Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Sudaryanto A, Kunisue T, Tanabe S, Niida M, Hashim H
    Arch Environ Contam Toxicol, 2005 Oct;49(3):429-37.
    PMID: 16132420
    This study determined the concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides, and tris(4-chlorophenyl) methane (TCPMe) in human breast milk samples collected in 2003 from primipara mothers living in Penang, Malaysia. OCs were detected in all the samples analyzed with DDTs, hexachlorocyclohexane isomers (HCHs), and PCBs as the major contaminants followed by chlordane compounds (CHLs), hexachlorobenzene (HCB), and TCPMe. The residue levels of DDTs, HCHs, and CHLs were comparable to or higher than those in general populations of other countries, whereas PCBs and HCB were relatively low. In addition, dioxins and related compounds were also detected with a range of dioxin equivalent concentrations from 3.4 to 24 pg-TEQs/g lipid wt. Levels of toxic equivalents (TEQs) were slightly higher than those in other developing countries but still much lower than those of industrialized nations. One donor mother contained a high TEQs level, equal to the mean value in human breast milk from Japan, implying that some of the residents in Malaysia may be exposed to specific pollution sources of dioxins and related compounds. No association was observed between OCs concentrations and maternal characteristics, which might be related to a limited number of samples, narrow range of age of the donor mothers, and/or other external factors. The recently identified endocrine disrupter, TCPMe, was also detected in all human breast milk samples of this study. A significant positive correlation was observed between TCPMe and DDTs, suggesting that technical DDT might be a source of TCPMe in Malaysia. The present study provides a useful baseline for future studies on the accumulations of OCs in the general population of Malaysia.
    Matched MeSH terms: Environmental Pollutants/analysis*
  2. Sakai N, Alsaad Z, Thuong NT, Shiota K, Yoneda M, Ali Mohd M
    Chemosphere, 2017 Oct;184:857-865.
    PMID: 28646768 DOI: 10.1016/j.chemosphere.2017.06.070
    Arsenic and 5 heavy metals (nickel, copper, zinc, cadmium and lead) were quantitated in surface water (n = 18) and soil/ore samples (n = 45) collected from 5 land uses (oil palm converted from forest, oil palm in peat swamp, bare land, quarry and forest) in the Selangor River basin by inductively coupled plasma mass spectrometry (ICP-MS). Geographic information system (GIS) was used as a spatial analytical tool to classify 4 land uses (forest, agriculture/peat, urban and bare land) from a satellite image taken by Landsat 8. Source profiling of the 6 elements was conducted to identify their occurrence, their distribution and the pollution source associated with the land use. The concentrations of arsenic, cadmium and lead were also analyzed in maternal blood (n = 99) and cord blood (n = 87) specimens from 136 pregnant women collected at the University of Malaya Medical Center for elucidating maternal exposure as well as maternal-to-fetal transfer. The source profiling identified that nickel and zinc were discharged from sewage and/or industrial effluents, and that lead was discharged from mining sites. Arsenic showed a site-specific pollution in tin-tungsten deposit areas, and the pollution source could be associated with arsenopyrite. The maternal blood levels of arsenic (0.82 ± 0.61 μg/dL), cadmium (0.15 ± 0.2 μg/dL) and lead (2.6 ± 2.1 μg/dL) were not significantly high compared to their acute toxicity levels, but could have attributable risks of chronic toxicity. Those in cord blood were significantly decreased in cadmium (0.06 ± 0.07 μg/dL) and lead (0.99 ± 1.2 μg/dL) but were equivalent in arsenic (0.82 ± 1.1 μg/dL) because of the different kinetics of maternal-to-fetal transfer.
    Matched MeSH terms: Environmental Pollutants/analysis
  3. Hodges JE, Vamshi R, Holmes C, Rowson M, Miah T, Price OR
    Integr Environ Assess Manag, 2014 Apr;10(2):237-46.
    PMID: 23913410 DOI: 10.1002/ieam.1476
    Environmental risk assessment of chemicals is reliant on good estimates of product usage information and robust exposure models. Over the past 20 to 30 years, much progress has been made with the development of exposure models that simulate the transport and distribution of chemicals in the environment. However, little progress has been made in our ability to estimate chemical emissions of home and personal care (HPC) products. In this project, we have developed an approach to estimate subnational emission inventory of chemical ingredients used in HPC products for 12 Asian countries including Bangladesh, Cambodia, China, India, Indonesia, Laos, Malaysia, Pakistan, Philippines, Sri Lanka, Thailand, and Vietnam (Asia-12). To develop this inventory, we have coupled a 1 km grid of per capita gross domestic product (GDP) estimates with market research data of HPC product sales. We explore the necessity of accounting for a population's ability to purchase HPC products in determining their subnational distribution in regions where wealth is not uniform. The implications of using high resolution data on inter- and intracountry subnational emission estimates for a range of hypothetical and actual HPC product types were explored. It was demonstrated that for low value products (<500 US$ per capita/annum required to purchase product) the maximum deviation from baseline (emission distributed via population) is less than a factor of 3 and it would not result in significant differences in chemical risk assessments. However, for other product types (>500 US$ per capita/annum required to purchase product) the implications on emissions being assigned to subnational regions can vary by several orders of magnitude. The implications of this on conducting national or regional level risk assessments may be significant. Further work is needed to explore the implications of this variability in HPC emissions to enable the HPC industry and/or governments to advance risk-based chemical management policies in emerging markets.
    Matched MeSH terms: Environmental Pollutants/analysis*
  4. Ikonomopoulou MP, Olszowy H, Francis R, Ibrahim K, Whittier J
    Sci Total Environ, 2013 Apr 15;450-451:301-6.
    PMID: 23500829 DOI: 10.1016/j.scitotenv.2013.02.031
    A variety of trace metals were measured in the egg contents of three clutches of Chelonia mydas collected from Kuala Terengganu state in Peninsular Malaysia. We quantified Mn, Cu, Zn, Se (essential trace metals) and As (anthropogenic pollutant) at several developmental stages obtained by incubating eggs at two different temperatures (27 °C and 31 °C). The incubation temperatures were chosen because they produce predominantly male or predominantly female hatchlings, respectively. The eggs were removed from the sand and washed before being placed in incubators, to ensure that the only possible source of the detected metals was maternal transfer. Other metals: Mo, Co, Ni, Cd, Sn, Sb, Hg, Tl and Pb (all non-essential metals) were detected at concentrations below the lower limit of quantitation (LLOQ). Trace metal concentrations, particularly [Zn], increased during development, other metals (Cu, As, Se and Cr) accumulated to a lesser degree than zinc but no significant differences were observed between the incubation temperatures at any stage of incubation. To date, only a few studies on trace metals in turtle embryos and hatchlings have been reported; this study will provide basic knowledge on the accumulation of trace metals during development at two different incubation temperatures.
    Matched MeSH terms: Environmental Pollutants/analysis*
  5. Tham LG, Perumal N, Syed MA, Shamaan NA, Shukor MY
    J Environ Biol, 2009 Jan;30(1):135-8.
    PMID: 20112875
    An inhibitive assay of insecticides using Acetylcholinesterase (AChE) from the local fish Clarias batrachus is reported. AChE was assayed according to the modified method of Ellman. Screening of insecticide and heavy metals showed that carbofuran and carbaryl strongly inhibited C. batrachus AChE. The inhibition concentration (IC) IC50 values (and the 95% confidence interval) for both carbofuran and carbaryl inhibition on C. batrachus AChE at 6.66 (5.97-7.52) and 130.00 (119.3-142.5) microg l(-1), respectively was within the IC50 range of Electrophorus electricus at 6.20 (6.03-6.39) and 133.01 (122.40-145.50) microg l(-1), respectively and were much lower than bovine AChE at 20.94 (19.53-22.58) and 418.80 (390.60-451.60) microg l(-1), respectively. The results showed that C. batrachus have the potential to be used as a cheaper and more readily available source of AChE than other more commercially available sources.
    Matched MeSH terms: Environmental Pollutants/analysis*
  6. Inayat-Hussain SH, Lubis SH, Sakian NI, Ghazali AR, Ali NS, El Sersi M, et al.
    Toxicol Appl Pharmacol, 2007 Mar;219(2-3):210-6.
    PMID: 17140616
    A cross-sectional study was conducted to investigate the effects of acute and chronic pesticide exposure on the plasma beta-glucuronidase enzyme activity among five patients of acute pesticide poisoning in Tengku Ampuan Rahimah Hospital, Klang, 230 farmers in the MADA area, Kedah and 49 fishermen in Setiu, Terengganu. The duration of pesticide exposure among the patients was unknown, but the plasma samples from patients were collected on day one in the hospital. The duration of pesticide exposure among the farmers was between 1 and 45 years. The beta-glucuronidase activity was compared with plasma cholinesterase activity in the same individual. The plasma cholinesterase activity was measured using Cholinesterase (PTC) Reagent set kit (Teco Diagnostics, UK) based on colorimetric method, while the plasma beta-glucuronidase activity was measured fluorometrically based on beta-glucuronidase assay. The plasma cholinesterase activity was significantly reduced (p<0.05) among the patients (1386.786+/-791.291 U/L/min) but the inhibition in plasma cholinesterase activity among the farmers (7346.5+/-1860.786 U/L/min) was not significant (p>0.05). The plasma beta-glucuronidase activity among the farmers was significantly elevated (p<0.05) (0.737+/-0.425 microM/h) but not significant among the patients (p>0.05). The plasma cholinesterase activity was positively correlated with the plasma beta-glucuronidase activity among the farmers (r=0.205, p<0.01) but not among the patients (r=0.79, p>0.05). Thus, plasma beta-glucuronidase enzyme activity can be measured as a biomarker for the chronic exposure of pesticide. However, further studies need to be performed to confirm whether plasma beta-glucuronidase can be a sensitive biomarker for anticholinesterase pesticide poisoning.
    Matched MeSH terms: Environmental Pollutants/analysis
  7. Tanabe S, Kunisue T
    Environ Pollut, 2007 Mar;146(2):400-13.
    PMID: 16949712
    In this paper, we concisely reviewed the contamination of persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) in human breast milk collected from Asian countries such as Japan, China, Philippines, Vietnam, Cambodia, India, Malaysia, and Indonesia during 1999-2003. Dioxins, PCBs, CHLs in Japanese, and DDTs in Vietnamese, Chinese, Cambodian, Malaysian, and HCHs in Chinese, Indian, and HCB in Chinese breast milk were predominant. In India, levels of dioxins and related compounds (DRCs) in the mothers living around the open dumping site were notably higher than those from the reference site and other Asian developing countries, indicating that significant pollution sources of DRCs are present in the dumping site of India and the residents there have been exposed to relatively higher levels of these contaminants possibly via bovine milk.
    Matched MeSH terms: Environmental Pollutants/analysis*
  8. Monirith I, Ueno D, Takahashi S, Nakata H, Sudaryanto A, Subramanian A, et al.
    Mar Pollut Bull, 2003 Mar;46(3):281-300.
    PMID: 12604061
    Contamination of persistent organochlorines (OCs) such as PCBs (polychlorinated biphenyls), DDT and its metabolites (DDTs), HCH (hexachlorocyclohexane) isomers (HCHs), chlordane compounds (CHLs), and HCB (hexachlorobenzene) were examined in mussels collected from coastal waters of Asian countries such as Cambodia, China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, Philippines, Far East Russia, Singapore, and Vietnam in 1994, 1997, 1998, 1999, and 2001 to elucidate the contamination status, distribution and possible pollution sources and to assess the risks on aquatic organisms and human. OCs were detected in all mussels collected from all the sampling sites investigated. Considerable residue levels of p,p(')-DDT and alpha-HCH were found in mussels and the concentrations of DDTs and HCHs found in mussels from Asian developing countries were higher than those in developed nations suggesting present usage of DDTs and HCHs along the coastal waters of Asian developing countries. On the other hand, lower concentrations of PCBs detected in mussels from Asian developing countries than those in developed countries indicate that PCBs contamination in mussels is strongly related to industrial and activities. To our knowledge, this is a first comprehensive report on monitoring OCs pollution in the Asia-Pacific region.
    Matched MeSH terms: Environmental Pollutants/analysis
  9. Tahziz A, Mohamad Haron DE, Aziz MY
    Molecules, 2020 May 16;25(10).
    PMID: 32429475 DOI: 10.3390/molecules25102335
    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are widely used in products, and are known for their water and grease repellent properties. The persistence nature and potential toxicity of these substances have raised substantial concerns about health effects. Regarding humans, food consumption has reportedly been a significant source of exposure for both compounds. Hence, this study was performed to develop and validate an analytical method for PFOS and PFOA in egg yolks using liquid chromatographic tandem mass spectrometry (LC-MS/MS) followed by the determination of concentration of both compounds in the yolk of poultry eggs in Malaysia. A total of 47 poultry egg yolk samples were extracted by a simple protein precipitation technique using acetonitrile. The analytical method was developed using LC-MS/MS and validated based on the Food and Drug Administration (FDA)'s Bioanalytical Method Validation guidelines. The results revealed that PFOS was quantitatively detected in six samples, with the concentration range between 0.5 and 1.01 ng g-1. Among these, five samples were from home-produced chicken eggs, and one sample was from a quail egg. The levels of PFOA in all samples were below the quantifiable limit (<0.1 ng g-1). This indicated that the contamination of PFCs in poultry eggs were mostly attributed to the nature of free foraging animals, which had direct contact with the contaminants in soil and feed. In conclusion, a fast and robust analytical method for analyzing PFOS and PFOA in egg yolk samples using LC-MS/MS was successfully developed and validated. The presence of these emerging contaminants in this study signified widespread pollution in the environment.
    Matched MeSH terms: Environmental Pollutants/analysis*
  10. Cheng Z, Li HH, Wang HS, Zhu XM, Sthiannopkao S, Kim KW, et al.
    Environ Res, 2016 Oct;150:423-30.
    PMID: 27372065 DOI: 10.1016/j.envres.2016.06.011
    Phthalate esters are used in a wide variety of consumer products, and human exposure to this class of compounds is widespread. Nevertheless, studies on dietary exposure of human to phthalates are limited. In this study, to assess the daily intakes of phthalate esters and the possible adverse health impacts, different food samples were collected from three areas of Cambodia, one of the poorest countries in the world. The ∑phthalate ester concentrations in Kampong Cham, Kratie and Kandal provinces ranged from 0.05 to 2.34 (median 0.88) μgg(-1), 0.19-1.65 (median 0.86) μgg(-1) and 0.24-3.05 (median 0.59) μgg(-1) wet weight (ww), respectively. Di-2-Ethylhexyl phthalate (DEHP) and diisobutyl phthalate (DiBP) were the predominant compounds among all foodstuffs. The estimated daily intake (EDI) of phthalate esters for the general population in Kampong Cham, Kratie and Kandal was 34.3, 35.6 and 35.8μgkg(-1) bw d(-1), respectively. The dietary daily intake of DEHP, benzylbutyl phthalate (BBP) and di-n-butyl phthalate (DBP) in Kampong Cham, Kratie and Kandal were below the tolerable daily intakes (TDI) imposed by the European Food Safety Authority (EFSA) and reference doses (RfD) imposed by The United States Environmental Protection Agency (USEPA). Rice contributed the greatest quantity of DEHP to the daily intake in Cambodia so may deserve further exploration. To our knowledge, this is the first study to investigate the occurrence and the daily intakes of phthalate esters in Cambodia.
    Matched MeSH terms: Environmental Pollutants/analysis*
  11. Asaduzzaman K, Khandaker MU, Binti Baharudin NA, Amin YBM, Farook MS, Bradley DA, et al.
    Chemosphere, 2017 Jun;176:221-230.
    PMID: 28273529 DOI: 10.1016/j.chemosphere.2017.02.114
    With rapid urbanization and large-scale industrial activities, modern human populations are being increasingly subjected to chronic environmental heavy metal exposures. Elemental uptake in tooth dentine is a bioindicator, the uptake occurring during the formation and mineralization processes, stored to large extent over periods of many years. The uptake includes essential elements, most typically geogenic dietary sources, as well as non-essential elements arising through environmental insults. In this study, with the help of the Dental Faculty of the University of Malaya, a total of 50 separate human teeth were collected from dental patients of various ethnicity, age, gender, occupation, dietary habit, residency, etc. Analysis was conducted using inductively coupled plasma-mass spectrometry (ICP-MS), most samples indicating the presence of the following trace elements, placed in order of concentration, from least to greatest: As, Mn, Ba, Cu, Cr, Pb, Zn, Hg, Sb, Al, Sr, Sn. The concentrations have been observed to increase with age. Among the ethnic groups, the teeth of ethnic Chinese showed marginally greater metal concentrations than those of the Indians and Malays, the teeth dentine of females generally showing greater concentrations than that of males. Greater concentrations of Hg, Cu and Sn were found in molars while Pb, Sr, Sb and Zn were present in greater concentrations in incisors. With the elevated concentration levels of heavy metals in tooth dentine reflecting pollution from industrial emissions and urbanization, it is evident that human tooth dentine can provide chronological information on exposure, representing a reliable bio-indicator of environmental pollution.
    Matched MeSH terms: Environmental Pollutants/analysis*
  12. Kassim A, Halmi MIE, Gani SSA, Zaidan UH, Othman R, Mahmud K, et al.
    Ecotoxicol Environ Saf, 2020 Jun 15;196:110527.
    PMID: 32278138 DOI: 10.1016/j.ecoenv.2020.110527
    Assessment of eco-toxicant using bioluminescent bacterial assay is a widely used and globally accepted method. In this work, a new luminescent bacterium was isolated from squid (Loligo duvauceli) and identified as Photobacterium leiognathi strain AK-MIE using 16S rRNA, phylogeny analysis. The predicted optimum conditions by RSM were 2.76% (w/v) NaCl, 2.28% (w/v) peptone, 0.34% (w/v) yeast extract, and pH 6.83 with 541,211.80 RLU of luminescent production whereas the predicted optimum conditions by ANN were 2.21% (w/v) NaCl, 2.27% (w/v) peptone, 0.39% (w/v) yeast extract, and pH 6.94 which produced 541,986.20 RLU. The validation analysis of both RSM and ANN show 0.60% and 0.69% deviation from the predicted results indicating that both models provided good quality predictions with ANN showing a superior data fitting capability for non-linear regression analysis. Toxicity tests show strain AK-MIE was sensitive to mercury (concentration causing 50% inhibition or IC50 of 0.00978 mgL-1), followed by cadmium (IC50 of 0.5288 mgL-1), copper IC50 of (0.8117 mgL-1), silver (IC50 of 1.109 mgL-1), and lead (IC50 of 10.71 mgL-1) which are more sensitive than previously isolated luminescent bacteria, suggesting that strain AK-MIE has the potential to be used in toxicity assessment of heavy metals in the environment. Based on the field trial results, several sediment samples from industrial areas in Bangi, Selangor managed to inhibit the bioluminescence of strain AK-MIE. Validation method carried out using ICP-MS proved the presence of several toxic heavy metal elements.
    Matched MeSH terms: Environmental Pollutants/analysis*
  13. Janaydeh M, Ismail A, Omar H, Zulkifli SZ, Bejo MH, Aziz NAA
    Environ Monit Assess, 2017 Dec 27;190(1):47.
    PMID: 29282545 DOI: 10.1007/s10661-017-6416-2
    Heavy metal pollution has become a global concern due to accumulation in tissue and transferable effects to humans via the food chain. This study focused on monitoring the accumulation of cadmium (Cd) and lead (Pb) in surface soil and body content: bone, heart, brain, liver, lung, muscle, kidney, feathers, feces, and gizzard contents of house crow Corvus splendens in the Klang region, Malaysia. The results revealed the occurrence of Pb and Cd in all biological samples from house crows, food contents, and surface soil samples. Heart and kidney accrued high amounts of Cd, while high amounts of Pb were found to accumulate in bones and feathers. Major discrepancies were also discovered in the concentrations of metals between juvenile and adults, as well as female and male bird samples. Concentrations of Pb and Cd in house crow internal tissues correlated significantly with that of bird feathers, but none could be established with that of surface soil. In addition, a significant correlation was observed between Pb concentration in the internal tissues to that of the feces, but the same was not the case when compared with the surface soil concentration. Metal accrual in the house crows feathers and feces may be through a long-term transmission via the food chain, which are eliminated from feathers via molting. This may suggest the utility of molted breast feathers of house crow in the bio-monitoring of Cd and Pb contamination, whereas feces of house crow appear only to be suitable for the bio-monitoring of Pb contamination.
    Matched MeSH terms: Environmental Pollutants/analysis
  14. Anezaki K, Kannan N, Nakano T
    Environ Sci Pollut Res Int, 2015 Oct;22(19):14478-88.
    PMID: 24809497 DOI: 10.1007/s11356-014-2985-6
    This study reports the concentrations and congener partners of polychlorinated biphenyls (PCBs) in commercially available paints. Polycyclic-type pigments containing dioxazine violet (pigment violet (PV) 23, PV37) and diketopyrrolopyrrole (PR254, PR255) were found to contain PCB-56, PCB-77, PCB-40, PCB-5, and PCB-12, and PCB-6, PCB-13, and PCB-15, respectively, as major congeners. Dioxazine violet is contaminated with by-products during synthesis from o-dichlorobenzene, which is used as a solvent during synthesis, and diketopyrrolopyrrole is contaminated with by-products during synthesis from p-chlorobenzonitrile. The concentration of PCBs in paint containing PV23 or PV37 was 0.050-29 mg/kg, and toxic equivalency (TEQ) values ranged 1.1-160 pg-TEQ/g. The concentration of PCBs in paint containing PR254 or PR255 was 0.0019-2.4 mg/kg. Naphthol AS is an azo-type pigment, and PCB-52 was detected in paint containing pigment red (PR) 9 with 2,5-dichloroaniline as its source. PCB-146, PCB-149, and PCB-153 were identified from paint containing PR112 produced from 2,4,5-trichloroaniline, as major congeners. These congeners have chlorine positions similar to aniline, indicating that these congeners are by-products obtained during the synthesis of pigments. The concentrations of PCBs in paints containing PR9 and PR112 were 0.0042-0.43 and 0.0044-3.8 mg/kg, respectively. The corresponding TEQ for PR112 was 0.0039-8.6 pg-TEQ/g.
    Matched MeSH terms: Environmental Pollutants/analysis*
  15. Shabanda IS, Koki IB, Low KH, Zain SM, Khor SM, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Dec;26(36):37193-37211.
    PMID: 31745807 DOI: 10.1007/s11356-019-06718-2
    Human health is threatened by significant emissions of heavy metals into the urban environment due to various activities. Various studies describing health risk analyses on soil and dust have been conducted previously. However, there are limited studies that have been carried out regarding the potential health risk assessment of heavy metals in urban road dust of < 63-μm diameter, via incidental ingestion, dermal contact, and inhalation exposure routes by children and adults in developing countries. Therefore, this study evaluated the health risks of heavy metal exposure via ingestion, dermal contact, and inhalation of urban dust particles in Petaling Jaya, Malaysia. Heavy metals such as lead (Pb), chromium (Cr), zinc (Zn), copper (Cu), and manganese (Mn) were measured using dust samples obtained from industrial, high-traffic, commercial, and residential areas by using inductively coupled plasma mass spectrometry (ICP-MS). The principal component and hierarchical cluster analysis showed the dominance of these metal concentrations at sites associated with anthropogenic activities. This was suggestive of industrial, traffic emissions, atmospheric depositions, and wind as the significant contributors towards urban dust contamination in the study sites. Further exploratory analysis underlined Cr, Pb, Cu, and Zn as the most representative metals in the dust samples. In accommodating the uncertainties associated with health risk calculations and simulating the reasonable maximum exposure of these metals, the related health risks were estimated at the 75th and 95th percentiles. Furthermore, assessing the exposure to carcinogenic and non-carcinogenic metals in the dust revealed that ingestion was the primary route of consumption. Children who ingested dust particles in Petaling Jaya could be more vulnerable to carcinogenic and non-carcinogenic risks, but the exposure for both children and adults showed no potential health effects. Therefore, this study serves as an important premise for a review and reformation of the existing environmental quality standards for human health safety.
    Matched MeSH terms: Environmental Pollutants/analysis*
  16. Aris AZ, Shamsuddin AS, Praveena SM
    Environ Int, 2014 Aug;69:104-19.
    PMID: 24825791 DOI: 10.1016/j.envint.2014.04.011
    17α-ethynylestradiol (EE2) is a synthetic hormone, which is a derivative of the natural hormone, estradiol (E2). EE2 is an orally bio-active estrogen, and is one of the most commonly used medications for humans as well as livestock and aquaculture activity. EE2 has become a widespread problem in the environment due to its high resistance to the process of degradation and its tendency to (i) absorb organic matter, (ii) accumulate in sediment and (iii) concentrate in biota. Numerous studies have reported the ability of EE2 to alter sex determination, delay sexual maturity, and decrease the secondary sexual characteristics of exposed organisms even at a low concentration (ng/L) by mimicking its natural analogue, 17β-estradiol (E2). Thus, the aim of this review is to provide an overview of the science regarding EE2, the concentration levels in the environment (water, sediment and biota) and summarize the effects of this compound on exposed biota at various concentrations, stage life, sex, and species. The challenges in respect of EE2 include the extension of the limited database on the EE2 pollution profile in the environment, its fate and transport mechanism, as well as the exposure level of EE2 for better prediction and definition revision of EE2 toxicity end points, notably for the purpose of environmental risk assessment.
    Matched MeSH terms: Environmental Pollutants/analysis*
  17. Baskaran G, Masdor NA, Syed MA, Shukor MY
    ScientificWorldJournal, 2013;2013:678356.
    PMID: 24194687 DOI: 10.1155/2013/678356
    Heavy metals pollution has become a great threat to the world. Since instrumental methods are expensive and need skilled technician, a simple and fast method is needed to determine the presence of heavy metals in the environment. In this study, an inhibitive enzyme assay for heavy metals has been developed using crude proteases from Coriandrum sativum. In this assay, casein was used as a substrate and Coomassie dye was used to denote the completion of casein hydrolysis. In the absence of inhibitors, casein was hydrolysed and the solution became brown, while in the presence of metal ions such as Hg²⁺ and Zn²⁺, the hydrolysis of casein was inhibited and the solution remained blue. Both Hg²⁺ and Zn²⁺ exhibited one-phase binding curve with IC₅₀ values of 3.217 mg/L and 0.727 mg/L, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for Hg were 0.241 and 0.802 mg/L, respectively, while the LOD and LOQ for Zn were 0.228 and 0.761 mg/L, respectively. The enzyme exhibited broad pH ranges for activity. The crude proteases extracted from Coriandrum sativum showed good potential for the development of a rapid, sensitive, and economic inhibitive assay for the biomonitoring of Hg²⁺ and Zn²⁺ in the aquatic environments.
    Matched MeSH terms: Environmental Pollutants/analysis
  18. Naganathan S, Razak HA, Hamid SN
    J Environ Manage, 2013 Oct 15;128:637-41.
    PMID: 23845957 DOI: 10.1016/j.jenvman.2013.06.009
    This paper reports the corrosivity and leaching behavior of CLSM made using two different industrial wastes i.e. bottom ash from an incineration facility and quarry dust. The leachate samples were derived from fresh and hardened CLSM mixtures, and studied for leaching and electrical resistivity. The release of various contaminants and the consequent environmental impact caused by the contaminants were studied by the measurement of contaminants in the bleed, in the leachate at 28 days, and on the leachate derived from crushed block and whole block leaching done over a period of 126 days. Results indicated that the CLSM mixtures are non corrosive; diffusion was the leaching mechanism; and the contaminants were found to be moderate to low mobility.
    Matched MeSH terms: Environmental Pollutants/analysis
  19. Md Khudzari J, Wagiran H, Hossain I, Ibrahim N
    J Environ Radioact, 2013 Jan;115:1-5.
    PMID: 22846873 DOI: 10.1016/j.jenvrad.2012.05.013
    This work presents a study of human hair as a bio-indicator for detection of heavy metals as part of environmental health surveillance programs project to develop a subject of interest in the biomedical and environmental sciences. A total of 34 hair samples were analyzed that consisting of 29 samples from sanitation workers and five samples from students. The hair samples were prepared and treated in accordance to the International Atomic Energy Agency (IAEA) recommendations. The concentrations of heavy metals were analyzed using the energy dispersive X-ray fluorescence (EDXRF) technique by X-50 Mobile X-ray Fluorescence (XRF) at Oceanography Institute, Universiti Malaysia Terengganu. The performance of EDXRF analyzer was tested by Standard Reference Material (SRM 2711) Montana Soil which was in good agreement with certified value within 14% deviations except for Hg. While seven heavy metals: Mn, Fe, Ni, Cu, Zn, Se, and Sb were detected in both groups, three additional elements, i.e. As, Hg and Pb, were detected only in sanitation workers group. For sanitation workers group, the mean concentration of six elements, Mn, Fe, Cu, Zn, Se, and Sb, shows elevated concentration as compared to the control samples concentration. Results from both groups were compared and discussed in relation to their respective heavy metals concentrations.
    Matched MeSH terms: Environmental Pollutants/analysis*
  20. Sobhanzadeh E, Abu Bakar NK, Bin Abas MR, Nemati K
    Environ Monit Assess, 2012 Sep;184(9):5821-8.
    PMID: 21989900 DOI: 10.1007/s10661-011-2384-0
    In this study, a rapid, specific and sensitive multi-residue method based on acetonitrile extraction followed by dispersive solid-phase extraction (d-SPE) clean-up was implemented and validated for multi-class pesticide residues determination in palm oil for the first time. Liquid-liquid extraction followed by low-temperature precipitation procedure was evaluated in order to study the freezing-out clean-up efficiency to obtain high recovery yield and low co-extract fat residue in the final extract. For clean-up step, d-SPE was carried out using a combination of anhydrous magnesium sulphate (MgSO(4)), primary secondary amine, octadecyl (C(18)) and graphitized carbon black. Recovery study was performed at two concentration levels (10 and 100 ng g(-1)), yielding recovery rates between 74.52% and 97.1% with relative standard deviation values below 10% (n = 6) except diuron. Detection and quantification limits were lower than 5 and 9 ng g(-1), respectively. In addition, soft matrix effects (≤±20%) were observed for most of the studied pesticides except malathion that indicated medium (20-50%) matrix effects. The proposed method was successfully applied to the analysis of suspected palm oil samples.
    Matched MeSH terms: Environmental Pollutants/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links