Displaying publications 1 - 20 of 124 in total

Abstract:
Sort:
  1. Mahmud I, Sultana S, Rahman A, Ramayah T, Cheng Ling T
    Waste Manag Res, 2020 Dec;38(12):1438-1449.
    PMID: 32364437 DOI: 10.1177/0734242X20914753
    Each year Bangladesh produces around 400,000 metric tonnes of e-waste. E-waste accumulation is expected to increase by 20% annually. In order to facilitate e-waste recycling, it is crucial to identify the factors. In this study, building on the stimulus-organism-response framework, we develop a research model to explore the effect of information publicity, ascription of responsibility and convenience of recycling on the recycling attitude, subjective norm, personal norm and perceived behaviour control which lead to recycling intention. Data were gathered from 127 small and medium electronics store managers. The structural equation modelling technique was used to test the paths. The result suggests a significant influence of the element of stimulus (S) on the element of organism (O). The relationship between the element of organism (O) and the element of response (R) is partial. This paper contributes to the body of work dedicated to helping us better understand the recycling behaviour from the stimulus-organism-response perspective. From the viewpoint of practice, this research sheds light on some of the challenges that the implementer might face when making strategy and policy for e-waste management in Bangladesh.
    Matched MeSH terms: Electronics
  2. NURUL FITRIYAH ROSLAN, WAN MARIAM WAN MUDA
    MyJurnal
    Battery Monitoring System (BMoS) is an electronic system that monitors rechargeable battery cells or packs with various parameters, such as battery voltage, current and State-of-Charge (SoC). This system can be used to avoid overcharging or over-discharging of batteries to increase its shelf life. However, BMoS on the market is very expensive and not suitable for low cost embedded systems. As the Arduino Uno is widely used for low cost microcontroller boards, easy programming environment, and open-source platforms for building electronic projects, therefore, this study focuses on Arduino Uno BMoS based system. This system consists of current and voltage sensors, an Arduino Uno microcontroller and a liquid crystal display (LCD). In order to develop this system, there are three objectives to be achieved. First, the relationship between input and output of the sensors must be derived mathematically. The mathematical expression obtained can be verified by connecting and disconnecting the circuit with load and monitoring the value of output sensors. Then, a complete prototype of the BMoS was developed by connecting the LCD, current and voltage sensors to the Arduino Uno microcontroller. The complete prototype was tested using an 11.1 V of Lithium-ion battery and a DC motor as a load. From the results, the current sensor shows zero value when no load is connected as no current flow. The LCD also displays 11.1V of battery voltage when fully charged. Using the developed system, the user can monitor the current, the voltage and the SoC of the battery to ensure the battery is not overcharged and overused. The development of the BMoS can help to monitor the operation and performance of the batteries in any electronic systems. At the end of this study, the complete BMoS prototype gives benefits to the user and makes work easier.
    Matched MeSH terms: Electronics
  3. Rasool N, Ikram HM, Rashid A, Afzal N, Hashmi MA, Khan MN, et al.
    Turk J Chem, 2020;44(5):1410-1422.
    PMID: 33488240 DOI: 10.3906/kim-1911-51
    In the current research work, a facile synthesis of a series of novel thiophene-based derivatives of 5-bromothiophene-2-carboxylic acid ( 1 ) have been synthesized. All analogs ( 5a - 5e , 10a - 10f ) were obtained from the coupling reaction of 5-bromothiophene-2-carboxylic acid ( 1 ) and different arylboronic acids with moderate-to-good yields under controlled and optimal conditions. The structures of the newly synthesized compounds were characterized through spectral analysis and their spasmolytic activity, and most of the compounds exhibited potentially good spasmolytic effect. Among the synthesized analogs, compound phenethyl 5-(3,4-dichlorophenyl)thiophene-2-carboxylate ( 10d ) particular showed an excellent spasmolytic effect with an EC 50 value of 1.26. All of the compounds were also studied for their structural and electronic properties by density functional theory (DFT) calculations. Through detailed insight into frontier molecular orbitals of the compounds and their different reactivity descriptors, it was found that the compounds 10c and 5c are the most reactive, while 10a is the most stable in the series. Furthermore, compounds 10c and 5c showed a very good NLO response with the highest β values.
    Matched MeSH terms: Electronics
  4. Shchelkanov MY, Tabakaeva Moskvina TV, Kim EM, Derunov DA, Galkina IV
    Trop Biomed, 2020 Sep 01;37(3):778-782.
    PMID: 33612790 DOI: 10.47665/tb.37.3.778
    Canine demodicosis is a common skin disorder with multiple risk factors, including age and breed predisposition. There is relatively limited information about the risk factors for canine demodicosis in large canine populations. This retrospective case-control study was conducted by searching the electronic records of dogs with skin lesions for the presence of Demodex mites in skin scrapings. Diagnosis of demodicosis was based on the presence of skin lesions and mites in skin scrapings. Multivariate analysis was conducted using logistic regression analysis to estimate the relative risk and odds ratio of variables hypothesized to influence the risk of canine demodicosis, such as age, sex, breed, season, and parasitic infection. The results of multivariate logistic regression analysis showed a positive correlation between the dogs' age and demodicosis. Dogs older than three years, as well as puppies, had a high risk of demodicosis (P0.05). Breeds with the greatest association (odds ratio) with demodicosis included the American Staffordshire Terrier (OR=0.9) and Moscow Watchdog (OR=0.2). The presence of intestinal parasites, such as Diphyllobothrium latum, was significantly associated with demodicosis.
    Matched MeSH terms: Electronics
  5. Ali MS, Kamarudin SK, Masdar MS, Mohamed A
    ScientificWorldJournal, 2014;2014:103709.
    PMID: 25478581 DOI: 10.1155/2014/103709
    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.
    Matched MeSH terms: Electronics*
  6. Vitee N, Ramiah H, Chong WK, Tan GH, Kanesan J, Reza AW
    ScientificWorldJournal, 2014;2014:683971.
    PMID: 25133252 DOI: 10.1155/2014/683971
    A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are -13.6 dBm and -4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.
    Matched MeSH terms: Electronics/instrumentation*; Electronics/methods
  7. Ab Wahab N, Mohd Salleh MK, Ismail Khan Z, Abd Rashid NE
    ScientificWorldJournal, 2014;2014:671369.
    PMID: 25121132 DOI: 10.1155/2014/671369
    Reconfigurable ring filter based on single-side-access ring topology is presented. Using capacitive tuning elements, the electrical length of the ring can be manipulated to shift the nominal center frequency to a desired position. A synthesis is developed to determine the values of the capacitive elements. To show the advantage of the synthesis, it is applied to the reconfigurable filter design using RF lumped capacitors. The concept is further explored by introducing varactor-diodes to continuously tune the center frequency of the ring filter. For demonstration, two prototypes of reconfigurable ring filters are realized using microstrip technology, simulated, and measured to validate the proposed concept. The reconfigured filter using lumped elements is successfully reconfigured from 2 GHz to 984.4 MHz and miniaturized by 71% compared to the filter directly designed at the same reconfigured frequency, while, for the filter using varactor-diodes, the frequency is chosen from 1.10 GHz to 1.38 GHz spreading over 280 MHz frequency range. Both designs are found to be compact with acceptable insertion loss and high selectivity.
    Matched MeSH terms: Electronics/instrumentation*
  8. Zaman MR, Islam MT, Misran N, Yatim B
    ScientificWorldJournal, 2014;2014:831435.
    PMID: 24977230 DOI: 10.1155/2014/831435
    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than -20 dB for C band and -34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior.
    Matched MeSH terms: Electronics/instrumentation*
  9. Shokrani MR, Khoddam M, Hamidon MN, Kamsani NA, Rokhani FZ, Shafie SB
    ScientificWorldJournal, 2014;2014:963709.
    PMID: 24782680 DOI: 10.1155/2014/963709
    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.
    Matched MeSH terms: Electronics/methods
  10. Chee HL, Rashidah S, Shamsuddin K, Sharifah Zainiyah SY
    Med J Malaysia, 2003 Aug;58(3):320-9.
    PMID: 14750370
    A total of 486 Malaysian women electronics workers participated in a study of reproductive health knowledge and cancer screening. The practice of Breast Self Examination (BSE) was found to be related to educational attainment; while ever having had a Pap smear was found to be related to being older than 30 years old, being ever married, living with family or relatives, and not staying in hostels. Knowledge on reproductive health was found to be higher for older women, married women, living with family or relatives, not staying in hostels, ever having done BSE and ever having had a Pap smear.
    Matched MeSH terms: Electronics
  11. Chiari L, Duque HV, Jones DB, Thorn PA, Pettifer Z, da Silva GB, et al.
    J Chem Phys, 2014 Jul 14;141(2):024301.
    PMID: 25028013 DOI: 10.1063/1.4885856
    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20-50 eV, while the scattered electron was detected in the 10°-90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, "rotationally averaged" elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].
    Matched MeSH terms: Electronics*
  12. Kow CS, Hasan SS
    J Asthma, 2021 Feb 08.
    PMID: 33461348 DOI: 10.1080/02770903.2021.1878531
    Objective: With emerging of observational evidence, we aimed to perform a meta-analysis to summarize the overall effect of the chronic use of inhaled corticosteroids on the clinical outcomes in patients with coronavirus disease 2019 (COVID-19). Methods:Systematic literature search in electronic databases was performed to identify observational studies that investigated the preadmission use of inhaled corticosteroids on the risk of a fatal or severe course of illness in patients with COVID-19 and reported adjusted measures of association. Adjusted odds ratios or relative risks and the corresponding 95% confidence intervals from each study were pooled to produce pooled odds ratio and 95% confidence interval. Results: The meta-analysis revealed no significant difference in the risk for the development of a fatal course of COVID-19 with preadmission use of inhaled corticosteroids in patients with COVID-19 relative to non-use of inhaled corticosteroids (pooled odds ratio=1.28; 95% confidence interval 0.73-2.26). Similarly, the meta-analysis observed no significant difference in the risk for the development of a severe course of COVID-19 with preadmission use of inhaled corticosteroids in patients with COVID-19 relative to non-use of inhaled corticosteroids (pooled odds ratio=1.45; 95% confidence interval 0.96-2.20).Conclusions: Our findings assured the safety of continued use of inhaled corticosteroids during the COVID-19 pandemic.
    Matched MeSH terms: Electronics
  13. Yahya N, Manan HA
    Support Care Cancer, 2021 Jun;29(6):3035-3047.
    PMID: 33040284 DOI: 10.1007/s00520-020-05808-z
    BACKGROUND: Proton therapy (PT), frequently utilised to treat paediatric brain tumour (PBT) patients, eliminates exit dose and minimises dose to healthy tissues that theoretically can mitigate treatment-related effects including cognitive deficits. As clinical outcome data are emerging, we aimed to systematically review current evidence of cognitive changes following PT of PBT.

    MATERIALS AND METHODS: We searched PubMed and Scopus electronic databases to identify eligible reports on cognitive changes following PT of PBT according to PRISMA guidelines. Reports were extracted for information on demographics and cognitive outcomes. Then, they were systematically reviewed based on three themes: (1) comparison with photon therapy, (2) comparison with baseline cognitive measures, to population normative mean or radiotherapy-naïve PBT patients and (3) effects of dose distribution to cognition.

    RESULTS: Thirteen reports (median size (range): 70 (12-144)) were included. Four reports compared the cognitive outcome between PBT patients treated with proton to photon therapy and nine compared with baseline/normative mean/radiotherapy naïve from which two reported the effects of dose distribution. Reports found significantly poorer cognitive outcome among patients treated with photon therapy compared with proton therapy especially in general cognition and working memory. Craniospinal irradiation (CSI) was consistently associated with poorer cognitive outcome while focal therapy was associated with minor cognitive change/difference. In limited reports available, higher doses to the hippocampus and temporal lobes were implicated to larger cognitive change.

    CONCLUSION: Available evidence suggests that PT causes less cognitive deficits compared with photon therapy. Children who underwent focal therapy with proton were consistently shown to have low risk of cognitive deficit suggesting the need for future studies to separate them from CSI. Evidence on the effect of dose distribution to cognition in PT is yet to mature.

    Matched MeSH terms: Electronics
  14. Sreeramareddy CT, Shroff SM, Gunjal S
    Subst Abuse Treat Prev Policy, 2023 Aug 29;18(1):51.
    PMID: 37644524 DOI: 10.1186/s13011-023-00558-7
    BACKGROUND: Nicotine dependence, factors associated with dependence, and self-reported side effects among people who use e-cigarettes are scarce in developing countries.

    METHODS: A sample of 302 persons who currently use e-cigarettes was recruited from discussion forums on Reddit, Facebook, and the forum 'lowyat'. The online Google form survey collected data on demographics, e-cigarette use, and the reasons, for cigarette smoking, Fagerstorm Test for Nicotine Dependence adapted for e-cigarettes (eFTND), and side effects experienced.

    RESULTS: The mean age was 25.5 years (6.5), 60.6% were males and 86% had higher education. About 47% were using e-cigarettes only, 27.8% were currently using dual products (both electronic and conventional cigarettes), and 25.2% had also smoked cigarettes in the past. 'Less harmful than cigarettes' (56.3%), 'because I enjoy it' (46.7%), and 'it has a variety of flavors (40.4%) were the common reasons for e-cigarette use. The mean eFTND score was 3.9 (SD = 2.2), with a median of four side effects (IQR 3-6), sore or dry mouth/throat (41.4%), cough 33.4%, headache (20.5%), dizziness (16.2%) were commonly reported side effects. eFTND score and side effects were higher among persons using dual products. By multiple linear regression analysis, males (β = 0.56 95% CI 0.45, 1.05, p = 0.033), dual-use (β = 0.95 95% CI 0.34, 1.56, p 

    Matched MeSH terms: Electronics
  15. Khatir NM, Abdul-Malek Z, Banihashemian SM
    Sensors (Basel), 2014;14(10):19229-41.
    PMID: 25320908 DOI: 10.3390/s141019229
    The fabrication of Metal-DNA-Metal (MDM) structure-based high sensitivity sensors from DNA micro-and nanoarray strands is a key issue in their development. The tunable semiconducting response of DNA in the presence of external electromagnetic and thermal fields is a gift for molecular electronics. The impact of temperatures (25-55 °C) and magnetic fields (0-1200 mT) on the current-voltage (I-V) features of Au-DNA-Au (GDG) structures with an optimum gap of 10 μm is reported. The I-V characteristics acquired in the presence and absence of magnetic fields demonstrated the semiconducting diode nature of DNA in GDG structures with high temperature sensitivity. The saturation current in the absence of magnetic field was found to increase sharply with the increase of temperature up to 45 °C and decrease rapidly thereafter. This increase was attributed to the temperature-assisted conversion of double bonds into single bond in DNA structures. Furthermore, the potential barrier height and Richardson constant for all the structures increased steadily with the increase of external magnetic field irrespective of temperature variations. Our observation on magnetic field and temperature sensitivity of I-V response in GDG sandwiches may contribute towards the development of DNA-based magnetic sensors.
    Matched MeSH terms: Electronics
  16. Hannan MA, Hussein HA, Mutashar S, Samad SA, Hussain A
    Sensors (Basel), 2014;14(12):23843-70.
    PMID: 25615728 DOI: 10.3390/s141223843
    With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of implanted device research in the future. This review will hopefully lead to increasing efforts towards the development of low powered, highly efficient, high data rate and reliable automatic frequency controllers for implanted devices.
    Matched MeSH terms: Electronics, Medical/methods*
  17. Hannan MA, Abbas SM, Samad SA, Hussain A
    Sensors (Basel), 2012;12(1):297-319.
    PMID: 22368470 DOI: 10.3390/s120100297
    Implanted medical devices are very important electronic devices because of their usefulness in monitoring and diagnosis, safety and comfort for patients. Since 1950s, remarkable efforts have been undertaken for the development of bio-medical implanted and wireless telemetry bio-devices. Issues such as design of suitable modulation methods, use of power and monitoring devices, transfer energy from external to internal parts with high efficiency and high data rates and low power consumption all play an important role in the development of implantable devices. This paper provides a comprehensive survey on various modulation and demodulation techniques such as amplitude shift keying (ASK), frequency shift keying (FSK) and phase shift keying (PSK) of the existing wireless implanted devices. The details of specifications, including carrier frequency, CMOS size, data rate, power consumption and supply, chip area and application of the various modulation schemes of the implanted devices are investigated and summarized in the tables along with the corresponding key references. Current challenges and problems of the typical modulation applications of these technologies are illustrated with a brief suggestions and discussion for the progress of implanted device research in the future. It is observed that the prime requisites for the good quality of the implanted devices and their reliability are the energy transformation, data rate, CMOS size, power consumption and operation frequency. This review will hopefully lead to increasing efforts towards the development of low powered, high efficient, high data rate and reliable implanted devices.
    Matched MeSH terms: Electronics, Medical/instrumentation*
  18. Zakaria A, Shakaff AY, Masnan MJ, Ahmad MN, Adom AH, Jaafar MN, et al.
    Sensors (Basel), 2011;11(8):7799-822.
    PMID: 22164046 DOI: 10.3390/s110807799
    The major compounds in honey are carbohydrates such as monosaccharides and disaccharides. The same compounds are found in cane-sugar concentrates. Unfortunately when sugar concentrate is added to honey, laboratory assessments are found to be ineffective in detecting this adulteration. Unlike tracing heavy metals in honey, sugar adulterated honey is much trickier and harder to detect, and traditionally it has been very challenging to come up with a suitable method to prove the presence of adulterants in honey products. This paper proposes a combination of array sensing and multi-modality sensor fusion that can effectively discriminate the samples not only based on the compounds present in the sample but also mimic the way humans perceive flavours and aromas. Conversely, analytical instruments are based on chemical separations which may alter the properties of the volatiles or flavours of a particular honey. The present work is focused on classifying 18 samples of different honeys, sugar syrups and adulterated samples using data fusion of electronic nose (e-nose) and electronic tongue (e-tongue) measurements. Each group of samples was evaluated separately by the e-nose and e-tongue. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to separately discriminate monofloral honey from sugar syrup, and polyfloral honey from sugar and adulterated samples using the e-nose and e-tongue. The e-nose was observed to give better separation compared to e-tongue assessment, particularly when LDA was applied. However, when all samples were combined in one classification analysis, neither PCA nor LDA were able to discriminate between honeys of different floral origins, sugar syrup and adulterated samples. By applying a sensor fusion technique, the classification for the 18 different samples was improved. Significant improvement was observed using PCA, while LDA not only improved the discrimination but also gave better classification. An improvement in performance was also observed using a Probabilistic Neural Network classifier when the e-nose and e-tongue data were fused.
    Matched MeSH terms: Electronics
  19. Zakaria A, Shakaff AY, Adom AH, Ahmad MN, Masnan MJ, Aziz AH, et al.
    Sensors (Basel), 2010;10(10):8782-96.
    PMID: 22163381 DOI: 10.3390/s101008782
    An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together.
    Matched MeSH terms: Electronics/methods*
  20. Al-Ta'ii HM, Periasamy V, Amin YM
    Sensors (Basel), 2015;15(5):11836-53.
    PMID: 26007733 DOI: 10.3390/s150511836
    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.
    Matched MeSH terms: Electronics/instrumentation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links