Displaying publications 1 - 20 of 881 in total

Abstract:
Sort:
  1. Kitzes J, Shirley R
    Ambio, 2016 Feb;45(1):110-9.
    PMID: 26169084 DOI: 10.1007/s13280-015-0683-3
    In many regions of the world, biodiversity surveys are not routinely conducted prior to activities that lead to land conversion, such as development projects. Here we use top-down methods based on global range maps and bottom-up methods based on macroecological scaling laws to illuminate the otherwise hidden biodiversity impacts of three large hydroelectric dams in the state of Sarawak in northern Borneo. Our retrospective impact assessment finds that the three reservoirs inundate habitat for 331 species of birds (3 million individuals) and 164 species of mammals (110 million individuals). A minimum of 2100 species of trees (900 million individuals) and 17 700 species of arthropods (34 billion individuals) are estimated to be affected by the dams. No extinctions of bird, mammal, or tree species are expected due to habitat loss following reservoir inundation, while 4-7 arthropod species extinctions are predicted. These assessment methods are applicable to any data-limited system undergoing land-use change.
    Matched MeSH terms: Environmental Monitoring/methods*
  2. Azanza RV, Taylor FJ
    Ambio, 2001 Sep;30(6):356-64.
    PMID: 11757284
    Pyrodinium bahamense (var. compressum) has been the only dinoflagellate species that has caused major public health and economic problems in the Southeast Asian region for more than 2 decades now. It produces saxitoxin, a suite of toxins that cause Paralytic Shellfish Poisoning (PSP). A serious toxicological problem affecting many countries of the world, mild cases of this poisoning can occur within 30 minutes while in extreme cases, death through respiratory paralysis may occur within 2-24 hrs of ingestion of intoxicated shellfish. Blooms of the organism have been reported in Malaysia, Brunei Darussalam, the Philippines and Indonesia. The ASEAN-Canada Red Tide Network has recorded 31 blooms of the organism in 26 areas since 1976 when it first occurred in Sabah, Malaysia. As of 1999, the most hard hit country has been the Philippines which has the greatest number of areas affected (18) and highest number of Paralytic Shellfish Poisoning (PSP) cases (about 1995). Malaysia has reported a total of 609 PSP cases and 44 deaths while Brunei has recorded 14 PSP cases and no fatalities. Indonesia, on the other hand has a record of 427 PSP cases and 17 deaths. Studies on ecological/environmental impacts of these blooms have not been done in the region. Estimates of economic impacts have shown that the loss could be up to USD 300,000 day-1. Most of the data and information useful for understanding Pyrodinium bloom dynamics have come from harmful/toxic algal monitoring and research that have developed to different degrees in the various countries in the region affected by the organism's bloom. Regional collaborative research and monitoring efforts can help harmonize local data sets and ensure their quality and availability for comparative analysis and modeling. Temporal patterns of the blooms at local and regional scales and possible signals and trends in the occurrence/recurrence and spread of Pyrodinium blooms could be investigated. Existing descriptive and simple predictive models of Pyrodinium blooms can be improved and refined to help in the management of the wild harvest and aquaculture of shellfish in a region where the people are dependent on these resources for their daily food sustainance and livelihood.
    Matched MeSH terms: Environmental Monitoring
  3. Lord AT, Mohandas K, Somanath S, Ambu S
    PMID: 20307325 DOI: 10.1186/1476-0711-9-11
    The aim of this study was to investigate the presence of multidrug resistant yeasts in the faeces of synanthropic wild birds from the Bangsar suburb of Kuala Lumpur.
    Matched MeSH terms: Environmental Monitoring
  4. Ab Manan N, Noor Aizuddin A, Hod R
    Ann Glob Health, 2018 11 05;84(4):670-678.
    PMID: 30779516 DOI: 10.29024/aogh.2376
    IntroductionMany epidemiological studies have demonstrated associations between air pollution levels and human health in terms of hospital admissions. The aim of this paper is to gather evidence concerning air pollution effects on the risk of hospital admission. We hypothesised that increase in: particulate matter (PM), ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and sulphur dioxide (SO2) levels would be associated with the increasing trend of hospital admission.MethodsA systematic review of literature was carried out. Literature search was done in Sage, Ovid Medline, Science Direct, Wiley and ProQuest from 2010 to 2016 using keywords "hospital admission and air pollution". Studies of any relevant design were included if they presented original data, included at least one analysis where hospital admission was the specific outcome, and one or more of the following exposures were investigated: PM, O3, CO, NO2 and SO2.ResultsA total of 175 potential studies were identified by the search. Twenty two studies qualified for the review. Air pollution was noted to have an excessive risk of 3.46 (95%CI, 1.67, 5.27) of total hospital admissions. Cardiovascular admission was noted to have an increased risk of hospitalization for PM2.5 of 1.5 to 2.0; PM10 (1.007 to 2.7); NO2 (1.04 to 1.17) and SO2 (1.007). For respiratory admission, PM2.5 can caused an increased risk of hospitalization by 1.1 to 1.8; PM10 (1.007 to 1.13); NO2 (1.08 to 1.94) and SO2 (1.02). While O3 have minimal effect on COPD and stroke, CO does not influence in the effect of these hospitalization.ConclusionThe exposure to air pollutants confers an increased risk of admission of several disease. Our findings call for greater awareness of environmental protection and the implementation of effective measures to improve the quality of air, which may reduce the risks of adverse effects on the population's health.
    Matched MeSH terms: Environmental Monitoring/methods*
  5. Elias MS, Ibrahim S, Samuding K, Kantasamy N, Rahman SA, Hashim A
    Appl Radiat Isot, 2019 Sep;151:116-123.
    PMID: 31174051 DOI: 10.1016/j.apradiso.2019.05.038
    A study was carried out to determine the concentrations of rare earth elements (REEs) in Linggi river sediments collected from 113 sampling locations. The sediment analysis was performed by Neutron activation analysis (NAA) and Inductively coupled plasma - mass spectrometry (ICP-MS). The results of Linggi river sediment were normalized to "recent" reference shale values. The means of total concentrations of REEs (ΣREE), light REEs (ΣLREE) and heavy REEs (ΣHREE) in Linggi sediment were 241.2, 219.2, and 22.0 mg/kg, respectively, which indicates enrichment compared to ΣREE, ΣLREE and ΣHREE reference shale values. Results obtained from enrichment factors (EF) show no enrichment to moderate enrichment of Linggi sediments, indicating the sources of REEs pollution originated from natural and land-based activities. A similar pattern was observed by comparing the REEs values of Linggi sediments to other references shale values. Ce (δCe) and Eu (δEu) anomalies indicate Linggi sediments showed positive anomaly of Ce whilst negative anomaly of Eu.
    Matched MeSH terms: Environmental Monitoring/methods*
  6. Murakami M, Adachi N, Saha M, Morita C, Takada H
    Arch Environ Contam Toxicol, 2011 Nov;61(4):631-41.
    PMID: 21424221 DOI: 10.1007/s00244-011-9660-4
    Perfluorinated surfactants (PFSs) in Asian freshwater fish species were analyzed to investigate tissue distribution, temporal trends, extent of pollution, and level of PFS exposure through food intake. Freshwater fish species, namely carp, snakehead, and catfish, were collected in Japan, Vietnam, India, Malaysia, and Thailand, and 10 PFSs, including perfluorooctanesulfonate (PFOS) and perfluorooctanoate, were analyzed by liquid chromatography-tandem mass spectrometry. PFSs in carp in Tokyo were more concentrated in kidneys (Σ10 PFSs = 257 ± 95 ng/g wet weight [ww]) and livers (119 ± 36 ng/g ww) than in ovaries (43 ± 2 ng/g ww) and muscles (24 ± 17 ng/g ww). Concentrations of PFOS and its precursor, perfluorooctane sulfonamide, in livers of carp and in waters in Tokyo showed a dramatic decrease during the last decade, probably because of 3 M's phasing-out of the manufacture of perfluorooctanesulfonyl-fluoride-based products in 2000. In contrast, continuing contamination by long-chain perfluorocarboxylates (PFCAs) with ≥ 9 fluorinated carbons was seen in multiple media, suggesting that these compounds continue to be emitted. PFS concentrations in freshwater fish species in tropical Asian countries were generally lower than those in developed countries, such as Japan, e.g., for PFOS in muscle, Vietnam < 0.05-0.3 ng/g ww; India < 0.05-0.2 ng/g ww; Malaysia < 0.05-0.2 ng/g ww; Thailand < 0.05 ng/g ww; and Japan (Tokyo) = 5.1-22 ng/g ww. Daily intake of short-chain PFCAs with ≤ 8 fluorinated carbons from freshwater fish species in Japan was approximately one order of magnitude lower than that from drinking water, whereas daily intake of PFOS and long-chain PFCAs with ≥ 9 fluorinated carbons from freshwater fish species was comparable with or greater than that from drinking water. Because the risk posed by exposure to these compounds through intake of fish species is a matter of concern, we recommend the continued monitoring of PFS levels in Asian developing countries.
    Matched MeSH terms: Environmental Monitoring*
  7. Sudaryanto A, Kunisue T, Tanabe S, Niida M, Hashim H
    Arch Environ Contam Toxicol, 2005 Oct;49(3):429-37.
    PMID: 16132420
    This study determined the concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides, and tris(4-chlorophenyl) methane (TCPMe) in human breast milk samples collected in 2003 from primipara mothers living in Penang, Malaysia. OCs were detected in all the samples analyzed with DDTs, hexachlorocyclohexane isomers (HCHs), and PCBs as the major contaminants followed by chlordane compounds (CHLs), hexachlorobenzene (HCB), and TCPMe. The residue levels of DDTs, HCHs, and CHLs were comparable to or higher than those in general populations of other countries, whereas PCBs and HCB were relatively low. In addition, dioxins and related compounds were also detected with a range of dioxin equivalent concentrations from 3.4 to 24 pg-TEQs/g lipid wt. Levels of toxic equivalents (TEQs) were slightly higher than those in other developing countries but still much lower than those of industrialized nations. One donor mother contained a high TEQs level, equal to the mean value in human breast milk from Japan, implying that some of the residents in Malaysia may be exposed to specific pollution sources of dioxins and related compounds. No association was observed between OCs concentrations and maternal characteristics, which might be related to a limited number of samples, narrow range of age of the donor mothers, and/or other external factors. The recently identified endocrine disrupter, TCPMe, was also detected in all human breast milk samples of this study. A significant positive correlation was observed between TCPMe and DDTs, suggesting that technical DDT might be a source of TCPMe in Malaysia. The present study provides a useful baseline for future studies on the accumulations of OCs in the general population of Malaysia.
    Matched MeSH terms: Environmental Monitoring
  8. Razak HA, Wahid NBA, Latif MT
    Arch Environ Contam Toxicol, 2019 Nov;77(4):587-593.
    PMID: 31359072 DOI: 10.1007/s00244-019-00656-3
    Anionic surfactants are one of the pollutants derived from particulate matter (PM) and adversely affect the health of living organisms. In this study, the compositions of surfactants extracted from PM and vehicle soot collected in an urban area were investigated. A high-volume air sampler was used to collect PM sample at urban area based on coarse (> 1.5 µm) and fine (
    Matched MeSH terms: Environmental Monitoring/instrumentation; Environmental Monitoring/methods
  9. Chandrasekar T, Keesari T, Gopalakrishnan G, Karuppannan S, Senapathi V, Sabarathinam C, et al.
    Arch Environ Contam Toxicol, 2021 Jan;80(1):183-207.
    PMID: 33392777 DOI: 10.1007/s00244-020-00803-1
    Evaluation of the hydrogeochemical processes governing the heavy metal distribution and the associated health risk is important in managing and protecting the health of freshwater resources. This study mainly focused on the health impacts due to the heavy metals pollution in a known Cretaceous-Tertiary (K/T) contact region (Tiruchinopoly, Tamilnadu) of peninsular India, using various pollution indices, statistical, and geochemical analyses. A total of 63 samples were collected from the hard rock aquifers and sedimentary formations during southwest monsoon and analysed for heavy metals, such as Li, Be, Al, Rb, Sr, Cs, Ba, pb, Mn, Fe, Cr, Zn, Ga, Cu, As, Ni, and Co. Ba was the dominant element that ranged from 441 to 42,638 μg/l in hard rock aquifers, whereas Zn was the major element in sedimentary formations, with concentrations that ranged from 44 to 118,281 μg/l. The concentrations of Fe, Ni, Cr, Al, Cr, and Ni fell above the permissible limit in both of the formations. However, the calculated heavy metal evaluation index (HEI), heavy metal pollution index (HPI), and the degree of contamination (Cd) parameters were higher in the sedimentary formation along the contact zone of the K/T boundary. Excessive health risks from consumption of contaminated groundwater were mostly confined to populations in the northern and southwestern regions of the study area. Carcinogenic risk assessment suggests that there are elevated risks of cancer due to prolonged consumption of untreated groundwater. Ba, Sr, and Zn were found to be geochemically highly mobile due to the partitioning between the rock matrix and groundwater, aided by the formation of soluble carbonato-complexes. Factor analysis indicates that the metals are mainly derived from the host rocks and anthropogenic inputs are relatively insignificant. Overall, this study indicated that groundwater in K/T contact zones is vulnerable to contamination because of the favorable geochemical factors. Long-term monitoring of such contact zones is required to avert the potential health hazards associated with consumption of the contaminated groundwater.
    Matched MeSH terms: Environmental Monitoring/methods*
  10. Aziz MA, Norman S, Mohamed Zaid S, Simarani K, Sulaiman R, Mohd Aris A, et al.
    Arch Microbiol, 2023 Jan 28;205(2):76.
    PMID: 36708390 DOI: 10.1007/s00203-023-03417-y
    Wastewater monitoring for SARS-CoV-2 has attracted considerable attention worldwide to complement the existing clinical-based surveillance system. In this study, we report our first successful attempt to prove the circulation of SARS-CoV-2 genes in Malaysian urban wastewater. A total of 18 wastewater samples were obtained from a regional sewage treatment plant that received municipal sewage between February 2021 and May 2021. Using the quantitative PCR assay targeting the E and RdRp genes of SARS-CoV-2, we confirmed that both genes were detected in the raw sewage, while no viral RNA was found in the treated sewage. We were also able to show that the trend of COVID-19 cases in Kuala Lumpur and Selangor was related to the changes in SARS-CoV-2 RNA levels in the wastewater samples. Overall, our study highlights that monitoring wastewater for SARS-CoV-2 should help local health professionals to obtain additional information on the rapid and silent circulation of infectious agents in communities at the regional level.
    Matched MeSH terms: Environmental Monitoring
  11. Alnawaiseh NA, Hashim JH, Isa ZM
    Asia Pac J Public Health, 2015 Mar;27(2):NP1742-51.
    PMID: 22899706 DOI: 10.1177/1010539512455046
    The main objective of this cross-sectional comparative study is to observe the relationship between traffic-related air pollutants, particularly particulate matter (PM) of total suspended particulate (TSP) and PM of size 10 µm (PM10), and vehicle traffic in Amman, Jordan. Two study areas were chosen randomly as a high-polluted area (HPA) and low-polluted area (LPA). The findings indicate that TSP and PM10 were still significantly correlated with traffic count even after controlling for confounding factors (temperature, relative humidity, and wind speed): TSP, r = 0.726, P < .001; PM10, r = 0.719, P < .001). There was a significant positive relationship between traffic count and PM level: TSP, P < .001; PM10, P < .001. Moreover, there was a significant negative relationship between temperature and PM10 level (P = .018). Traffic volume contributed greatly to high concentrations of TSP and PM10 in areas with high traffic count, in addition to the effect of temperature.
    Matched MeSH terms: Environmental Monitoring
  12. Aziz AT, Dieng H, Ahmad AH, Mahyoub JA, Turkistani AM, Mesed H, et al.
    Asian Pac J Trop Biomed, 2012 Nov;2(11):849-57.
    PMID: 23569860 DOI: 10.1016/S2221-1691(12)60242-1
    To investigate the prevalence of container breeding mosquitoes with emphasis on the seasonality and larval habitats of Aedes aegypti (Ae. aegypti) in Makkah City, adjoining an environmental monitoring and dengue incidence.
    Matched MeSH terms: Environmental Monitoring
  13. Azlan CA, Ng KH, Anandan S, Nizam MS
    Australas Phys Eng Sci Med, 2006 Sep;29(3):278-80.
    PMID: 17058591
    Illuminance level in the softcopy image viewing room is a very important factor to optimize productivity in radiological diagnosis. In today's radiological environment, the illuminance measurements are normally done during the quality control procedure and performed annually. Although the room is equipped with dimmer switches, radiologists are not able to decide the level of illuminance according to the standards. The aim of this study is to develop a simple real-time illuminance detector system to assist the radiologists in deciding an adequate illuminance level during radiological image viewing. The system indicates illuminance in a very simple visual form by using light emitting diodes. By employing the device in the viewing room, illuminance level can be monitored and adjusted effectively.
    Matched MeSH terms: Environmental Monitoring/instrumentation*; Environmental Monitoring/methods
  14. Mosleh MA, Manssor H, Malek S, Milow P, Salleh A
    BMC Bioinformatics, 2012;13 Suppl 17:S25.
    PMID: 23282059 DOI: 10.1186/1471-2105-13-S17-S25
    Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment. This study was carried out to develop a computer-based image processing technique to automatically detect, recognize, and identify algae genera from the divisions Bacillariophyta, Chlorophyta and Cyanobacteria in Putrajaya Lake. Literature shows that most automated analyses and identification of algae images were limited to only one type of algae. Automated identification system for tropical freshwater algae is even non-existent and this study is partly to fill this gap.
    Matched MeSH terms: Environmental Monitoring/methods*
  15. Sow AY, Ismail A, Zulkifli SZ, Amal MN, Hambali K
    BMC Pharmacol Toxicol, 2019 Jan 29;20(1):8.
    PMID: 30696486 DOI: 10.1186/s40360-019-0286-x
    BACKGROUND: Levels of toxic metal exposure in indigenous inhabitants are key bioindicators of the severity of environmental contamination. This study measured the seasonal variation of heavy metals and metallothionein (MT) contents in Asian swamp eels (Monopterus albus) from a paddy field situated in Tumpat, Kelantan, Malaysia, to identify prevalence, patterns and associations and togain insight on the suitability of MT as a biomarker for metal exposure.

    METHODS: Gill, muscle and liver tissues of M. albus (n = 50) sampled during the ploughing, seedling, growing and harvesting phases of rice growing were collected. The concentrations of copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and cadmium (Cd) in these tissues were determined by flame atomic absorption spectrometry. MT from each sample was isolated and purified, and subsequently quantitated using UV spectrophotometry. Associations between metal and MT concentrations, season and tissue type were evaluated using Pearson correlation and ANOVA with post-hoc Tukey HSD analysis.

    RESULTS: Zn was present in higher quantities in gill and liver tissues, while Cu levels were elevated solely in liver. Patterns of non-essential metal accumulation were varied: Cd was detected in low concentrations in all tissues, while Pb and Ni were abundant in gill tissues across all seasons. MT concentration in liver tissue was consistently higher than that found in muscle or gill tissue, except during the growing phase. Moreover, significant correlations (P 

    Matched MeSH terms: Environmental Monitoring
  16. Chowdhury MA, Jahan I, Karim N, Alam MK, Abdur Rahman M, Moniruzzaman M, et al.
    Biomed Res Int, 2014;2014:145159.
    PMID: 24711991 DOI: 10.1155/2014/145159
    In the present study, the residual pesticide levels were determined in eggplants (Solanum melongena) (n = 16), purchased from four different markets in Dhaka, Bangladesh. The carbamate and organophosphorus pesticide residual levels were determined by high performance liquid chromatography (HPLC), and the efficiency of gamma radiation on pesticide removal in three different types of vegetables was also studied. Many (50%) of the samples contained pesticides, and three samples had residual levels above the maximum residue levels determined by the World Health Organisation. Three carbamates (carbaryl, carbofuran, and pirimicarb) and six organophosphates (phenthoate, diazinon, parathion, dimethoate, phosphamidon, and pirimiphos-methyl) were detected in eggplant samples; the highest carbofuran level detected was 1.86 mg/kg, while phenthoate was detected at 0.311 mg/kg. Gamma radiation decreased pesticide levels proportionately with increasing radiation doses. Diazinon, chlorpyrifos, and phosphamidon were reduced by 40-48%, 35-43%, and 30-45%, respectively, when a radiation strength of 0.5 kGy was utilized. However, when the radiation dose was increased to 1.0 kGy, the levels of the pesticides were reduced to 85-90%, 80-91%, and 90-95%, respectively. In summary, our study revealed that pesticide residues are present at high amounts in vegetable samples and that gamma radiation at 1.0 kGy can remove 80-95% of some pesticides.
    Matched MeSH terms: Environmental Monitoring/methods
  17. Dee KH, Abdullah F, Md Nasir SNA, Appalasamy S, Mohd Ghazi R, Eh Rak A
    Biomed Res Int, 2019;2019:9596810.
    PMID: 31663001 DOI: 10.1155/2019/9596810
    Corbicula fluminea serves as traditional food to the local people in Kelantan, Malaysia. Concerns regarding river contamination, smoking method, and associated adverse effects on public health had been increasing. Hence, this study aims to measure the level of heavy metals (Cd, Cu, Mn, Pb, and Zn) and assess human health risk in C. fluminea consumption at Kelantan. Heavy-metal analysis was done using flame atomic absorption spectrophotometry, while human health risk was assessed using provisional tolerable weekly intake (PTWI), target hazard quotient (THQ), and hazard index (HI). The estimated weekly intake (EWI) for all metals was found within PTWI, while THQ for Cd, Cu, Mn, Pb, and Zn was 0.12, 0.06, 0.04, 0.41, and 0.03, respectively. The HI was calculated at 0.61 which is less than 1, considered as the safe consumption level. Therefore, C. fluminea consumption in this study was found safe from the health risk of noncarcinogenic effect over a lifetime.
    Matched MeSH terms: Environmental Monitoring/methods
  18. Abdul-Latif NS, Ong MY, Nomanbhay S, Salman B, Show PL
    Bioengineered, 2020 12;11(1):154-164.
    PMID: 32013677 DOI: 10.1080/21655979.2020.1718471
    Carbon dioxide (CO2) emission will increase due to the increasing global plastic demand. Statistical data shows that plastic production alone will contribute to at least 20% of the annual global carbon budget in the near future. Hence, several alternative methods are recommended to overcome this problem, such as bio-product synthesis. Algae consist of diverse species and have huge potential to be a promising biomass feedstock for a range of purposes, including bio-oil production. The convenient cultivation method of algae could be one of the main support for algal biomass utilization. The aim of this study is to forecast and outline the strategies in order to meet the future demand (year 2050) of plastic production and, at the same time, reduce CO2 emission by replacing the conventional plastic with bio-based plastic. In this paper, the analysis for 25%, 50% and 75% CO2 reduction has been done by using carbon emission pinch analysis. The strategies of biomass utilization in Malaysia are also enumerated in this study. This study suggested that the algal biomass found in Malaysia coastal areas should be utilized and cultivated on a larger scale in order to meet the increasing plastic demand and, at the same time, reduce carbon footprint. Some of the potential areas for macroalgae sea-farming cultivation in Sabah coastline (Malaysia), comprised of about 3885 km2 (388,500 ha) in total, have been highlighted. These potential areas have the potential to produce up to 14.5 million tonnes (Mt)/y of macroalgae in total, which can contribute 370 Mt of phenol for bioplastic production.
    Matched MeSH terms: Environmental Monitoring
  19. Ravizza M, Giosio D, Henderson A, Hovenden M, Hudson M, Salleh S, et al.
    Biofouling, 2016 07;32(6):685-97.
    PMID: 27244248 DOI: 10.1080/08927014.2016.1184255
    Biofouling in canals and pipelines used for hydroelectric power generation decreases the flow capacity of conduits. A pipeline rig was designed consisting of test sections of varying substrata (PVC, painted steel) and light levels (transparent, frosted, opaque). Stalk-forming diatoms were abundant in both the frosted and transparent PVC pipes but negligible in the painted steel and opaque PVC pipes. Fungi were slightly more abundant in the painted steel pipe but equally present in all the other pipes while bacterial diversity was similar in all pipes. Photosynthetically functional biofouling (mainly diatoms) was able to develop in near darkness. Different biological fouling compositions generated differing friction factors. The highest friction factor was observed in the transparent pipe (densest diatom fouling), the lowest peak friction for the opaque PVC pipe (lowest fouling biomass), and with the painted steel pipe (high fouling biomass, but composed of fungal and bacterial crusts) being intermediate between the opaque and frosted PVC pipes.
    Matched MeSH terms: Environmental Monitoring
  20. Thai VN, Dehbandi R, Fakhri Y, Sarafraz M, Nematolahi A, Dehghani SS, et al.
    Biol Trace Elem Res, 2021 Sep;199(9):3497-3509.
    PMID: 33180263 DOI: 10.1007/s12011-020-02476-2
    The contamination of seafood like narrow-barred Spanish mackerel (Scomberomorus commerson) fillets by potentially toxic elements (PTEs) has converted to worldwide health concerns. In this regard, the related citations regarding the concentration of PTEs in fillets of narrow-barred Spanish mackerel were collected through some of the international databases such as Scopus, Cochrane, PubMed, and Scientific Information Database (SID) up to 10 March 2020. The concentration of PTEs in fillets of narrow-barred Spanish mackerel fish was meta-analyzed and the health risk (non-carcinogenic risk) was estimated by the total target hazard quotient (TTHQ). The meta-analysis of data indicated that the rank order of PTEs in fillet of narrow-barred Spanish mackerel was Fe (10,853.29 μg/kg-ww) > Zn (4007.00 μg/kg-ww) > Cu (1005.66 μg/kg-ww) > total Cr (544.14 μg/kg-ww) > Mn (515.93 μg/kg-ww) > Ni (409.90 μg/kg-ww) > Pb (180.99 μg/kg-ww) > As (93.11 μg/kg-ww) > methyl Hg (66.60 μg/kg-ww) > Cd (66.03 μg/kg-ww). The rank order of health risk assessment based on the country by the aid of TTHQ for adult consumers was Malaysia (0.22251) > Philippines (0.21912) > Egypt (0.08684) > Taiwan (0.07430) > Bahrain (0.04893) > Iran (0.03528) > China (0.00620) > Pakistan (0.00316) > Yemen (0.00157) > India (0.00073). In addition, the rank order of health risk assessment based on the country by the aid of TTHQ for child consumers was Malaysia (1.03838) > Philippines (1.02257) > Egypt (0.40523) > Taiwan (0.34674) > Bahrain (0.22832) > Iran (0.16466) > China (0.02892) > Pakistan (0.01474) > Yemen (0.00731) > India (0.00340). Therefore, the children in Malaysia and the Philippines were at considerable non-carcinogenic risk. Hence, approaching the recommended control plans in order to decrease the non-carcinogenic risk associated with the ingestion of PTEs via the consumption of narrow-barred Spanish mackerel fish fillets is crucial.
    Matched MeSH terms: Environmental Monitoring
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links