Displaying publications 1 - 20 of 523 in total

  1. Kurniawan TA, Othman MHD, Liang X, Goh HH, Gikas P, Kusworo TD, et al.
    J Environ Manage, 2023 Jul 15;338:117765.
    PMID: 36965421 DOI: 10.1016/j.jenvman.2023.117765
    Digitalization and sustainability have been considered as critical elements in tackling a growing problem of solid waste in the framework of circular economy (CE). Although digitalization can enhance time-efficiency and/or cost-efficiency, their end-results do not always lead to sustainability. So far, the literatures still lack of a holistic view in understanding the development trends and key roles of digitalization in waste recycling industry to benefit stakeholders and to protect the environment. To bridge this knowledge gap, this work systematically investigates how leveraging digitalization in waste recycling industry could address these research questions: (1) What are the key problems of solid waste recycling? (2) How the trends of digitalization in waste management could benefit a CE? (3) How digitalization could strengthen waste recycling industry in a post-pandemic era? While digitalization boosts material flows in a CE, it is evident that utilizing digital solutions to strengthen waste recycling business could reinforce a resource-efficient, low-carbon, and a CE. In the Industry 4.0 era, digitalization can add 15% (about USD 15.7 trillion) to global economy by 2030. As digitalization grows, making the waste sector shift to a CE could save between 30% and 35% of municipalities' waste management budget. With digitalization, a cost reduction of 3.6% and a revenue increase of 4.1% are projected annually. This would contribute to USD 493 billion in an increasing revenue yearly in the next decade. As digitalization enables tasks to be completed shortly with less manpower, this could save USD 421 billion annually for the next decade. With respect to environmental impacts, digitalization in the waste sector could reduce global CO2 emissions by 15% by 2030 through technological solutions. Overall, this work suggests that digitalization in the waste sector contributes net-zero emission to a digital economy, while transitioning to a sustainable world as its social impacts.
    Matched MeSH terms: Environment
  2. Yang A, Huan X, Teo BSX, Li W
    Environ Sci Pollut Res Int, 2023 Apr;30(16):45951-45965.
    PMID: 36710307 DOI: 10.1007/s11356-023-25484-w
    Green finance can promote economic transformation and technological innovation and play a key role in solving the ecological environment and energy crisis. This paper constructs a comprehensive ecological livable environment evaluation system based on the provincial panel data in China from 2011 to 2019. At the same time, the panel mediation effect and spatial econometric model are used to test the impact of green finance on the ecological and livable environment. The main research conclusions include the following: (1) green finance has significantly improved China's ecological and livable environment; (2) green finance improves the ecological and livable environment by improving the level of technological innovation; (3) the impact of green finance on the ecological livable environment has regional heterogeneity, and green finance in the central provinces has a better effect on the improvement of the ecological livable environment; and (4) the ecological livable environment among Chinese provinces has a significant positive spatial correlation. Among them, green finance has significantly improved the local ecological livable environment but reduced the ecological livable environment of surrounding provinces. Based on the above conclusions, this paper suggests that the government should pay more attention to green finance and technological innovation and coordinate the development of the ecological livable environment among provinces. The research results provide empirical evidence for better developing green finance and improving the ecological livable environment and also provide certain theoretical guidance for China's coordinated regional development and high-quality economic development.
    Matched MeSH terms: Environment*
  3. Crona BI, Wassénius E, Jonell M, Koehn JZ, Short R, Tigchelaar M, et al.
    Nature, 2023 Apr;616(7955):104-112.
    PMID: 36813964 DOI: 10.1038/s41586-023-05737-x
    Blue foods, sourced in aquatic environments, are important for the economies, livelihoods, nutritional security and cultures of people in many nations. They are often nutrient rich1, generate lower emissions and impacts on land and water than many terrestrial meats2, and contribute to the health3, wellbeing and livelihoods of many rural communities4. The Blue Food Assessment recently evaluated nutritional, environmental, economic and justice dimensions of blue foods globally. Here we integrate these findings and translate them into four policy objectives to help realize the contributions that blue foods can make to national food systems around the world: ensuring supplies of critical nutrients, providing healthy alternatives to terrestrial meat, reducing dietary environmental footprints and safeguarding blue food contributions to nutrition, just economies and livelihoods under a changing climate. To account for how context-specific environmental, socio-economic and cultural aspects affect this contribution, we assess the relevance of each policy objective for individual countries, and examine associated co-benefits and trade-offs at national and international scales. We find that in many African and South American nations, facilitating consumption of culturally relevant blue food, especially among nutritionally vulnerable population segments, could address vitamin B12 and omega-3 deficiencies. Meanwhile, in many global North nations, cardiovascular disease rates and large greenhouse gas footprints from ruminant meat intake could be lowered through moderate consumption of seafood with low environmental impact. The analytical framework we provide also identifies countries with high future risk, for whom climate adaptation of blue food systems will be particularly important. Overall the framework helps decision makers to assess the blue food policy objectives most relevant to their geographies, and to compare and contrast the benefits and trade-offs associated with pursuing these objectives.
    Matched MeSH terms: Environment; Environmental Policy
  4. Gammie AJ, Lopez JB, Scott S
    Clin Chem Lab Med, 2023 Mar 28;61(4):634-637.
    PMID: 36343330 DOI: 10.1515/cclm-2022-1052
    Clinical laboratories are significant contributors to the environmental burden of the planet. They have been slow to address the issues with a few exceptions, but it is highly encouraging to see the current impetus and ambition in this direction. This paper describes some of these initiatives and provides the rationale as to why clinical laboratories should become sustainable. It also describes the economic and intangible benefits that labs will accrue in achieving sustainability.
    Matched MeSH terms: Environment
  5. Li J, Md Dali M, Nordin NA
    PMID: 36834348 DOI: 10.3390/ijerph20043652
    Although many benefits of urban green space networks have been consistently demonstrated, most of the discussion on space connectivity has concentrated on ecological aspects, such as patch-corridor-matrix connectivity. There are limited systematic studies that have investigated the connectedness between urban parks and people. This study aimed to explore the connectedness among urban parks from the users' perspective by using a systematic literature review. By following the PRISMA protocol and analyzing 54 studies from Scopus and Web of Science between 2017 and 2022, we proposed the concepts of physical connectedness and perceived connectedness. The "physical connectedness" contained the dimensions of road attributes and park attributes, as well as six categories including physical accessibility, street connectivity, the street environment, spatial scale, facilities and amenities, and natural elements. The "perceived connectedness" mainly referred to people's perception of the physical environment. The four categories were perceived accessibility, perceived safety, aesthetics, and Kaplan's perceptual model. Finally, in terms of individual attributes, the impact of sociodemographic factors (age, gender, income, education, and occupation) and the motivation for activity on park connectedness were also taken into account. On the basis of our findings, this study suggested that park connectedness should not only focus on physical connectedness but also perceived connectedness.
    Matched MeSH terms: Environment; Environment Design
  6. Goh BH, Yuen CW, Onn CC
    Sci Rep, 2023 Feb 15;13(1):2699.
    PMID: 36792761 DOI: 10.1038/s41598-023-29748-w
    Mixed-use developments (MXDs) are a single development project that integrates and interacts with different land uses. Traffic is estimated to be reduced with such development. However, there is no standard procedure is available to estimate the MXD trip generation rates in Malaysia. The Malaysian Trip Generation Manual (MTGM) is the guidelines currently been used to forecast future trips for single land use. If the trip generation rates for multiple land uses are summed as MXD trips, the total trips will be overestimated without considering the internal trip capture. This study aimed to establish an improved method for estimating the MXD trip generation rates. Four MXD observation sites were selected in Klang Valley. Traffic survey counts were conducted considering person-trip, including passengers in vehicles and pedestrians. The results revealed that the MXD trip generation rates with MTGM were higher than actual traffic counts during peak hours. The MXD adjustment factor was established as 0.63, which can be applied by multiplying the MTGM trip generation rates to reduce the generated MXD trips in PCU per hour. This research has formulated a new data collection method by integrating person counts, alongside with new guidelines for pedestrian counts. The findings provide an option to adjust the MXD trips and prevent from overestimating future trips, which may result in overdevelopment and spending on mitigation measures in urban planning and road infrastructure.
    Matched MeSH terms: Environment*
  7. Huang L, Said R, Goh HC, Cao Y
    PMID: 36833663 DOI: 10.3390/ijerph20042968
    China's internal migrants suffer from marginalised housing conditions, poor neighbourhood environments and residential segregation, which may have significant implications on health and well-being. Echoing recent calls for interdisciplinary research on migrant health and well-being, this study examines the associations and mechanisms of the impact of the residential environment on the health and well-being of Chinese migrants. We found that most of the relevant studies supported the "healthy migration effect", but the phenomenon was only applicable to migrants' self-reported physical health rather than mental health. The subjective well-being of migrants is lower than that of urban migrants. There is a debate between the effectiveness of residential environmental improvements and the ineffectiveness of residential environmental improvements in terms of the impact of the neighbourhood environment on migrants' health and well-being. Housing conditions and the neighbourhood's physical and social environment can enhance migrants' health and well-being by strengthening place attachment and social cohesion, building localised social capital and gaining neighbourhood social support. Residential segregation on the neighbourhood scale affects the health outcomes of migrant populations through the mechanism of relative deprivation. Our studies build a vivid and comprehensive picture of research to understand migration, urban life and health and well-being.
    Matched MeSH terms: Environment; Social Environment
  8. Subramaniam C, Johari J, Mashi MS, Mohamad R
    J Safety Res, 2023 Feb;84:117-128.
    PMID: 36868640 DOI: 10.1016/j.jsr.2022.10.013
    INTRODUCTION: This paper investigates the relationships among safety leadership, safety motivation, safety knowledge, and safety behavior in the setting of a tertiary hospital in Klang Valley, Malaysia.

    METHOD: Underpinned by the self-efficacy theory, we argue that high-quality safety leadership enhances nurses' safety knowledge and motivation and subsequently, improves their safety behavior (safety compliance and safety participation). A total of 332 questionnaire responses were gathered and analyzed using SmartPLS Version 3.2.9, revealing the direct effect of safety leadership on both safety knowledge and safety motivation.

    RESULTS: Safety knowledge and safety motivation were found to directly and significantly predict nurses' safety behavior. Notably, safety knowledge and safety motivation were established as important mediators in the relationship between safety leadership and nurses' safety compliance and participation.

    PRACTICAL APPLICATIONS: The findings of this study offer key guidance for safety researchers and hospital practitioners in identifying mechanisms to enhance safety behavior among nurses.

    Matched MeSH terms: Environment
  9. Saqib N, Sharif A, Razzaq A, Usman M
    Environ Sci Pollut Res Int, 2023 Feb;30(6):16372-16385.
    PMID: 36181595 DOI: 10.1007/s11356-022-23345-6
    For the purpose of this study, the role of technological innovation is examined. Few studies have examined empirically and theoretically the relationship between technological innovation and ecological footprint in conjunction with other factors, such as the human capital index and renewable energy sources, such as biofuels and nuclear power. This study examines the impact of technological innovation on G-7 countries' ecological footprints from 1990 to 2020. A cross-sectionally augmented autoregressive distributed lag (CS-ARDL) model is used in the study. The results of the study show that technological innovation minimizes the ecological footprint. A lower ecological footprint is also associated with increased usage of human capital and renewable energy. Depletion of the natural environment is a short-term and long-term consequence of increased GDP growth. Our results confirm that ecologically sustainable technology enhances the quality of the environment. Consistent panel causality results were achieved. In the context of the G-7 countries, our study's results could support the idea that there are new policy ideas that could help achieve the Sustainable Development Goals (SDG 3, 4, 7, 8, 9, and 13).
    Matched MeSH terms: Environment
  10. Balasbaneh AT, Sher W, Yeoh D, Yasin MN
    Environ Sci Pollut Res Int, 2023 Feb;30(10):26964-26981.
    PMID: 36374387 DOI: 10.1007/s11356-022-24079-1
    The embodied carbon of building materials and the energy consumed during construction have a significant impact on the environmental credentials of buildings. The structural systems of a building present opportunities to reduce environmental emissions and energy. In this regard, mass timber materials have considerable potential as sustainable materials over other alternatives such as steel and concrete. The aim of this investigation was to compare the environment impact, energy consumption, and life cycle cost (LCC) of different wood-based materials in identical single-story residential buildings. The materials compared are laminated veneer lumber (LVL) and glued laminated timber (GLT). GLT has less global warming potential (GWP), ozone layer depletion (OLD), and land use (LU), respectively, by 29%, 37%, and 35% than LVL. Conversely, LVL generally has lower terrestrial acidification potential (TAP), human toxicity potential (HTP), and fossil depletion potential (FDP), respectively, by 30%, 17%, and 27%. The comparative outcomes revealed that using LVL reduces embodied energy by 41%. To identify which of these materials is the best alternative, various environmental categories, embodied energy, and cost criteria require further analysis. Therefore, the multi-criteria decision-making (MCDM) method has been applied to enable robust decision-making. The outcome showed that LVL manufacturing using softwood presents the most sustainable choice. These research findings contribute to the body of knowledge about the use of mass timber in construction.
    Matched MeSH terms: Environment
  11. Liew AKY, Teo CH, Soga T
    Mol Neurobiol, 2022 Dec;59(12):7095-7118.
    PMID: 36083518 DOI: 10.1007/s12035-022-03016-w
    Environmental enrichment (EE) is an environmental paradigm encompassing sensory, cognitive, and physical stimulation at a heightened level. Previous studies have reported the beneficial effects of EE in the brain, particularly in the hippocampus. EE improves cognitive function as well as ameliorates depressive and anxiety-like behaviors, making it a potentially effective neuroprotective strategy against neurodegenerative diseases such as Alzheimer's disease (AD). Here, we summarize the current evidence for EE as a neuroprotective strategy as well as the potential molecular pathways that can explain the effects of EE from a biochemical perspective using animal models. The effectiveness of EE in enhancing brain activity against neurodegeneration is explored with a view to differences present in early and late life EE exposure, with its potential application in human being discussed. We discuss EE as one of the non pharmacological approaches in preventing or delaying the onset of AD for future research.
    Matched MeSH terms: Environment
  12. Kazem HA, Chaichan MT, Al-Waeli AHA
    Environ Sci Pollut Res Int, 2022 Dec;29(59):88788-88802.
    PMID: 35836053 DOI: 10.1007/s11356-022-21958-5
    Solar cells are considered one of the most important and widespread solar applications in the world. However, the performance of the PV modules is significantly affected by the dust in the air. This paper, therefore, presents a comparison of an outdoor experimental study of dust effect on monocrystalline, and polycrystalline photovoltaic (PV) modules. For analysis, four 100 W PVs were installed horizontally in Sohar, Oman. For each pair of PV modules, one was left dusty due to environmental impact, and the second was cleaned daily. PV performance and environmental parameter measurements were conducted every 30 min for 35 days. The effects of dust on current, voltage, power, and energy were discussed in terms of time and normalized values. Also, cleaning methods were tested to determine the optimum one. It is found that power degradation of monocrystalline (20%) is higher compared with polycrystalline (12%) due to dust accumulation. For monocrystalline, the current, voltage, and power losses ranged between 10.0-24.0%, 2.0-3.5%, and 14.0-31.0%, respectively. However, for polycrystalline, the degradation rates were 16.88-27.92%, 0.455-0.455%, and 17.14-28.1% for current, voltage, and power losses after exposure to outdoor conditions for the same period, respectively. The dust accumulation on the PV surface found after 5 weeks is 0.493 mg/cm2, which can be considered the lowest accumulation rate compared to other Gulf countries, but which, however, leads to less energy degradation as well. It is found that water is sufficient to clean PV in the study area. However, sodium detergent as a cleaner introduced better results compared to water, especially when there is high pollution in the location.
    Matched MeSH terms: Environment
  13. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M
    Sci Rep, 2022 09 19;12(1):15658.
    PMID: 36123374 DOI: 10.1038/s41598-022-19003-z
    This investigation was carried out to explore G × E interaction for yield and its associated attributes in 30 Bambara groundnut genotypes across four environments in tropical Malaysia. Such evaluations are essential when the breeding program's objective is to choose genotypes with broad adaption and yield potential. Studies of trait relationships, variance components, mean performance, and genetic linkage are needed by breeders when designing, evaluating, and developing selection criteria for improving desired characteristics in breeding programs. The evaluation of breeding lines of Bambara groundnut for high yield across a wide range of environments is important for long-term production and food security. Each site's experiment employed a randomized complete block design with three replicates. Data on vegetative and yield component attributes were recorded. The analysis of variance revealed that there were highly significant (p ≤ 0.01) differences among the 30 genotypes for all variables evaluated. A highly significant and positive correlation was identified between yield per hectare and dry seed weight (0.940), hundred seed weight (0.844), fresh pod weight (0.832), and total pod weight (0.750); the estimated correlation between dry weight of pods and seed yield was 1.0. The environment was more important than genotype and G × E in determining yield and yield components.A total of 49% variation is covered by PC1 (33.9%) and PC2 (15.1%) and the genotypes formed five distinct clusters based on Ward hierarchical clustering (WHC) method. The genotypes S5G1, S5G3, S5G5, S5G6, S5G8, S5G7, S5G2, S5G4, S5G10, S5G13, S5G11, and S5G14 of clusters I, II, and III were closest to the ideal genotype with superior yield across the environments. The PCA variable loadings revealed that an index based on dry pod weight, hundred seed weight, number of total pods and fresh pod weight could be used as a selection criteria to improve seed yield of Bambara groundnut.
    Matched MeSH terms: Gene-Environment Interaction
  14. Lin Z, Ooi JK, Woon KS
    Sci Total Environ, 2022 Apr 10;816:151541.
    PMID: 34774629 DOI: 10.1016/j.scitotenv.2021.151541
    Food waste is a universal problem in many countries. In line with Sustainable Development Goals 7 and 12, it is crucial to identify a cost-effective food waste valorization management framework with the least human health and environmental impacts. However, studies on the synergistic effect of life cycle assessment and mathematical optimization interconnected with human health, environment, and economic are relatively few and far between; hence they cannot provide holistic recommendations to policymakers in developing environmental and economic feasibility of food waste management frameworks. Taking Malaysia as a case study, this study proposes a simple and deterministic model that integrates life cycle assessment and multi-objective mathematical optimization to unpack the health-environment-economic wellbeing nexus in food waste management sector. The model evaluates the life cycle human health, environmental, and economic impacts of five food waste disposal and valorization technologies: open landfill, sanitary landfill, aerated windrow composting, high-temperature drying sterilization, and anaerobic digestion, and identifies the optimal food waste valorization configuration solution in Malaysia. Based on the results modeled by SimaPro 9.0 and General Algebraic Modeling System with augmented ε-constraint, valorization of food waste into electricity via anaerobic digestion is the most favorable option, with 146% and 161% reduction of human health and ecosystems, respectively, as compared with open landfill. If cost is combined as an objective function with human health and ecosystems, high-temperature drying sterilization is the most attractive scenario due to the high livestock feed revenue. Among the 10 Pareto-optimal solutions, 9% sanitary landfill, 3% aerated windrow composting, 30% high-temperature drying sterilization, 30% anaerobic digestion to electricity, and 28% anaerobic digestion to cooking gas, is recommended as future food waste management configuration. The sensitivity results demonstrate that prices of electricity, cooking gas, and livestock feed affect the optimal configuration food waste management system.
    Matched MeSH terms: Environment
  15. Aghamohammadi N, Ramakreshnan L, Fong CS, Noor RM, Hanif NR, Sulaiman NM
    Sci Total Environ, 2022 Feb 01;806(Pt 1):150331.
    PMID: 34571225 DOI: 10.1016/j.scitotenv.2021.150331
    The stakeholders' perceptions on the impacts of Urban Heat Island (UHI) are critical for reducing exposure and influencing their response to interventions that are aimed at encouraging a behaviour change. A proper understanding of the UHI impacts on the society, economy and environment is deemed an essential motivating factor for the stakeholders to work towards UHI mitigations in the local context. This study adopted an inductive qualitative approach using Stakeholder Dialogue Sessions (SDSs) to assess the perceived impacts of UHI among various stakeholders, comprising policy makers, academicians, developers and Non-Governmental Organizations (NGO), in a tropical metropolitan city. The results revealed five themes such as deterioration of public health, acceleration of urban migration patterns and spending time in cooler areas, reduction of workers' productivity, increased energy consumption by the households and deterioration of environmental quality and natural resources that were categorized into social, economic and environmental impacts. Although most of the stakeholders were quite unfamiliar with the term UHI, they still display a good understanding of the potential impacts of UHI due to their posteriori knowledge and ability to rationalize the physical condition of the environment in which they live. The findings provide useful insights and valuable information to the local authorities to tailor necessary actions and educational campaigns to increase UHI awareness among the stakeholders. Being among the earlier studies to use a qualitative approach to attain the aforementioned objective, the findings are crucial to determine the level of understanding of the stakeholders on the impact of UHI. Through this study, the authors have highlighted the gaps and needs for knowledge improvements aimed at behaviour change among the stakeholders.
    Matched MeSH terms: Environment*
  16. Airiken M, Zhang F, Chan NW, Kung HT
    Environ Sci Pollut Res Int, 2022 Feb;29(8):12282-12299.
    PMID: 34564811 DOI: 10.1007/s11356-021-16579-3
    In the current context of rapid development and urbanization, land use and land cover (LULC) types have undergone unprecedented changes, globally and nationally, leading to significant effects on the surrounding ecological environment quality (EEQ). The urban agglomeration in North Slope of Tianshan (UANST) is in the core area of the Silk Road Economic Belt of China. This area has experienced rapid development and urbanization with equally rapid LULC changes which affect the EEQ. Hence, this study quantified and assessed the spatial-temporal changes of LULC on the UANST from 2001 to 2018 based on remote sensing analysis. Combining five remote sensing ecological factors (WET, NDVI, IBI, TVDI, LST) that met the pressure-state-response(PSR) framework, the spatial-temporal distribution characteristics of EEQ were evaluated by synthesizing a new Remote Sensing Ecological Index (RSEI), with the interaction between land use change and EEQ subsequently analyzed. The results showed that LULC change dominated EEQ change on the UANST: (1) From 2001 to 2018, the temporal and spatial pattern of the landscape on the UANST has undergone tremendous changes. The main types of LULC in the UANST are Barren land and Grassland. (2) During the study period, RSEI values in the study area were all lower than 0.5 and were at the [good] levels, reaching 0.31, 0.213, 0.362, and 0346, respectively. In terms of time and space, the overall EEQ on the UANST experienced three stages of decline-rise-decrease. (3) The estimated changes in RSEI were highly related to the changes of LULC. During the period 2001 to 2018, the RSEI value of cropland showed a trend of gradual increase. However, the rest of the LULC type's RSEI values behave differently at different times. As the UANST is the core area of Xinjiang's urbanization and economic development, understanding and balancing the relationship between LULC and EEQ in the context of urbanization is of practical application in the planning and realization of sustainable ecological, environmental, urban, and social development in the UANST.
    Matched MeSH terms: Environment; Environmental Monitoring*
  17. Chan JCN, Lim LL, Wareham NJ, Shaw JE, Orchard TJ, Zhang P, et al.
    Lancet, 2021 Dec 19;396(10267):2019-2082.
    PMID: 33189186 DOI: 10.1016/S0140-6736(20)32374-6
    Matched MeSH terms: Environment
  18. Montero-Odasso MM, Kamkar N, Pieruccini-Faria F, Osman A, Sarquis-Adamson Y, Close J, et al.
    JAMA Netw Open, 2021 12 01;4(12):e2138911.
    PMID: 34910151 DOI: 10.1001/jamanetworkopen.2021.38911
    Importance: With the global population aging, falls and fall-related injuries are ubiquitous, and several clinical practice guidelines for falls prevention and management for individuals 60 years or older have been developed. A systematic evaluation of the recommendations and agreement level is lacking.

    Objectives: To perform a systematic review of clinical practice guidelines for falls prevention and management for adults 60 years or older in all settings (eg, community, acute care, and nursing homes), evaluate agreement in recommendations, and identify potential gaps.

    Evidence Review: A systematic review following Preferred Reporting Items for Systematic Reviews and Meta-analyses statement methods for clinical practice guidelines on fall prevention and management for older adults was conducted (updated July 1, 2021) using MEDLINE, PubMed, PsycINFO, Embase, CINAHL, the Cochrane Library, PEDro, and Epistemonikos databases. Medical Subject Headings search terms were related to falls, clinical practice guidelines, management and prevention, and older adults, with no restrictions on date, language, or setting for inclusion. Three independent reviewers selected records for full-text examination if they followed evidence- and consensus-based processes and assessed the quality of the guidelines using Appraisal of Guidelines for Research & Evaluation II (AGREE-II) criteria. The strength of the recommendations was evaluated using Grades of Recommendation, Assessment, Development, and Evaluation scores, and agreement across topic areas was assessed using the Fleiss κ statistic.

    Findings: Of 11 414 records identified, 159 were fully reviewed and assessed for eligibility, and 15 were included. All 15 selected guidelines had high-quality AGREE-II total scores (mean [SD], 80.1% [5.6%]), although individual quality domain scores for clinical applicability (mean [SD], 63.4% [11.4%]) and stakeholder (clinicians, patients, or caregivers) involvement (mean [SD], 76.3% [9.0%]) were lower. A total of 198 recommendations covering 16 topic areas in 15 guidelines were identified after screening 4767 abstracts that proceeded to 159 full texts. Most (≥11) guidelines strongly recommended performing risk stratification, assessment tests for gait and balance, fracture and osteoporosis management, multifactorial interventions, medication review, exercise promotion, environment modification, vision and footwear correction, referral to physiotherapy, and cardiovascular interventions. The strengths of the recommendations were inconsistent for vitamin D supplementation, addressing cognitive factors, and falls prevention education. Recommendations on use of hip protectors and digital technology or wearables were often missing. None of the examined guidelines included a patient or caregiver panel in their deliberations.

    Conclusions and Relevance: This systematic review found that current clinical practice guidelines on fall prevention and management for older adults showed a high degree of agreement in several areas in which strong recommendations were made, whereas other topic areas did not achieve this level of consensus or coverage. Future guidelines should address clinical applicability of their recommendations and include perspectives of patients and other stakeholders.

    Matched MeSH terms: Environment Design
  19. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M
    Sci Rep, 2021 Nov 23;11(1):22791.
    PMID: 34815427 DOI: 10.1038/s41598-021-01411-2
    The stability and high yielding of Vigna subterranea L. Verdc. genotype is an important factor for long-term development and food security. The effects of G × E interaction on yield stability in 30 Bambara groundnut genotypes in four different Malaysian environments were investigated in this research. The experiment used a randomized complete block design with three replications in each environment. Over multiple harvests, yield component traits such as the total number of pods per plant, fresh pods weight (g), hundred seeds weight (g), and yield per hectare were evaluated in the main and off-season in 2020 and 2021. Stability tests for multivariate stability parameters were performed based on analyses of variance. For all the traits, the pooled analysis of variance revealed highly significant (p 
    Matched MeSH terms: Gene-Environment Interaction*
  20. Prabhu GS, K G Rao M, Rai KS
    Int J Neurosci, 2021 Nov;131(11):1066-1077.
    PMID: 32498586 DOI: 10.1080/00207454.2020.1773819
    PURPOSE: Childhood obesity increases risk for neural dysfunctions causing learning and memory deficits. The objective of the study is to identify the effects of high fat diet-induced obesity in postnatal period on serum lipids, memory and neural cell survival in hippocampus and compare the role of choline and DHA or environmental enrichment in attenuating the alterations.

    MATERIALS AND METHODS: 21 day postnatal male Sprague Dawley rats were assigned as Normal control [NC] fed normal chow diet, Obesity-induced [OB] fed high fat diet, Obesity-induced fed choline & DHA [OB + CHO + DHA], Obesity-induced environmental enrichment [OB + EE] [n = 8/group]. Memory was assessed using radial arm maze. Subsequently blood was collected for serum lipid analysis and rats were euthanized. 5 µm hippocampal sections were processed for cresyl-violet stain. Surviving neural cells were counted using 100 µm scale.

    RESULTS: Memory errors were significantly higher [p 

    Matched MeSH terms: Environment*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links