium distribution. The genetic distance showed low genetic variation, while pairwise FST values showed no significant difference between all regions in Penang except for some localities. High haplotype diversity and low nucleotide diversity was observed for cytochrome oxidase 1 mtDNA. We conclude that there is no population genetic structure of A. albopictus mosquitoes in the Penang area.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  20. Adibah AB, Darlina MN
    Genet. Mol. Res., 2014;13(4):8094-104.
    PMID: 25299194 DOI: 10.4238/2014.October.7.4
    For centuries, morphology-based fish identification has been applied without molecular evaluation. Many studies showed that specimens with a similar morphology are frequently found to be quite genetically distinct. One of the fish species that still remains taxonomically problematic is a commercial snapper species, Lutjanus johnii. Because of morphological ambiguities among local fish taxonomists in Malaysia, we examined the ability of the cytochrome oxidase I (COI) gene to genetically examine the taxonomic status of L. johnii. A 626-base pair COI region was successfully amplified and aligned with conspecific sequences that were retrieved from GenBank. The phylogenetic tree obtained showed two major clusters; the first cluster consists of L. johnii from Straits of Malacca, Thailand, Australia, and China while the second cluster comprises L. johnii from China and India. The latter group showed sequence divergence greater than 3.5%. After observing this, we suspected that there might be a cryptic species between the South China Sea and Indian Ocean. This is the first molecular report concerning the commercial species of snapper, L. johnii, in Malaysia, which had only gained provisional recognition from morphological examination.
    Matched MeSH terms: Electron Transport Complex IV/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links