Displaying publications 1 - 20 of 520 in total

  1. Saimon R, Choo WY, Bulgiba A
    Asia Pac J Public Health, 2015 Mar;27(2):NP2079-92.
    PMID: 23513006 DOI: 10.1177/1010539513480229
    Understanding the factors influencing physical activity (PA) in the Asia-Pacific region is critical, given the high prevalence of inactivity in this area. The photovoice technique explores the types of PA and factors influencing PA among adolescents in Kuching, Sarawak. A total of 160 photographs were collected from participants (adolescents, n = 22, mean age = 14.27 ± 0.7 years, and parents, n = 8, mean age = 48 ± 6.8 years). Data analysis used constant comparison methods of a grounded theory. The Analysis Grid for Environments Linked to Obesity was used to categorize PA factors. Study findings were centered on the concept of safety, facilities, parental restriction, friends, cultural traits, media, community cohesiveness, and weather. The central theme was "feeling unsafe" when being outdoors. To promote PA behavior, provision of PA facilities needs to be supported by other programs that build on peer support, crime prevention, and traffic safety, together with other educational campaigns.
    Matched MeSH terms: Environment
  2. Nesaretnam K, Sies H
    Antioxid Redox Signal, 2006 10 13;8(11-12):2175-7.
    PMID: 17034360
    The 6(th) COSTAM/SFRR (ASEAN/Malaysia) workshop, "Micronutrients, Oxidative Stress, and the Environment," was held from June 29 to July 2 at Holiday Inn Damai Beach Resort in Kuching, Sarawak. Two hundred twenty participants from 17 countries presented recent advances on natural antioxidants in the area of oxidative stress and molecular aspects of nutrition. Natural products and research are an important program in academic institutions and are experiencing unprecedented interest and growth by the scientific community and public health authorities. Progress is being driven by better understanding of the molecular mechanisms of the relation between oxidative stress and micronutrient action. The gathering of scientists from around the world was fruitful, and we hope that future work will be developed by the formal and informal interactions that took place in this beautiful tropical setting.
    Matched MeSH terms: Environment
  3. Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, et al.
    Polymers (Basel), 2021 Feb 02;13(3).
    PMID: 33540731 DOI: 10.3390/polym13030471
    Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.
    Matched MeSH terms: Environment
  4. Muhamad H, Sahid IB, Surif S, Ai TY, May CY
    Trop Life Sci Res, 2012 May;23(1):15-23.
    PMID: 24575222 MyJurnal
    The palm oil industry has played an important role in the economic development of Malaysia and has enhanced the economic welfare of its people. To determine the environmental impact of the oil palm seedling at the nursery stage, information on inputs and outputs need to be assessed. The oil palm nursery is the first link in the palm oil supply chain. A gate-to-gate study was carried out whereby the system boundary was set to only include the process of the oil palm seedling. The starting point was a germinated seed in a small polyethylene bag (6 in × 9 in) in which it remained until the seedling was approximately 3 to 4 months old. The seedling was then transferred into a larger polyethylene bag (12 in × 15 in), where it remained until it was 10-12 months old, when it was planted in the field (plantation). The functional unit for this life cycle inventory (LCI) is based on the production of one seedling. Generally, within the system boundary, the production of an oil palm seedling has only two major environmental impact points, the polybags used to grow the seedling and the fungicide (dithiocarbamate) used to control pathogenic fungi, as both the polybags and the dithiocarbamate are derived from fossil fuel.
    Matched MeSH terms: Environment
  5. Draman R, Yousuf R, Abdul Aziz S, Ding CH, Zainol S, Leong CF
    Indian J Hematol Blood Transfus, 2020 Jan;36(1):112-116.
    PMID: 32174694 DOI: 10.1007/s12288-019-01171-0
    Thawed fresh frozen plasma (FFP) if not used within 6 h, may have to be discarded due to the risk of contamination and uncertainty about its quality. The main objective of this study was to evaluate the levels of coagulation Factor II (FII), Factor VIII (FVIII), fibrinogen and bacterial growth in thawed refrozen FFP. Thirty FFP samples were collected from healthy donors. FFP were thawed in water bath at 37 °C for 20-25 min. Approximately 10 mL of plasma from each FFP unit was tested for FII, FVIII, fibrinogen and sterility. The thawed FFP units were then kept at 4 °C for 6 h before being refrozen and stored at - 20 °C. Two weeks later, the refrozen FFP were thawed again and representative samples were analysed as before. There was a significant decline in the mean FVIII level, from 155.77% to 85.6% at second thaw. The mean FII level increased significantly from 74.9% to 82%, whereas the mean fibrinogen level fell from 3.34g/L to 3.28 g/L, but the decline was not statistically significant. There was no bacterial contamination in all samples at both time points. Refrozen plasma may be considered as an alternative to the storage of thawed unused FFP provided they are kept in a controlled environment to reduce wastage. These thawed refrozen FFP can be used later in bleeding cases like other FFP as the levels of FVIII are still within the standard haematology range (0.5-2 IU/mL) and above the minimal level of 30% coagulation factors required for adequate haemostasis.
    Matched MeSH terms: Environment, Controlled
  6. Yew M, Ren Y, Koh KS, Sun C, Snape C
    Glob Chall, 2019 Jan;3(1):1800060.
    PMID: 31565355 DOI: 10.1002/gch2.201800060
    Microfluidic systems have advanced beyond natural and life science applications and lab-on-a-chip uses. A growing trend of employing microfluidic technologies for environmental detection has emerged thanks to the precision, time-effectiveness, and cost-effectiveness of advanced microfluidic systems. This paper reviews state-of-the-art microfluidic technologies for environmental applications, such as on-site environmental monitoring and detection. Microdevices are extensively used in collecting environmental samples as a means to facilitate detection and quantification of targeted components with minimal quantities of samples. Likewise, microfluidic-inspired approaches for separation and treatment of contaminated water and air, such as the removal of heavy metals and waterborne pathogens from wastewater and carbon capture are also investigated.
    Matched MeSH terms: Environment; Environmental Monitoring
  7. Lee SH, Md Tahir P, Lum WC, Tan LP, Bawon P, Park BD, et al.
    Polymers (Basel), 2020 Jul 29;12(8).
    PMID: 32751175 DOI: 10.3390/polym12081692
    Citric acid (CA) can be found naturally in fruits and vegetables, particularly citrus fruit. CA is widely used in many fields but its usage as a green modifying agent and binder for wood is barely addressed. Esterification is one of the most common chemical reactions applied in wood modification. CA contains three carboxyl groups, making it possible to attain at least two esterification reactions that are required for crosslinking when reacting with the hydroxyl groups of the cell wall polymers. In addition, the reaction could form ester linkages to bring adhesivity and good bonding characteristics, and therefore CA could be used as wood binder too. This paper presents a review concerning the usage of CA as a wood modifying agent and binder. For wood modification, the reaction mechanism between wood and CA and the pros and cons of using CA are discussed. CA and its combination with various reactants and their respective optimum parameters are also compiled in this paper. As for the major wood bonding component, the bonding mechanism and types of wood composites bonded with CA are presented. The best working conditions for the CA in the fabrication of wood-based panels are discussed. In addition, the environmental impacts and future outlook of CA-treated wood and bonded composite are also considered.
    Matched MeSH terms: Environment
  8. Asadi-Shekari Z, Moeinaddini M, Zaly Shah M
    Traffic Inj Prev, 2015;16:283-8.
    PMID: 24983474 DOI: 10.1080/15389588.2014.936010
    The objectives of this research are to conceptualize the Bicycle Safety Index (BSI) that considers all parts of the street and to propose a universal guideline with microscale details.
    Matched MeSH terms: Environment Design/standards*
  9. Balasbaneh AT, Ramli MZ
    Environ Sci Pollut Res Int, 2020 Dec;27(34):43186-43201.
    PMID: 32734541 DOI: 10.1007/s11356-020-10141-3
    In recent years, off-site volumetric construction has been promoted as a viable strategy for improving the sustainability of the construction industry. Most prefabricated prefinished volumetric construction (PPVC) structures are composed of either steel or concrete; thus, it is imperative to carry out life cycle assessments (LCAs) for both types of structures. PPVC is a method by which free-standing volumetric modules-complete with finishes for walls, floors, and ceilings-are prefabricated and then transferred and erected on-site. Although many studies have examined these structures, few have combined economic and environmental life cycle analyses, particularly for prefinished volumetric construction buildings. The purpose of this study is to utilize LCA and life cycle cost (LCC) methods to compare the environmental impacts and costs of steel and concrete PPVCs "from cradle to grave." The results show that steel necessitates higher electricity usage than concrete in all environmental categories, while concrete has a higher emission rate. Steel outperforms concrete by approximately 37% in non-renewable energy measures, 38% in respiratory inorganics, 43% in land occupation, and 40% in mineral extraction. Concrete, on the other hand, performs 54% better on average in terms of measures adopted for greenhouse gas (GHG) emissions. Steel incurs a higher cost in the construction stage but is ultimately the more economical choice, costing 4% less than concrete PPVC owing to the recovery, recycling, and reuse of materials. In general, steel PPVC exhibits better performance, both in terms of cost and environmental factors (excluding GHG emissions). This study endeavors to improve the implementation and general understanding of PPVC.
    Matched MeSH terms: Environment
  10. Hosseinpour M, Pour MH, Prasetijo J, Yahaya AS, Ghadiri SM
    Traffic Inj Prev, 2013;14(6):630-8.
    PMID: 23859313 DOI: 10.1080/15389588.2012.736649
    The objective of this study was to examine the effects of various roadway characteristics on the incidence of pedestrian-vehicle crashes by developing a set of crash prediction models on 543 km of Malaysia federal roads over a 4-year time span between 2007 and 2010.
    Matched MeSH terms: Environment Design/statistics & numerical data*
  11. Kazem HA, Chaichan MT, Al-Waeli AHA
    Environ Sci Pollut Res Int, 2022 Dec;29(59):88788-88802.
    PMID: 35836053 DOI: 10.1007/s11356-022-21958-5
    Solar cells are considered one of the most important and widespread solar applications in the world. However, the performance of the PV modules is significantly affected by the dust in the air. This paper, therefore, presents a comparison of an outdoor experimental study of dust effect on monocrystalline, and polycrystalline photovoltaic (PV) modules. For analysis, four 100 W PVs were installed horizontally in Sohar, Oman. For each pair of PV modules, one was left dusty due to environmental impact, and the second was cleaned daily. PV performance and environmental parameter measurements were conducted every 30 min for 35 days. The effects of dust on current, voltage, power, and energy were discussed in terms of time and normalized values. Also, cleaning methods were tested to determine the optimum one. It is found that power degradation of monocrystalline (20%) is higher compared with polycrystalline (12%) due to dust accumulation. For monocrystalline, the current, voltage, and power losses ranged between 10.0-24.0%, 2.0-3.5%, and 14.0-31.0%, respectively. However, for polycrystalline, the degradation rates were 16.88-27.92%, 0.455-0.455%, and 17.14-28.1% for current, voltage, and power losses after exposure to outdoor conditions for the same period, respectively. The dust accumulation on the PV surface found after 5 weeks is 0.493 mg/cm2, which can be considered the lowest accumulation rate compared to other Gulf countries, but which, however, leads to less energy degradation as well. It is found that water is sufficient to clean PV in the study area. However, sodium detergent as a cleaner introduced better results compared to water, especially when there is high pollution in the location.
    Matched MeSH terms: Environment
  12. Ramakreshnan L, Aghamohammadi N, Fong CS, Sulaiman NM
    Environ Sci Pollut Res Int, 2021 Jan;28(2):1357-1369.
    PMID: 33094458 DOI: 10.1007/s11356-020-11305-x
    This study quantitatively investigated the scientific progress of walkability research landscape and its future prospects using bibliometric indicators to highlight the research hotspots. The results accentuated multifaceted nature of walkability research landscape with a strong association towards public health disciplines. Keyword co-occurrence analysis emphasized that majority of the walkability studies centred on the interactions between walking and other three main factors such as built environment attributes, transportation and obesity. Based on the identified research hotspots, a brief state-of-the-art review of walkability studies was presented. Future prospects based on the unexplored research gaps within the hotspots were also discussed. High correlation (r = 0.99, p 
    Matched MeSH terms: Environment Design*
  13. Zheng P, Belaton B, Liao IY, Rajion ZA
    PLoS One, 2017;12(11):e0187558.
    PMID: 29121077 DOI: 10.1371/journal.pone.0187558
    Landmarks, also known as feature points, are one of the important geometry primitives that describe the predominant characteristics of a surface. In this study we proposed a self-contained framework to generate landmarks on surfaces extracted from volumetric data. The framework is designed to be a three-fold pipeline structure. The pipeline comprises three phases which are surface construction, crest line extraction and landmark identification. With input as a volumetric data and output as landmarks, the pipeline takes in 3D raw data and produces a 0D geometry feature. In each phase we investigate existing methods, extend and tailor the methods to fit the pipeline design. The pipeline is designed to be functional as it is modularised to have a dedicated function in each phase. We extended the implicit surface polygonizer for surface construction in first phase, developed an alternative way to compute the gradient of maximal curvature for crest line extraction in second phase and finally we combine curvature information and K-means clustering method to identify the landmarks in the third phase. The implementations are firstly carried on a controlled environment, i.e. synthetic data, for proof of concept. Then the method is tested on a small scale data set and subsequently on huge data set. Issues and justifications are addressed accordingly for each phase.
    Matched MeSH terms: Environment, Controlled
  14. Magdalene Andrew-Munot, Abdullah Yassin, Syed Tarmizi Syed Shazali, Marini Sawawi
    Remanufacturing of used-products is becoming an important activity in many production companies. This paper reviews key remanufacturing process, highlights eight unique characteristics of remanufacturing process environment and proposes a generic conceptual remanufacturing process model that considers the presence and interactions of these eight features. The generic conceptual model could be modified to suit remanufacturing process of any given used products to be remanufactured. Future research can modify the generic remanufacturing model to suit used automotive parts remanufacturing with unique characteristics and apply simulation technique to model and analyse the corresponding remanufacturing process.
    Matched MeSH terms: Environment
  15. Geok TK, Hossain F, Chiat ATW
    PLoS One, 2018;13(8):e0201905.
    PMID: 30086170 DOI: 10.1371/journal.pone.0201905
    Radio propagation prediction simulation methods based on deterministic technique such as ray launching is extensively used to accomplish radio channel characterization. However, the superiority of the simulation depends on the number of rays launched and received. This paper presented the indoor three-dimensional (3D) Minimum Ray Launching Maximum Accuracy (MRLMA) technique, which is applicable for an efficient indoor radio wave propagation prediction. Utilizing the novel MRLMA technique in the simulation environment for ray lunching and tracing can drastically reduce the number of rays that need to be traced, and improve the efficiency of ray tracing. Implementation and justification of MRLMA presented in the paper. An indoor office 3D layouts are selected and simulations have been performed using the MRLMA and other reference techniques. Results showed that the indoor 3D MRLMA model is appropriate for wireless communications network systems design and optimization process with respect to efficiency, coverage, number of rays launching, number of rays received by the mobile station, and simulation time.
    Matched MeSH terms: Environment, Controlled
  16. Wang G, Pu X
    Sains Malaysiana, 2014;43:807-812.
    A distinct element approach has been introduced for simulating the plugging performance of granular lost circulation materials (LCM) in a fracture. This approach solves the fully coupled fracture walls, fluid and particles system in an interactive environment. The effects of the particle shape, size distribution and concentration on the fracture-plugging performance of the granular LCM have been investigated using the three-dimensional particle flow code (PFC3D). The simulated results showed that the irregular granular LCM could plug a fracture width larger than the sieving granulation by single-particle bridging type. The particle size distribution (PSD) of LCM dominates the plugging depth and efficiency in a fracture and there exists an optimum concentration for maximum effect of LCM additives.
    Matched MeSH terms: Environment
  17. Adnan N, Nordin SM, Rasli AM
    Environ Sci Pollut Res Int, 2019 Sep;26(26):27198-27224.
    PMID: 31321721 DOI: 10.1007/s11356-019-05650-9
    One of the innovations introduced toward tackling the heightening of environmental impact is green technology. In the agricultural industry, the implementation of green fertilizer technology (GFT) for the modern development of environmentally friendly technology is a necessity. Within the Malaysian agriculture sector, the GFT application is needed to increase production levels among all crops. One of the essential commodities of all crops has always been paddy, given its status as the staple food among the country's population. Paddy production with the adoption of GFT potentially opens the path toward sustainable development in the industry as well as it also provides the food safety aspect. Moreover, this helps farmers to improve their productivity on paddy production in Malaysia. This paper attempts to evaluate the contributing socio-psychological factors, innovation attributes of environmental factors, and channels of communication to decision-making among farmers in Malaysia on GFT. Furthermore, this research also aims to assess the moderating role of cost between the farmer's behavioral intention and the adoption of GFT. The sampling process followed the stratified sampling technique-overall, 600 survey questionnaires were dispersed and 437 effective responses were received. The structural analysis results obtained have revealed significant positive effect for perceived awareness, attitude, group norm, perceived behavioral control, environmental concern, agro-environmental regulations, relative advantage, compatibility, trialability, and observability, and on farmer's behavioral intention, a significant effect for paddy farmer's behavioral intention in order to adopt of GFT. Further, the interaction effects of cost on the link between farmer's behavioral intention and adoption of GFT are statistically significant. Though, the finding could not back an outcome for the subjective norm, complexity, and mass media on farmer's behavioral intention. Finally, critical outcomes obtained in this research contribute to deepening the thoughtfulness of paddy farmers' adoption of GFT. This study concludes with policy recommendations and future directions of the research.
    Matched MeSH terms: Environment
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links