Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Al-Talib H, Zuraina N, Kamarudin B, Yean CY
    Adv Clin Exp Med, 2015 Jan-Feb;24(1):121-7.
    PMID: 25923096 DOI: 10.17219/acem/38162
    The genus Enterococcus is of increasing significance as a cause of nosocomial infections, and this trend is exacerbated by the development of antibiotic resistance.
    Matched MeSH terms: Enterococcus faecalis/genetics*; Enterococcus faecalis/isolation & purification; Enterococcus faecalis/pathogenicity*
  2. Ibrahim, N.Z., Abdullah, M.
    Ann Dent, 2008;15(1):20-26.
    MyJurnal
    This study aim to evaluate antimicrobial efficacy of sodium hypochlorite (NaOCl) and ozonated water against Enterococci faecalis biofilm. The bacterial biofilm was exposed to 2.62%, 1.31% NaOCl and 0.1 ppm ozonated water over a range of time periods. The presence of viable cells was determined by enumeration of colony forming units (CFU). All experiments were repeated four times (n=4). The effectiveness of the agents was compared using nonparametric Kruskal- Wallis test. The result revealed that 2.62% of NaOCl can completely kill E. faecalis biofilm in 15 minutes whereas 1.31 % NaOCl required a longer time to produce such effect. 0.1 ppm ozonated, however, did not exhibit any antimicrobial effect within the period of time tested. From this study, it can be concluded that 0.1 ppm ozonated water was not comparable with 2.62% and 1.31% NaOCl in antimicrobial efficacy against E. faecalis biofilm.
    Matched MeSH terms: Enterococcus faecalis
  3. Getachew Y, Hassan L, Zakaria Z, Abdul Aziz S
    Appl Environ Microbiol, 2013 Aug;79(15):4528-33.
    PMID: 23666337 DOI: 10.1128/AEM.00650-13
    Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals.
    Matched MeSH terms: Enterococcus faecalis/drug effects; Enterococcus faecalis/genetics*; Enterococcus faecalis/isolation & purification
  4. Mogana R, Adhikari A, Tzar MN, Ramliza R, Wiart C
    BMC Complement Med Ther, 2020 Feb 14;20(1):55.
    PMID: 32059725 DOI: 10.1186/s12906-020-2837-5
    BACKGROUND: Canarium patentinervium leaves are used by the local indigenous people of Malaysia for wound healing. The current study is undertaken to screen the comprehensive antibacterial activity of the leaves and barks extracts, fractions and isolated compounds from this plant. Bioassay guided fractionation was also undertaken to deeply evaluate the antibacterial activity of the water fraction of the leaves extract. This is to provide preliminary scientific evidence to the ethnopharmacology usage of this plant by investigating antibacterial properties of the plant and its isolated constituents.

    METHODS: Bio-assay guided fractionation and subsequent isolation of compounds using open column chromatography. The antibacterial activity against gram positive and gram negative ATCC strain and resistant clinical strains were evaluated using microtiter broth dilution method to determine minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill assay. The chemical structure of the isolated compounds from the water fraction of the ethanol extract of leaves was elucidated using Nuclear Magnetic Resonance (NMR).

    RESULTS: The ethanol extract of the leaves and barks showed antimicrobial activity against all four ATCC and eight clinical isolates. The ethanol extract of the leaves and the corresponding water fraction had good activity against MRSA S. aureus. (MIC: 250 μg/ml) and had bactericidal effect on eight of the clinical strains (MSSA,MRSA, oxacillin-resistant CONS, oxacillin-sensitive CONS, Enterococcus faecalis, Klebsiela species, Kleb pneumoniae ESBL and Candida parapsilosis). Further phytochemical investigation of the water fraction of the crude ethanol extract of leaves afforded compound 7 (hyperin) and compound 8 (cynaroside) that had bactericidal activity against tested bacterial species (MIC 50 μg/ml and 100 μg/ml). The two compounds were isolated from this genus for the first time.

    CONCLUSIONS: These results may provide a rational support for the traditional use of Canarium patentinervium Miq. in infections and wound healing, since the antimicrobial compounds isolated were also present in the leaves extract.

    Matched MeSH terms: Enterococcus faecalis
  5. Yean CY, Yin LS, Lalitha P, Ravichandran M
    BMC Microbiol, 2007 Dec 11;7:112.
    PMID: 18070365
    BACKGROUND: Enterococci have emerged as a significant cause of nosocomial infections in many parts of the world over the last decade. The most common enterococci strains present in clinical isolates are E. faecalis and E. faecium which have acquired resistant to either gentamicin or vancomycin. The conventional culture test takes 2-5 days to yield complete information of the organism and its antibiotic sensitivity pattern. Hence our present study was focused on developing a nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistant enterococci (V-BiA-RE). This assay simultaneously detects 8 genes namely 16S rRNA of Enterococcus genus, ddl of E. faecalis and E. faecium, aacA-aphD that encodes high level gentamicin resistance (HLGR), multilevel vancomycin resistant genotypes such as vanA, vanB, vanC and vanD and one internal control gene.

    RESULTS: Unique and specific primer pairs were designed to amplify the 8 genes. The specificity of the primers was confirmed by DNA sequencing of the nanoplex PCR products and BLAST analysis. The sensitivity and specificity of V-BiA-RE nanoplex PCR assay was evaluated against the conventional culture method. The analytical sensitivity of the assay was found to be 1 ng at the DNA level while the analytical specificity was evaluated with 43 reference enterococci and non-enterococcal strains and was found to be 100%. The diagnostic accuracy was determined using 159 clinical specimens, which showed that 97% of the clinical isolates belonged to E. faecalis, of which 26% showed the HLGR genotype, but none were vancomycin resistant. The presence of an internal control in the V-BiA-RE nanoplex PCR assay helped us to rule out false negative cases.

    CONCLUSION: The nanoplex PCR assay is robust and can give results within 4 hours about the 8 genes that are essential for the identification of the most common Enterococcus spp. and their antibiotic sensitivity pattern. The PCR assay developed in this study can be used as an effective surveillance tool to study the prevalence of enterococci and their antibiotic resistance pattern in hospitals and farm animals.

    Matched MeSH terms: Enterococcus faecalis/classification; Enterococcus faecalis/drug effects; Enterococcus faecalis/genetics*; Enterococcus faecalis/isolation & purification
  6. Parolia A, Kumar H, Ramamurthy S, Davamani F, Pau A
    BMC Oral Health, 2020 11 25;20(1):339.
    PMID: 33238961 DOI: 10.1186/s12903-020-01330-0
    BACKGROUND: The successful outcome of endodontic treatment depends on controlling the intra-radicular microbial biofilm by effective instrumentation and disinfection using various irrigants and intracanal medicaments. Instrumentation alone cannot effectively debride the root canals specially due to the complex morphology of the root canal system. A number of antibiotics and surfactants are being widely used in the treatment of biofilms however, the current trend is towards identification of natural products in disinfection. The aim of the study was to determine the antibacterial effect of chitosan-propolis nanoparticle (CPN) as an intracanal medicament against Enterococcus faecalis biofilm in root canal.

    METHODS: 240 extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into eight groups (n = 30) according to the intracanal medicament placed: group I: saline, group II: chitosan, group III: propolis100 µg/ml (P100), group IV: propolis 250 µg/ml (P250), group V: chitosan-propolis nanoparticle 100 µg/ml (CPN100), group VI: chitosan-propolis nanoparticle 250 µg/ml (CPN250), group VII: calcium hydroxide(CH) and group VIII: 2% chlorhexidine (CHX) gel. Dentine shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of day one, three and seven. The non-parametric Kruskal Wallis and Mann-Whitney tests were used to compare the differences in reduction of CFUs between all groups and probability values of p 

    Matched MeSH terms: Enterococcus faecalis
  7. Kok ESK, Lim XJ, Chew SX, Ong SF, See LY, Lim SH, et al.
    BMC Oral Health, 2021 03 12;21(1):116.
    PMID: 33711992 DOI: 10.1186/s12903-021-01470-x
    BACKGROUND: Compare antimicrobial efficacy of a quarternary ammonium silane (QAS)/k21 as an intracanal medicament against E. faecalis and C. albicans biofilms formed on root dentin.

    METHODOLOGY: Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21.

    RESULTS: There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention.

    CONCLUSION: 2%k21 can be considered as alternative intracanal medicament.

    Matched MeSH terms: Enterococcus faecalis
  8. Weng PL, Ramli R, Shamsudin MN, Cheah YK, Hamat RA
    Biomed Res Int, 2013;2013:938937.
    PMID: 23819125 DOI: 10.1155/2013/938937
    Little is known on the genetic relatedness and potential dissemination of particular enterococcal clones in Malaysia. We studied the antibiotic susceptibility profiles of Enterococcus faecium and Enterococcus faecalis and subjected them to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). E. faecium and E. faecalis displayed 27 and 30 pulsotypes, respectively, and 10 representative E. faecium and E. faecalis isolates (five each) yielded few different sequence types (STs): ST17 (2 isolates), ST78, ST203, and ST601 for E. faecium, and ST6, ST16, ST28, ST179, and ST399 for E. faecalis. Resistance to tazobactam-piperacillin and ampicillin amongst E. faecium isolates was highly observed as compared to E. faecalis isolates. All of the isolates were sensitive to vancomycin and teicoplanin. The presence of epidemic and nosocomial strains of selected E. faecium STs: 17, 78, and 203 and E. faecalis ST6 as well as high rates of resistance to multiple antibiotics amongst E. faecium isolates is of a particular concern.
    Matched MeSH terms: Enterococcus faecalis/classification*; Enterococcus faecalis/genetics*; Enterococcus faecalis/isolation & purification
  9. Albaayit SFA, Maharjan R, Abdullah R, Noor MHM
    Biomed Res Int, 2021;2021:3123476.
    PMID: 33748267 DOI: 10.1155/2021/3123476
    BACKGROUND: Clausena excavata Burum. f. has long been applied in ethnomedicine for the treatment of various disorders like rhinitis, headache, cough, wound healing, fever, and detoxification. This study is aimed at investigating the antibacterial activity against Enterococcus faecalis ATCC 49532 using AlamarBlue assay and atomic force microscopy (AFM) as well as the cytotoxicity, anticancer, and phytotoxicity of C. excavata.

    METHOD: Bacterial cell viability was performed by using microplate AlamarBlue assay. Atomic force microscopy was used to determine morphological changes in the surface of bacterial cells. Cytotoxicity and phytotoxicity were determined by brine shrimp lethality and Lemna minor bioassay. Caco-2 (colorectal adenocarcinoma) cell line was used for the evaluation of the anticancer effects.

    RESULT: Among the fractions tested, ethyl acetate (EA) fraction was found to be active with minimum inhibitory concentration (MIC) of 750 μg/mL against E. faecalis, but other fractions were found to be insensitive to bacterial growth. Microscopically, the EA fraction-treated bacteria showed highly damaged cells with their cytoplasmic content scattered all over. The LC50 value of the EA fraction against brine shrimp was more than 1000 μg/mL showing the nontoxic nature of this fraction. Chloroform (CH), EA, and methanol (MOH) fractions of C. excavata were highly herbicidal at the concentration of 1000 μg/mL. EA inhibited Caco-2 cell line with an IC50 of 20 μg/mL.

    CONCLUSIONS: This study is the first to reveal anti-E. faecalis property of EA fraction of C. excavata leaves, natural herbicidal, and anticancer agents thus highlight the potential compound present in its leaf which needs to be isolated and tested against multidrug-resistant E. faecalis.

    Matched MeSH terms: Enterococcus faecalis/growth & development*
  10. Varadan P, Ganesh A, Konindala R, Nagendrababu V, Ashok R, Deivanayagam K
    Cureus, 2017 Oct 26;9(10):e1805.
    PMID: 29308333 DOI: 10.7759/cureus.1805
    Introduction Root canal irrigants play an important role in reducing intracanal microorganisms, which in turn helps in achieving a successful outcome for the root canal treatment. Objective To compare the antibacterial efficacy of alexidine and chlorhexidine against Enterococcus faecalis. Methods A total of 50 extracted single-rooted teeth were randomly divided into five groups after being infected with Enterococcus faecalis. The groups were based on irrigants used: Group I - 0.4% alexidine; Group II - 1% alexidine; Group III - 1.5% percent alexidine; Group IV - 2% alexidine; Group V - 2% chlorhexidine. Following irrigation, colony-forming units were determined from the dentinal shavings collected at 400 µm depth. Results Use of 2% alexidine reduced the bacteria effectively when compared to 0.4%, 1%, and 1.5% alexidine. A statistically significant difference was not observed between 2% alexidine and 2% chlorhexidine. Discussion Alexidine, due to its higher virulence factors for bacteria and better bacterial penetrability at 400 µm depth of dentin showed better eradication of Enterococcus faecalis in comparison to chlorhexidine. Conclusion The use of 2% alexidine against Enterococcus faecalis at 400 µm depth of dentin has efficacy comparable to chlorhexidine. Hence, alexidine can be used as an alternative irrigant for chlorhexidine during endodontic procedures.
    Matched MeSH terms: Enterococcus faecalis
  11. Ghafourian S, Raftari M, Sadeghifard N, Sekawi Z
    Curr Issues Mol Biol, 2014;16:9-14.
    PMID: 23652423
    The toxin-antitoxin (TA) systems are systems in which an unstable antitoxin inhibits a stable toxin. This review aims to introduce the TA system and its biological application in bacteria. For this purpose, first we introduce a new classification for the TA systems based on how the antitoxin can neutralize the toxin, we then describe the functions of TA systems and finally review the application of these systems in biotechnology.
    Matched MeSH terms: Enterococcus faecalis/genetics; Enterococcus faecalis/metabolism
  12. Daood U, Parolia A, Matinlinna J, Yiu C, Ahmed HMA, Fawzy A
    Dent Mater, 2020 12;36(12):e386-e402.
    PMID: 33010944 DOI: 10.1016/j.dental.2020.09.008
    OBJECTIVES: Evaluate a new modified quaternary ammonium silane irrigant solution for its antimicrobial, cytotoxic and mechanical properties of dentine substrate.

    METHODS: Root canal preparation was performed using stainless steel K-files™ and F4 size protaper with irrigation protocols of 6% NaOCl + 2% CHX; 3.5% QIS; 2% QIS and sterile saline. Biofilms were prepared using E. faecalis adjusted and allowed to grow for 3 days, treated with irrigants, and allowed to grow for 7 days. AFM was performed and surface free energy calculated. MC3T3 cells were infected with endo irrigant treated E. faecalis biofilms. Raman spectroscopy of biofilms were performed after bacterial re-growth on root dentine and exposed to different irrigation protocols and collagen fibers analysed collagen fibers using TEM. Antimicrobial potency against E. faecalis biofilms and cytoxicity against 3T3 NIH cells were also. Resin penetration and MitoTracker green were also evaluated for sealer penetration and mitochondrial viability. Data were analysed using One-way ANOVA, principal component analysis and post-hoc Fisher's least-significant difference.

    RESULTS: Elastic moduli were maintained amongst control (5.5 ± 0.9) and 3.5% QIS (4.4 ± 1.1) specimens with surface free energy higher in QIS specimens. MC3T3 cells showed reduced viability in 6%NaOCl+2%CHX specimens compared to QIS specimens. DNA/purine were expressed in increased intensities in control and 6% NaOCl + 2% CHX specimens with bands around 480-490 cm-1 reduced in QIS specimens. 3.5% QIS specimens showed intact collagen fibrillar network and predominantly dead bacterial cells in confocal microscopy. 3.5% QIS irrigant formed a thin crust-type surface layer with cytoplasmic extensions of 3T3NIH spread over root dentine. Experiments confirmed MitoTracker accumulation in 3.5% treated cells.

    SIGNIFICANCE: Novel QIS root canal irrigant achieved optimum antimicrobial protection inside the root canals facilitating a toxic effect against the Enterococcus faecalis biofilm. Root dentine substrates exhibited optimum mechanical properties and there was viability of fibroblastic mitochondria.

    Matched MeSH terms: Enterococcus faecalis
  13. Daood U, Parolia A, Elkezza A, Yiu CK, Abbott P, Matinlinna JP, et al.
    Dent Mater, 2019 09;35(9):1264-1278.
    PMID: 31201019 DOI: 10.1016/j.dental.2019.05.020
    OBJECTIVE: To analyze effect of NaOCl+2% quaternary ammonium silane (QAS)-containing novel irrigant against bacteria impregnated inside the root canal system, and to evaluate its antimicrobial and mechanical potential of dentine substrate.

    METHODS: Root canal was prepared using stainless steel K-files™ and ProTaper™ and subjected to manual and ultrasonic irrigation using 6% NaOCl+2% CHX, 6% NaOCl+2% QAS and saline as control. For confocal-microscopy, Raman spectroscopy and SEM analysis before and after treatment, Enterococcus faecalis cultured for 7 days. Raman spectroscopy analysis was done across cut section of gutta percha/sealer-dentine to detect resin infiltration. Indentation of mechanical properties was evaluated using a Berkovich indenter. The contact angle of irrigants and surface free energy were evaluated. Mineralization nodules were detected through Alazarin red after 14 days.

    RESULTS: Control biofilms showed dense green colonies. Majority of E. faecalis bacteria were present in biofilm fluoresced red in NaOCl+2% QAS group. There was reduction of 484cm-1 Raman band and its intensity reached lowest with NaOCl+2% QAS. There was an increase in 1350-1420cm-1 intensity in the NaOCl+2% CHX groups. Gradual decrease in 1639cm-1 and 1609cm-1 Raman signal ratios were seen in the resin-depth region of 17μm>, 14.1μm> and 13.2μm for NaOCl+2% QAS, NaOCl+2% CHX and control groups respectively. All obturated groups showed an intact sealer/dentine interface with a few notable differences. 0.771 and 83.5% creep indentation distance for NaOCl+2% QAS ultrasonic groups were observed. Highest proportion of polar component was significantly found in the NaOCl+2% QAS groups which was significantly higher as compared to other groups. Mineralized nodules were increased in NaOCl+2% QAS.

    SIGNIFICANCE: Favorable antimicrobial and endodontic profile of the NaOCl+2% QAS solution might suggest clinical use for it for more predictable reduction of intracanal bacteria.

    Matched MeSH terms: Enterococcus faecalis
  14. Soheili S, Ghafourian S, Sekawi Z, Neela VK, Sadeghifard N, Taherikalani M, et al.
    Drug Des Devel Ther, 2015;9:2553-61.
    PMID: 26005332 DOI: 10.2147/DDDT.S77263
    The toxin-antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.
    Matched MeSH terms: Enterococcus faecalis/genetics*; Enterococcus faecalis/isolation & purification; Enterococcus faecalis/pathogenicity
  15. Bay HH, Lim CK, Kee TC, Ware I, Chan GF, Shahir S, et al.
    Environ Sci Pollut Res Int, 2014 Mar;21(5):3891-906.
    PMID: 24293297 DOI: 10.1007/s11356-013-2331-4
    This study focuses on the biodegradation of recalcitrant, coloured compounds resulting from auto-oxidation of Acid Orange 7 (AO7) in a sequential facultative anaerobic-aerobic treatment system. A novel mixed bacterial culture, BAC-ZS, consisting of Brevibacillus panacihumi strain ZB1, Lysinibacillus fusiformis strain ZB2, and Enterococcus faecalis strain ZL bacteria were isolated from environmental samples. The acclimatisation of the mixed culture was carried out in an AO7 decolourised solution. The acclimatised mixed culture showed 98 % decolourisation within 2 h of facultative anaerobic treatment using yeast extract and glucose as co-substrate. Subsequent aerobic post treatment caused auto-oxidation reaction forming dark coloured compounds that reduced the percentage decolourisation to 73 %. Interestingly, further agitations of the mixed culture in the solution over a period of 48 h significantly decolourise the coloured compounds and increased the decolourisation percentage to 90 %. Analyses of the degradation compounds using UV-visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC) showed complete degradation of recalcitrant AO7 by the novel BAC-ZS. Phytotoxicity tests using Cucumis sativus confirmed the dye solution after post aerobic treatment were less toxic compared to the parent dye. The quantitative real-time PCR revealed that E. faecalis strain ZL was the dominant strain in the acclimatised mix culture.
    Matched MeSH terms: Enterococcus faecalis/genetics; Enterococcus faecalis/metabolism*
  16. Lim CK, Bay HH, Aris A, Abdul Majid Z, Ibrahim Z
    Environ Sci Pollut Res Int, 2013 Jul;20(7):5056-66.
    PMID: 23334551 DOI: 10.1007/s11356-013-1476-5
    Reactive dyes account for one of the major sources of dye wastes in textile effluent. In this study, decolorization of the monoazo dye, Acid Orange 7 (AO7) by the Enterococcus faecalis strain ZL that isolated from a palm oil mill effluent treatment plant has been investigated. Decolorization efficiency of azo dye is greatly affected by the types of nutrients and the size of inoculum used. In this work, one-factor-at-a-time (method and response surface methodology (RSM) was applied to optimize these operational factors and also to study the combined interaction between them. Analysis of AO7 decolorization was done using Fourier transform infrared (FTIR) spectroscopy, desorption study, UV-Vis spectral analysis, field emission scanning electron microscopy (FESEM), and high performance liquid chromatography (HPLC). The optimum condition via RSM for the color removal of AO7 was found to be as follows: yeast extract, 0.1% w/v, glycerol concentration of 0.1% v/v, and inoculum density of 2.5% v/v at initial dye concentration of 100 mg/L at 37 °C. Decolorization efficiency of 98% was achieved in only 5 h. The kinetic of AO7 decolorization was found to be first order with respect to dye concentration with a k value of 0.87/h. FTIR, desorption study, UV-Vis spectral analysis, FESEM, and HPLC findings indicated that the decolorization of AO7 was mainly due to the biosorption as well as biodegradation of the bacterial cells. In addition, HPLC analyses also showed the formation of sulfanilic acid as a possible degradation product of AO7 under facultative anaerobic condition. This study explored the ability of E. faecalis strain ZL in decolorizing AO7 by biosorption as well as biodegradation process.
    Matched MeSH terms: Enterococcus faecalis/metabolism*
  17. Naicker D, Zilm P, Nagendrababu V, Rossi-Fedele G
    Eur Endod J, 2020 12;5(3):242-247.
    PMID: 33353919 DOI: 10.14744/eej.2020.70883
    OBJECTIVE: To assess the effect of osmotic stress on various bacteria in a planktonic milieu and the effect of exposure to sodium hypochlorite (NaOCl) on the microbial cells previously subjected to osmotic stress.

    METHODS: Enterococcus faecalis, Streptococcus sanguinis, Fusobacterium nucleatum, Porphyromonas gingivalis and Prevotella intermedia were suspended as follows: Iso-osmotic group 0.9% NaCl; Hypo-osmotic group "ultrapure water"; Hyper-osmotic group 9% NaCl solution for 120 hours before exposure to 0.0001% NaOCl for 10 minutes. Quantitative analyses of viable cells were performed at 0 and 120 hours and after exposure to NaOCl to obtain colony forming units (CFU/mL). A linear mixed-effects model was used to find the association between mean CFU/mL (logarithmic transformation) and the interaction of solution Group and Time (P<0.001).

    RESULTS: F. nucleatum, P. gingivalis and P. intermedia did not survive after 24 hours in any of the solutions and were excluded from further testing. For S. sanguinis there were significant differences at each time interval, when holding solution group constant. After 120 hours, the Hyper-osmotic group presented with the highest CFU/mL and was significantly different to the Iso-osmotic group (P<0.001). For E. Faecalis, there was a significant difference for each pairwise comparison of time (P<0.001) in mean CFU/mL between 0 hours and 120 hours for the Iso-osmotic and Hyper-osmotic groups. At 120 hours, no significant differences were found between the three groups. Significant differences were also found between 0 hours and Post-NaOCl administration, and between 120 hours and Post-NaOCl administration for all three groups (P<0.001). Exposure to NaOCl after hypo-osmotic stress was associated with significantly less CFU/mL for S. sanguinis compared to hyperosmosis and iso-osmosis (P<0.001) and for E. Faecalis only compared to hyperosmosis (P<0.001).

    CONCLUSION: S. sanguinis and E. faecalis were able to withstand osmotic stress for 120 hours. Hypo-osmotic stress before contact with NaOCl was associated with lower viable bacterial numbers, when compared to the other media for the above species. Hyper-osmotic stress was associated with higher viable bacterial numbers after NaOCl exposure for E. faecalis.

    Matched MeSH terms: Enterococcus faecalis
  18. Wan Mat Khalir WKA, Shameli K, Jazayeri SD, Othman NA, Che Jusoh NW, Hassan NM
    Front Chem, 2020;8:620.
    PMID: 32974269 DOI: 10.3389/fchem.2020.00620
    Silver nanoparticles (Ag-NPs) have been established as antibacterial nanoparticles and have been innovatively developed to overcome the occurrence of antibiotic resistance in the environment. In this study, an environmentally friendly and easy method of the biosynthesis of Ag-NPs plants, mediated by aqueous extract stem extract of Entada spiralis (E. spiralis), was successfully developed. The E. spiralis/Ag-NPs samples were characterized using spectroscopy and the microscopic technique of UV-visible (UV-vis), X-ray Diffraction (XRD), Field Emission Transmission Electron Microscope (FETEM), zeta potential, and Fourier Transform Infrared (FTIR) analyses. Surface Plasmon Resonance (SPR) absorption at 400-450 nm in the UV-vis spectra established the formation of E. spiralis/Ag-NPs. The crystalline structure of E. spiralis/Ag-NPs was displayed in the XRD analysis. The small size, around 18.49 ± 4.23 nm, and spherical shape of Ag-NPs with good distribution was observed in the FETEM image. The best physicochemical parameters on Ag-NPs biosynthesis using E. spiralis extract occurred at a moderate temperature (~52.0°C), 0.100 M of silver nitrate, 2.50 g of E. spiralis dosage and 600 min of stirring reaction time. The antibacterial activity was tested against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Proteus vulgaris using an antibacterial disk diffusion assay. Based on the results, it is evident that E. spiralis/Ag-NPs are susceptible to all the bacteria and has promising potential to be applied in both the industry and medical fields.
    Matched MeSH terms: Enterococcus faecalis
  19. Daniel DS, Gan HM, Lee SM, Dykes GA, Rahman S
    Genome Announc, 2017 Jun 15;5(24).
    PMID: 28619812 DOI: 10.1128/genomeA.00553-17
    Enterococcus faecalis is known to cause a variety of nosocomial infections, including urinary tract infections. Antibiotic resistance and virulence properties in this species are of public concern. The draft genome sequences of six E. faecalis strains isolated from clinical and environmental sources in Malaysia are presented here.
    Matched MeSH terms: Enterococcus faecalis
  20. Hassan Z, Mustafa S, Rahim RA, Isa NM
    In Vitro Cell Dev Biol Anim, 2016 Mar;52(3):337-348.
    PMID: 26659392 DOI: 10.1007/s11626-015-9978-8
    Development of tumour that is resistant to chemotherapeutics and synthetic drugs, coupled with their life-threatening side effects and the adverse effects of surgery and hormone therapies, led to increased research on probiotics' anticancer potentials. The current study investigated the potential of live, heat-killed cells (HKC) and the cytoplasmic fractions (CF) of Enterococcus faecalis and Staphylococcus hominis as anti-breast cancer agents. MCF-7 cell line was treated with 25, 50, 100 and 200 μg/mL each of live, HKC and CF of the bacteria; and cytotoxicity was evaluated for 24, 48 and 72 h using MTT assay. The morphological features of the treated cells were examined by fluorescence microscopy. The stage of cell cycle arrest and apoptosis were quantified by flow cytometry. The bacterial effect on non-malignant breast epithelial cell line, MCF-10A, was assessed using MTT assay for 24, 48 and 72 h. All the three forms of the bacteria caused a significant decrease in MCF-7 (up to 33.29%) cell proliferation in concentration- and time-dependent manner. Morphological features of apoptosis like cell death, cell shrinkage and membrane blebbing were observed. Flow cytometry analyses suggested that about 34.60% of treated MCF-7 was undergoing apoptosis. A strong anti-proliferative activity was efficiently induced through sub-G1 accumulation (up to 83.17%) in treated MCF-7 and decreased number in the G0/G1 phase (74.39%). MCF-10A cells treated with both bacteria showed no significant difference with the untreated (>90% viability). These bacteria can be used as good alternative nutraceutical with promising therapeutic indexes for breast cancer because of their non-cytotoxic effects to normal cells.
    Matched MeSH terms: Enterococcus faecalis/isolation & purification; Enterococcus faecalis/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links