Displaying publications 1 - 20 of 289 in total

Abstract:
Sort:
  1. Ab Manan N, Noor Aizuddin A, Hod R
    Ann Glob Health, 2018 11 05;84(4):670-678.
    PMID: 30779516 DOI: 10.29024/aogh.2376
    IntroductionMany epidemiological studies have demonstrated associations between air pollution levels and human health in terms of hospital admissions. The aim of this paper is to gather evidence concerning air pollution effects on the risk of hospital admission. We hypothesised that increase in: particulate matter (PM), ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and sulphur dioxide (SO2) levels would be associated with the increasing trend of hospital admission.MethodsA systematic review of literature was carried out. Literature search was done in Sage, Ovid Medline, Science Direct, Wiley and ProQuest from 2010 to 2016 using keywords "hospital admission and air pollution". Studies of any relevant design were included if they presented original data, included at least one analysis where hospital admission was the specific outcome, and one or more of the following exposures were investigated: PM, O3, CO, NO2 and SO2.ResultsA total of 175 potential studies were identified by the search. Twenty two studies qualified for the review. Air pollution was noted to have an excessive risk of 3.46 (95%CI, 1.67, 5.27) of total hospital admissions. Cardiovascular admission was noted to have an increased risk of hospitalization for PM2.5 of 1.5 to 2.0; PM10 (1.007 to 2.7); NO2 (1.04 to 1.17) and SO2 (1.007). For respiratory admission, PM2.5 can caused an increased risk of hospitalization by 1.1 to 1.8; PM10 (1.007 to 1.13); NO2 (1.08 to 1.94) and SO2 (1.02). While O3 have minimal effect on COPD and stroke, CO does not influence in the effect of these hospitalization.ConclusionThe exposure to air pollutants confers an increased risk of admission of several disease. Our findings call for greater awareness of environmental protection and the implementation of effective measures to improve the quality of air, which may reduce the risks of adverse effects on the population's health.
    Matched MeSH terms: Environmental Monitoring/methods*
  2. Abd Wahib SM, Wan Ibrahim WA, Sanagi MM, Kamboh MA, Abdul Keyon AS
    J Chromatogr A, 2018 Jan 12;1532:50-57.
    PMID: 29241956 DOI: 10.1016/j.chroma.2017.11.059
    A facile dispersive-micro-solid phase extraction (D-μ-SPE) method coupled with HPLC for the analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed using a newly prepared magnetic sporopollenin-cyanopropyltriethoxysilane (MS-CNPrTEOS) sorbent. Sporopollenin homogenous microparticles of Lycopodium clavatum spores possessed accessible functional groups that facilitated surface modification. Simple modification was performed by functionalization with 3-cyanopropyltriethoxysilane (CNPrTEOS) and magnetite was introduced onto the biopolymer to simplify the extraction process. MS-CNPrTEOS was identified by infrared spectrometrywhile the morphology and the magnetic property were confirmed by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), respectively. To maximize the extraction performance of ketoprofen, ibuprofen, diclofenac and mefenamic acid using the proposed MS-CNPrTEOS, important D-μ-SPE parameters were comprehensively optimized. The optimum extraction conditions were sorbent amount, 40 mg; extraction time, 5 min; desorption time; 5 min; sample volume, 15 mL; sample pH 2.0; and salt addition, 2.5% (w/v). The feasibility of the developed method was evaluated using spiked tap water, lake water, river water and waste water samples. Results showed that ketoprofen and ibuprofen were linear in the range of 1.0-1000 μg L-1whilst diclofenac and mefenamic acid were linear in the range 0.8-500 μg L-1. The results also showed good detection limits for the studied NSAIDs in the range of 0.21-0.51 μg L-1and good recoveries for spiked water samples in the range of 85.1-106.4%. The MS-CNPrTEOS proved a promising dispersive sorbent and applicable to facile and rapid assay of NSAIDs in water samples.
    Matched MeSH terms: Environmental Monitoring/methods*
  3. Abdul Aziz FAB, Abd Rahman N, Mohd Ali J
    Comput Intell Neurosci, 2019;2019:6252983.
    PMID: 31239836 DOI: 10.1155/2019/6252983
    Due to the rapid development of economy and society around the world, the most urban city is experiencing tropospheric ozone or commonly known as ground-level air pollutants. The concentration of air pollutants must be identified as an early precaution step by the local environmental or health agencies. This work aims to apply the artificial neural network (ANN) in estimating the ozone concentration forecast in Bangi. It consists of input variables such as temperature, relative humidity, concentration of nitrogen dioxide, time, UVA and UVB rays obtained from routine monitoring, and data recorded. Ten hidden layer is utilized to obtain the optimized ozone concentration, which is the output layer of the ANN framework. The finding showed that the meteorology condition and emission patterns play an important part in influencing the ozone concentration. However, a single network is sufficient enough to estimate the concentration despite any circumstances. Thus, it can be concluded that ANN is able to give reliable and satisfactory estimations of ozone concentration for the following day.
    Matched MeSH terms: Environmental Monitoring/methods*
  4. Abdullah L, Khalid ND
    Environ Monit Assess, 2012 Nov;184(11):6957-65.
    PMID: 22160435 DOI: 10.1007/s10661-011-2472-1
    Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.
    Matched MeSH terms: Environmental Monitoring/methods*
  5. Abdullah MZ, Saat AB, Hamzah ZB
    Environ Monit Assess, 2012 Jun;184(6):3959-69.
    PMID: 21822578 DOI: 10.1007/s10661-011-2236-y
    Biomonitoring of multi-element atmospheric deposition using terrestrial moss is a well-established technique in Europe. Although the technique is widely known, there were very limited records of using this technique to study atmospheric air pollution in Malaysia. In this present study, the deposition of 11 trace metals surrounding the main petroleum refinery plant in Kerteh Terengganu (eastern part of peninsular Malaysia) has been evaluated using two local moss species, namely Hypnum plumaeforme and Taxithelium instratum as bioindicators. The study was also done by means of observing whether these metals are attributed to work related to oil exploration in this area. The moss samples have been collected at 30 sampling stations in the vicinity of the petrochemical industrial area covering up to 15 km to the south, north, and west in radius. The contents of heavy metal in moss samples were analyzed by energy dispersive x-ray fluorescence technique. Distribution of heavy metal content in all mosses is portrayed using Surfer software. Areas of the highest level of contaminations are highlighted. The results obtained using the principal components analysis revealed that the elements can be grouped into three different components that indirectly reflected three different sources namely anthropogenic factor, vegetation factor, and natural sources (soil dust or substrate) factor. Heavy metals deposited mostly in the distance after 9 km onward to the western part (the average direction of wind blow). V, Cr, Cu, and Hg are believed to have originated from local petrochemical-based industries operated around petroleum industrial area.
    Matched MeSH terms: Environmental Monitoring/methods*
  6. Abdullah P, Abdullah SMS, Jaafar O, Mahmud M, Khalik WMAWM
    Mar Pollut Bull, 2015 Dec 15;101(1):378-385.
    PMID: 26476861 DOI: 10.1016/j.marpolbul.2015.10.014
    Characterization of hydrochemistry changes in Johor Straits within 5 years of monitoring works was successfully carried out. Water quality data sets (27 stations and 19 parameters) collected in this area were interpreted subject to multivariate statistical analysis. Cluster analysis grouped all the stations into four clusters ((Dlink/Dmax) × 100<90) and two clusters ((Dlink/Dmax) × 100<80) for site and period similarities. Principal component analysis rendered six significant components (eigenvalue>1) that explained 82.6% of the total variance of the data set. Classification matrix of discriminant analysis assigned 88.9-92.6% and 83.3-100% correctness in spatial and temporal variability, respectively. Times series analysis then confirmed that only four parameters were not significant over time change. Therefore, it is imperative that the environmental impact of reclamation and dredging works, municipal or industrial discharge, marine aquaculture and shipping activities in this area be effectively controlled and managed.
    Matched MeSH terms: Environmental Monitoring/methods*
  7. Abdullah SA
    J Environ Sci (China), 2003 Mar;15(2):267-70.
    PMID: 12765270
    This paper presents the pattern and changes of fragmented forest in relation with changes of total forest cover in the state of Selangor in three decades. In this study, inventoried forest cover maps of Selangor in 1971/1972, 1981/1982 and 1991/1992 produced by the Forestry Department of Peninsular Malaysia were digitized to examine the changes in area and number of fragmented forest. Results showed that in 1971/1972, 16 fragmented forests were identified in Selangor. All fragmented forests were identified as dipterocarp forest. A decade later the number of fragmented forests increased by approximately 44% (23). Of the 23 fragmented forests, two were peat swamp forests whereas the remaining were dipterocarp forests. In 1991/1992 the number of fragmented forests (12) was reduced by 47.8%. Two of the fragmented forests were identified as peat swamp forest, seven dipterocarp forest and the other three was mixed of dipterocarp forests and plantation forests. Fragmentation of both dipterocarp and peat swamp forests occurred profoundly during the period between 1971/1972 and 1981/1982, which consequently increased the number of fragmented forests compared with before the period of 1971/1972 where fragmentation happened only at dipterocarp forests. However, many fragmented forests vanished between the 1981/1982 and 1991/1992 periods.
    Matched MeSH terms: Environmental Monitoring/methods
  8. Abualqumboz MS, Malakahmad A, Mohammed NI
    J Air Waste Manag Assoc, 2016 06;66(6):597-608.
    PMID: 27249105 DOI: 10.1080/10962247.2016.1154115
    Landfills throughout the world are contributing to the global warming problem. This is due to the existence of the most important greenhouse gases (GHG) in landfill gas (LFG); namely, methane (CH4) and carbon dioxide (CO2). The aim of this paper is quantifying the total potential emissions, as well as the variation in production with time of CH4 from a proposed landfill (El Fukhary landfill) in the Gaza Strip, Palestine. Two different methods were adopted in order to quantify the total potential CH4 emissions; the Default methodology based on the intergovernmental panel on climate change (IPCC) 1996 revised guidelines and the Landfill Gas Emissions model (LandGEM V3.02) provided by the United States Environmental Protection Agency (EPA). The second objective of the study has been accomplished using the Triangle gas production model. The results obtained from both Default and LandGEM methods were found to be nearly the same. For 25 years of disposing MSW, El Fukhary landfill expected to have potential CH4 emissions of 1.9542 ± 0.0037 ×109 m3. Triangle model showed that the peak production in term of CH4 would occur in 2043; 28 years beyond the open year. Moreover, the model shows that 50 % of the gas will be produced approximately at the middle of the total duration of gas production. Proper control of Methane emissions from El Fukhary landfill is highly suggested in order to reduce the harmful effects on the environment.

    IMPLICATIONS: Although, GHG emissions are extensively discussed in the developed countries throughout the world, it has gained little concern in the developing countries because they are forced most of the time to put environmental concerns at the end of their priority list. The paper shows that developing countries have to start recognizing their fault and change their way of dealing with environmental issues especially GHG emissions (mainly Methane and carbon dioxide). The authors estimated the potential methane emissions from a proposed central landfill that has been approved to be built in Palestine, a country that is classified as a developing country.

    Matched MeSH terms: Environmental Monitoring/methods*
  9. Abubakar A, Zangina AS, Maigari AI, Badamasi MM, Ishak MY, Abdullahi AS, et al.
    Environ Sci Pollut Res Int, 2022 Aug;29(40):61065-61079.
    PMID: 35435558 DOI: 10.1007/s11356-022-19974-6
    Improper treatment during recycling of e-waste materials by means of open burning is on the rise which has led to an increase in air pollution. This study looked at heavy metal concentrations, concentrations in relation to threshold values, and assessments of risk for noncarcinogenic and cancer risk threat. The Microwave Plasma-Atomic Emission Spectrometry (MP-AES 4210) series instrument of Agilent Technology, United States of America (USA), was used in analyzing heavy metal (Cd, Cu, and Pb) concentrations. The result of the analysis of the Kuka Bulukiya treatment point revealed that Pb has the highest mean concentration of 0.0693 ppm, Cu 0.0525 parts per million (PPM), and Cd 0.0042 ppm. The mean concentration at PRP Gidan Ruwa for Cd was found to be 0.0059 ppm, Cu 0.0363 ppm, and Pb 0.049 ppm. The result of the adult and children population calculated shows that the hazard quotient (HQ) and hazard index (HI) values are not up to 1 in all the pathways (inhalation, ingestion, and dermal) at both treatment points (1.2 ˟ 10-4 and 9.8 ˟ 10-5) and (6.4 ˟ 10-4 and 5.9 ˟ 10-4), respectively. The cancer risk for Kuka Bulukiya 6 ˟ 10-10 and PRP G/Ruwa 5 ˟ 10-10 for adults and 7 ˟ 10-10 and 4 ˟ 10-10 for children were both lower than the threshold set for cancer risk by the United States Environmental Protection Agency (USEPA). This meant that both adults and children were not at risk of cancer and noncarcinogenic threat based on the assessment in this study. The study concluded that informal e-waste burning has substantially helped in the relatively high levels of air pollution identified in the treatment points and in turn posed environmental and public health concerns to people around the area. This study recommends that samples of the vegetable products at the PRP G/Ruwa treatment point should be investigated immediately and adequate restrictions and regulations should be enacted and enforced in order to safeguard the environment and the populace. There is need for caution from the authorities to avert the possible implications (e-waste extractors and the public) of being affected with noncarcinogenic or carcinogenic ailments over time.
    Matched MeSH terms: Environmental Monitoring/methods
  10. Aburas MM, Ho YM, Ramli MF, Ash'aari ZH
    Environ Monit Assess, 2018 Feb 20;190(3):156.
    PMID: 29464400 DOI: 10.1007/s10661-018-6522-9
    The identification of spatio-temporal patterns of the urban growth phenomenon has become one of the most significant challenges in monitoring and assessing current and future trends of the urban growth issue. Therefore, spatio-temporal and quantitative techniques should be used hand in hand for a deeper understanding of various aspects of urban growth. The main purpose of this study is to monitor and assess the significant patterns of urban growth in Seremban using a spatio-temporal built-up area analysis. The concentric circles approach was used to measure the compactness and dispersion of built-up area by employing Shannon's Entropy method. The spatial directions approach was also utilised to measure the sustainability and speed of development, while the gradient approach was used to measure urban dynamics by employing landscape matrices. The overall results confirm that urban growth in Seremban is dispersed, unbalanced and unsustainable with a rapid speed of regional development. The main contribution of using existing methods with other methods is to provide several spatial and statistical dimensions that can help researchers, decision makers and local authorities understand the trend of growth and its patterns in order to take the appropriate decisions for future urban planning. For example, Shannon's Entropy findings indicate a high value of dispersion between the years 1990 and 2000 and from 2010 to 2016 with a growth rate of approximately 94 and 14%, respectively. Therefore, these results can help and support decision makers to implement alternative urban forms such as the compactness form to achieve an urban form that is more suitable and sustainable. The results of this study confirm the importance of using spatio-temporal built-up area and quantitative analysis to protect the sustainability of land use, as well as to improve the urban planning system via the effective monitoring and assessment of urban growth trends and patterns.
    Matched MeSH terms: Environmental Monitoring/methods
  11. Adeel M, Lee JY, Zain M, Rizwan M, Nawab A, Ahmad MA, et al.
    Environ Int, 2019 06;127:785-800.
    PMID: 31039528 DOI: 10.1016/j.envint.2019.03.022
    BACKGROUND: Rare earth elements (REEs) are gaining attention due to rapid rise of modern industries and technological developments in their usage and residual fingerprinting. Cryptic entry of REEs in the natural resources and environment is significant; therefore, life on earth is prone to their nasty effects. Scientific sectors have expressed concerns over the entry of REEs into food chains, which ultimately influences their intake and metabolism in the living organisms.

    OBJECTIVES: Extensive scientific collections and intensive look in to the latest explorations agglomerated in this document aim to depict the distribution of REEs in soil, sediments, surface waters and groundwater possibly around the globe. Furthermore, it draws attention towards potential risks of intensive industrialization and modern agriculture to the exposure of REEs, and their effects on living organisms. It also draws links of REEs usage and their footprints in natural resources with the major food chains involving plants, animals and humans.

    METHODS: Scientific literature preferably spanning over the last five years was obtained online from the MEDLINE and other sources publishing the latest studies on REEs distribution, properties, usage, cycling and intrusion in the environment and food-chains. Distribution of REEs in agricultural soils, sediments, surface and ground water was drawn on the global map, together with transport pathways of REEs and their cycling in the natural resources.

    RESULTS: Fourteen REEs (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Th and Yb) were plighted in this study. Wide range of their concentrations has been detected in agricultural soils (<15.9-249.1 μg g-1) and in groundwater (<3.1-146.2 μg L-1) at various sites worldwide. They have strong tendency to accumulate in the human body, and thus associated with kidney stones. The REEs could also perturb the animal physiology, especially affecting the reproductive development in both terrestrial and aquatic animals. In plants, REEs might affect the germination, root and shoot development and flowering at concentration ranging from 0.4 to 150 mg kg-1.

    CONCLUSIONS: This review article precisely narrates the current status, sources, and potential effects of REEs on plants, animals, humans health. There are also a few examples where REEs have been used to benefit human health. However, still there is scarce information about threshold levels of REEs in the soil, aquatic, and terrestrial resources as well as living entities. Therefore, an aggressive effort is required for global action to generate more data on REEs. This implies we prescribe an urgent need for inter-disciplinary studies about REEs in order to identify their toxic effects on both ecosystems and organisms.

    Matched MeSH terms: Environmental Monitoring/methods*
  12. Adiana G, Juahir H, Joseph B, Shazili NAM
    Mar Pollut Bull, 2017 Oct 15;123(1-2):232-240.
    PMID: 28865793 DOI: 10.1016/j.marpolbul.2017.08.055
    The present study aims to define the possible sources that contribute to the level of Pb into the Brunei Bay, Borneo. The cluster analysis has classified the bay into the northern part with heavy and agriculture-related industries; the southern area with a moderate rural human settlement as well as the southwestern area with a more pristine environment and a low level of human settlement. The score plot of spatial discriminant analysis verified a significant influence of the river system toward the estuary, whereas the temporal discriminant analysis has discriminated the seasonal changes. In comparison to elsewhere, the stable Pb isotopic ratios in Brunei Bay showed a fingerprint similar to coal-related sources and of aerosol input. Briefly, even though Pb in the Brunei Bay ecosystem proved to be at a low level, the stable Pb isotopic ratios showed that human and industrial activities are slowly contributing Pb into the bay ecosystem.
    Matched MeSH terms: Environmental Monitoring/methods
  13. Affandi FA, Ishak MY
    Environ Sci Pollut Res Int, 2019 Jun;26(17):16939-16951.
    PMID: 31028621 DOI: 10.1007/s11356-019-05137-7
    Mining activities are responsible for the elevated input levels of suspended sediment and hazardous metals into the riverine ecosystem. These have been shown to threaten the riverine fish populations and can even lead to localized population extinction. To date, research on the effects of mining activities on fish has been focused within metal contamination and bioaccumulation and its threat to human consumption, neglecting the effects of suspended sediment. This paper reviews the effects of suspended sediment and metal pollution on riverine ecosystem and fish population by examining the possibilities of genetic changes and population extinction. In addition, possible assessments and studies of the riverine fish population are discussed to cope with the risks from mining activities and fish population declines.
    Matched MeSH terms: Environmental Monitoring/methods*
  14. Aggelis DG, Alver N, Chai HK
    ScientificWorldJournal, 2014;2014:435238.
    PMID: 24701167 DOI: 10.1155/2014/435238
    Matched MeSH terms: Environmental Monitoring/methods
  15. Ahmad UK, Ulang Z, Yusop Z, Fong TL
    Water Sci Technol, 2002;46(9):117-25.
    PMID: 12448460
    The complex nature of natural organic matter (NOM), and the impact of this matter on drinking water quality have necessitated the characterization studies of NOM. A fluorescence technique for the characterization of NOM in Malaysian river water is reported. Water samples from several river sampling sites were collected and concentrated using a low-pressure reverse osmosis (LPROM). Solid phase extraction (SPE) using C18 extraction cartridges were used to fractionate the water samples into humic and non-humic fractions. To differentiate and classify various types of humic substances, fluorescence was applied in emission, excitation and in synchronous-scan modes. A synchronous spectral profile was found to be able to differentiate humic and fulvic acids better than the emission or excitation spectra. Synchronous excitation spectra showed different spectral patterns for the water samples due to different origin. All water samples showed the presence of both fulvic and humic acids.
    Matched MeSH terms: Environmental Monitoring/methods*
  16. Ahmad Z, Zafar Q, Sulaiman K, Akram R, Karimov KS
    Sensors (Basel), 2013;13(3):3615-24.
    PMID: 23493124 DOI: 10.3390/s130303615
    In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.
    Matched MeSH terms: Environmental Monitoring/methods
  17. Ahmad-Kamil EI, Ramli R, Jaaman SA, Bali J, Al-Obaidi JR
    ScientificWorldJournal, 2013;2013:892746.
    PMID: 24163635 DOI: 10.1155/2013/892746
    Seagrass is a valuable marine ecosystem engineer. However, seagrass population is declining worldwide. The lack of seagrass research in Malaysia raises questions about the status of seagrasses in the country. The seagrasses in Lawas, which is part of the coral-mangrove-seagrass complex, have never been studied in detail. In this study, we examine whether monthly changes of seagrass population in Lawas occurred. Data on estimates of seagrass percentage cover and water physicochemical parameters (pH, turbidity, salinity, temperature, and dissolved oxygen) were measured at 84 sampling stations established within the study area from June 2009 to May 2010. Meteorological data such as total rainfall, air temperature, and Southern Oscillation Index were also investigated. Our results showed that (i) the monthly changes of seagrass percentage cover are significant, (ii) the changes correlated significantly with turbidity measurements, and (iii) weather changes affected the seagrass populations. Our study indicates seagrass percentage increased during the El-Nino period. These results suggest that natural disturbances such as weather changes affect seagrass populations. Evaluation of land usage and measurements of other water physicochemical parameters (such as heavy metal, pesticides, and nutrients) should be considered to assess the health of seagrass ecosystem at the study area.
    Matched MeSH terms: Environmental Monitoring/methods*
  18. Ahmed MF, Alam L, Mohamed CAR, Mokhtar MB, Ta GC
    PMID: 30241360 DOI: 10.3390/ijerph15102056
    The presence of toxic polonium-210 (Po-210) in the environment is due to the decay of primordial uranium-238. Meanwhile, several studies have reported elevated Po-210 radioactivity in the rivers around the world due to both natural and anthropogenic factors. However, the primary source of Po-210 in Langat River, Malaysia might be the natural weathering of granite rock along with mining, agriculture and industrial activities. Hence, this is the first study to determine the Po-210 activity in the drinking water supply chain in the Langat River Basin to simultaneously predict the human health risks of Po-210 ingestion. Therefore, water samples were collected in 2015⁻2016 from the four stages of the water supply chain to analyze by Alpha Spectrometry. Determined Po-210 activity, along with the influence of environmental parameters such as time-series rainfall, flood incidents and water flow data (2005⁻2015), was well within the maximum limit for drinking water quality standard proposed by the Ministry of Health Malaysia and World Health Organization. Moreover, the annual effective dose of Po-210 ingestion via drinking water supply chain indicates an acceptable carcinogenic risk for the populations in the Langat Basin at 95% confidence level; however, the estimated annual effective dose at the basin is higher than in many countries. Although several studies assume the carcinogenic risk of Po-210 ingestion to humans for a long time even at low activity, however, there is no significant causal study which links Po-210 ingestion via drinking water and cancer risk of the human. Since the conventional coagulation method is unable to remove Po-210 entirely from the treated water, introducing a two-layer water filtration system at the basin can be useful to achieve SDG target 6.1 of achieving safe drinking water supplies well before 2030, which might also be significant for other countries.
    Matched MeSH terms: Environmental Monitoring/methods
  19. Ajab H, Ali Khan AA, Nazir MS, Yaqub A, Abdullah MA
    Environ Res, 2019 09;176:108563.
    PMID: 31280029 DOI: 10.1016/j.envres.2019.108563
    Environmental monitoring is important to determine the extent of eco-system pollution and degradation so that effective remedial strategies can be formulated. In this study, an environmentally friendly and cost-effective sensor made up of novel carbon electrode modified with cellulose and hydroxyapatite was developed for the detection of trace lead ions in aqueous system and palm oil mill effluent. Zinc, cadmium, and copper with lead were simultaneously detected using this method. The electrode exhibited high tolerance towards twelve common metal ions and three model surface active substances - sodium dodecyl sulfate, Triton X-100, and cetyltrimethylammonium bromide. Under optimum conditions, the sensor detected lead ions in palm oil mill effluent in the concentration range of 10-50 μg/L with 0.11 ± 0.37 μg/L limit of detection and 0.37 ± 0.37 μg/L limit of quantification. The validation using tap water, blood serum and palm oil mill effluent samples and compared with Atomic Absorption Spectroscopy, suggested excellent sensitivity of the sensor to detect lead ions in simple and complex matrices. The cellulose produced based on "green" techniques from agro-lignocellulosic wastes, in combination with hydroxyapatite, were proven effective as components in the carbon electrode composite. It has great potential in both clinical and environmental use.
    Matched MeSH terms: Environmental Monitoring/methods*
  20. Al-Abadi AM, Pradhan B, Shahid S
    Environ Monit Assess, 2015 Oct;188(10):549.
    PMID: 27600115 DOI: 10.1007/s10661-016-5564-0
    The objective of this study is to delineate groundwater flowing well zone potential in An-Najif Province of Iraq in a data-driven evidential belief function model developed in a geographical information system (GIS) environment. An inventory map of 68 groundwater flowing wells was prepared through field survey. Seventy percent or 43 wells were used for training the evidential belief functions model and the reset 30 % or 19 wells were used for validation of the model. Seven groundwater conditioning factors mostly derived from RS were used, namely elevation, slope angle, curvature, topographic wetness index, stream power index, lithological units, and distance to the Euphrates River in this study. The relationship between training flowing well locations and the conditioning factors were investigated using evidential belief functions technique in a GIS environment. The integrated belief values were classified into five categories using natural break classification scheme to predict spatial zoning of groundwater flowing well, namely very low (0.17-0.34), low (0.34-0.46), moderate (0.46-0.58), high (0.58-0.80), and very high (0.80-0.99). The results show that very low and low zones cover 72 % (19,282 km(2)) of the study area mostly clustered in the central part, the moderate zone concentrated in the west part covers 13 % (3481 km(2)), and the high and very high zones extended over the northern part cover 15 % (3977 km(2)) of the study area. The vast spatial extension of very low and low zones indicates that groundwater flowing wells potential in the study area is low. The performance of the evidential belief functions spatial model was validated using the receiver operating characteristic curve. A success rate of 0.95 and a prediction rate of 0.94 were estimated from the area under relative operating characteristics curves, which indicate that the developed model has excellent capability to predict groundwater flowing well zones. The produced map of groundwater flowing well zones could be used to identify new wells and manage groundwater storage in a sustainable manner.
    Matched MeSH terms: Environmental Monitoring/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links