Displaying publications 1 - 20 of 103 in total

Abstract:
Sort:
  1. Yaacob JS, Loh HS, Mat Taha R
    ScientificWorldJournal, 2013;2013:613635.
    PMID: 23844406 DOI: 10.1155/2013/613635
    Mantled fruits as a result of somaclonal variation are often observed from the oil palm plantlets regenerated via tissue culture. The mantling of fruits with finger-like and thick outer coating phenotypes significantly reduces the seed size and oil content, posing a threat to oil palm planters, and may jeopardize the economic growth of countries that depend particularly on oil palm plantation. The molecular aspects of the occurrence of somaclonal variations are yet to be known, possibly due to gene repression such as DNA methylation, histone methylation and histone deacetylation. Histone deacetylases (HDACs), involved in eukaryotic gene regulation by catalyzing the acetyl groups are removal from lysine residues on histone, hence transcriptionally repress gene expression. This paper described the total protein polymorphism profiles of somaclonal variants of oil palm and the effects of histone deacetylation on this phenomenon. Parallel to the different phenotypes, the protein polymorphism profiles of the mantled samples (leaves, fruits, and florets) and the phenotypically normal samples were proven to be different. Higher HDAC activity was found in mantled leaf samples than in the phenotypically normal leaf samples, leading to a preliminary conclusion that histone deacetylation suppressed gene expression and contributed to the development of somaclonal variants.
    Matched MeSH terms: Enzyme Activation/genetics
  2. Onsa GH, bin Saari N, Selamat J, Bakar J
    J Agric Food Chem, 2000 Oct;48(10):5041-5.
    PMID: 11052775
    Latent polyphenol oxidase (LPPO), an enzyme responsible for the browning reaction of sago starches during processing and storage, was investigated. The enzyme was effectively extracted and partially purified from the pith using combinations of nonionic detergents. With Triton X-114 and a temperature-induced phase partitioning method, the enzyme showed a recovery of 70% and purification of 4. 1-fold. Native PAGE analysis of the partially purified LPPO revealed three activity bands when stained with catechol and two bands with pyrogallol. The molecular masses of the enzymes were estimated by SDS-PAGE to be 37, 45, and 53 kDa. The enzyme showed optimum pH values of 4.5 with 4-methylcatechol as a substrate and 7.5 with pyrogallol. The LPPO was highly reactive toward diphenols and triphenols. The activity of the enzyme was greatly enhanced in the presence of trypsin, SDS, ethanol, and linoleic acid.
    Matched MeSH terms: Enzyme Activation
  3. Amid M, Manap MY, Zohdi N
    ScientificWorldJournal, 2014;2014:640949.
    PMID: 25050403 DOI: 10.1155/2014/640949
    The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S) ratio (1:2 to 1:6, w/w), temperature (-18°C to 25°), mixing time (60 to 180 seconds), and the pH of the buffer (2.0 to 8.0). The results indicate that the enzyme extraction conditions exhibited the least significant (P < 0.05) effect on temperature stability. Conversely, the extraction conditions had the most significant (P < 0.05) effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P < 0.05) among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U), specific activity (14.2 U/mg), temperature stability (88.4%), pH stability (85.2%), surfactant agent stability (87.2%), and storage stability (90.3%).
    Matched MeSH terms: Enzyme Activation/drug effects
  4. Nadarajan V, Shanmugam H, Sthaneshwar P, Jayaranee S, Sultan KS, Ang C, et al.
    Int J Lab Hematol, 2011 Oct;33(5):463-70.
    PMID: 21501392 DOI: 10.1111/j.1751-553X.2011.01309.x
    INTRODUCTION:
    The glucose-6-phosphate dehydrogenase (G6PD) fluorescent spot test (FST) is a useful screening test for G6PD deficiency, but is unable to detect heterozygote G6PD-deficient females. We sought to identify whether reporting intermediate fluorescence in addition to absent and bright fluorescence on FST would improve identification of mildly deficient female heterozygotes.

    METHODS:
    A total of 1266 cord blood samples (705 male, 561 female) were screened for G6PD deficiency using FST (in-house method) and a quantitative enzyme assay. Fluorescence intensity of the FST was graded as either absent, intermediate or normal. Samples identified as showing absent or intermediate fluorescence on FST were analysed for the presence of G6PD mutations using TaqMan@SNP genotyping assays and direct nucleotide sequencing.

    RESULTS:
    Of the 1266 samples, 87 samples were found to be intermediate or deficient by FST (49 deficient, 38 intermediate). Of the 49 deficient samples, 48 had G6PD enzyme activity of ≤ 9.5 U/g Hb and one sample had normal enzyme activity. All 38 intermediate samples were from females. Of these, 21 had G6PD activity of between 20% and 60%, and 17 samples showed normal G6PD activity. Twenty-seven of the 38 samples were available for mutation analysis of which 13 had normal G6PD activity. Eleven of the 13 samples with normal G6PD activity had identifiable G6PD mutations.

    CONCLUSION:
    Glucose-6-phosphate dehydrogenase heterozygote females cannot be identified by FST if fluorescence is reported as absent or present. Distinguishing samples with intermediate fluorescence from absent and bright fluorescence improves detection of heterozygote females with mild G6PD deficiency. Mutational studies confirmed that 85% of intermediate samples with normal enzyme activity had identifiable G6PD mutations.
    Matched MeSH terms: Enzyme Activation/genetics
  5. Gumel AM, Annuar MS, Chisti Y, Heidelberg T
    Ultrason Sonochem, 2012 May;19(3):659-67.
    PMID: 22105013 DOI: 10.1016/j.ultsonch.2011.10.016
    Ultrasonic irradiation greatly improved the Candida antarctica lipase B mediated ring opening polymerization of ε-caprolactone to poly-6-hydroxyhexanoate in the ionic liquid 1-ethyl-3-methylimidazolium tetraflouroborate. Compared to the conventional nonsonicated reaction, sonication improved the monomer conversion by 63% and afforded a polymer product of a narrower molecular weight distribution and a higher degree of crystallinity. Under sonication, the polydispersity index of the product was ~1.44 compared to a value of ~2.55 for the product of the conventional reaction. With sonication, nearly 75% of the monomer was converted to product, but the conversion was only ~16% for the reaction carried out conventionally. Compared to conventional operation, sonication enhanced the rate of polymer propagation by >2-fold and the turnover number of the lipase by >3-fold.
    Matched MeSH terms: Enzyme Activation/radiation effects
  6. Looi LM, Ng MH, Cheah PL
    Malays J Pathol, 2007 Jun;29(1):33-5.
    PMID: 19105326 MyJurnal
    The unique ability of tumour cells to proliferate indefinitely is crucial to neoplastic progression as it allows these cells to express the aggressive properties of cancer without the censure of physiological ageing. This is in contrast to normal somatic cells which are subject to a "mitotic clock," a phenomenon that has been linked to telomeric shortening after each round of cell replication, so that eventually the loss of genetic material reaches a critical stage and the cells undergo senescence and cell death. A study was conducted to investigate the role of telomerase, an RNA-containing enzyme that restores the telomere length, in the neoplastic cell immortalization and progression process. Fresh human tissue samples taken from excision specimens received by the Department of Pathology, University of Malaya Medical Centre, were investigated for telomerase activity using a commercial Telomerase PCR-ELISA kit (Boehringer Mannheim). Specimens comprised 33 breast lesions (10 infiltrating breast adenocarcinoma, 13 fibroadenoma and 10 non-neoplastic breast tissue), 27 colonic lesions (17 colonic adenocarcinoma and 10 non-neoplastic colonic mucosa) and 42 cervical lesions (20 cervical carcinoma and 22 non-neoplastic cervical tissues). Telomerase activity was found in 6 (60%) of 10 breast carcinomas, 6 (46%) of 13 fibroadenomas, none of the 10 nonneoplastic breast samples, 3 (17.6%) of 17 colon carcinomas and none of the 10 non-neoplastic colonic mucosal samples, 12 (60%) of 20 cervical carcinoma and 3 (13.6%) of 22 non-neoplastic cervical samples. 5/10 (50%) Stage I, 4/7 (57%) Stage II, 2/2 (100%) Stage III and 1/1 (100%) Stage IV cervical carcinomas showed telomerase activity. These findings support a contributory role for telomerase in tumourigenesis with activation occurring from neoplastic transformation and increasing with tumour progression.
    Matched MeSH terms: Enzyme Activation/physiology*
  7. Inayat-Hussain SH, Annuar BO, Din LB, Ali AM, Ross D
    Toxicol In Vitro, 2003 Aug;17(4):433-9.
    PMID: 12849726
    Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.
    Matched MeSH terms: Enzyme Activation/drug effects
  8. Sivanaesan L, Kwan TK, Perumal R
    Biochem. Int., 1991 Oct;25(3):561-70.
    PMID: 1666829
    Calmodulin, an activator protein in most calcium-dependent processes, was isolated to apparent homogeneity from the femurs of 1-day old chicks using phenyl-Sepharose and high performance liquid chromatography. The purified calmodulin was found to produce a 6-fold increase in the activity of alkaline phosphatase isolated from the same source. A Ca2+ concentration of 10(-5) M was required for the activation. Purification of alkaline phosphatase involved acetone precipitation, DEAE-Sephacel and Sephadex G-200 column chromatography. The enzyme was purified to 540-fold and had a specific activity of 10.75 U/mg protein.
    Matched MeSH terms: Enzyme Activation/physiology
  9. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Molecules, 2009 Nov 06;14(11):4476-85.
    PMID: 19924080 DOI: 10.3390/molecules14114476
    This study examines the in vitro antioxidant activities of the methanol extract of Swietenia mahagoni seeds (SMCM seed extract). The extract was screened for possible antioxidant activities by free radical scavenging activity (DPPH), xanthine oxidase inhibition (XOI), hydrogen peroxide scavenging activity (HPSA) and ferric-reducing antioxidant power (FRAP) assays. The total phenolic and flavonoid contents were also determined. The extract exhibits antioxidant activity of 23.29% with an IC(50 )value of 2.3 mg/mL in the DPPH radical scavenging method, 47.2% in the XOI assay, 49.5% by the HPSA method, and 0.728 mmol/Fe(II)g in the FRAP method at the concentration tested. The amount of total phenolics and flavonoid contents was 70.83 mg gallic acid equivalent (GAE) and 2.5 +/- 0.15 mg of catechin equivalent per gram of dry extract, respectively. High Performance Thin Layer Chromatography (HPTLC) screening indicates the presence of phenolic compounds in the SMCM seed extract. The results indicate that the extract has both high free radical scavenging and xanthine oxidase inhibition activity. The antioxidant activity of SMCM seed extract is comparable with that of other Malaysian tropical fruits and herbal plants.
    Matched MeSH terms: Enzyme Activation/drug effects*
  10. Csato V, Kadir SZSA, Khavandi K, Bennett H, Sugden S, Gurney AM, et al.
    Physiol Rep, 2019 Nov;7(22):e14260.
    PMID: 31782255 DOI: 10.14814/phy2.14260
    We investigated the biomechanical relationship between intraluminal pressure within small mesenteric resistance arteries, oxidant activation of PKG, Ca2+ sparks, and BK channel vasoregulation. Mesenteric resistance arteries from wild type (WT) and genetically modified mice with PKG resistance to oxidative activation were studied using wire and pressure myography. Ca2+ sparks and Ca2+ transients within vascular smooth muscle cells of intact arteries were characterized using high-speed confocal microscopy of intact arteries. Arteries were studied under conditions of varying intraluminal pressure and oxidation. Intraluminal pressure specifically, rather than the generic stretch of the artery, was necessary to activate the oxidative pathway. We demonstrated a graded step activation profile for the generation of Ca2+ sparks and also a functional "ceiling" for this pressure --sensitive oxidative pathway. During steady state pressure - induced constriction, any additional Ca2+ sensitive-K+ channel functional availability was independent of oxidant activated PKG. There was an increase in the amplitude, but not the Area under the Curve (AUC) of the caffeine-induced Ca2+ transient in pressurized arteries from mice with oxidant-resistant PKG compared with wild type. Overall, we surmise that intraluminal pressure within resistance arteries controls Ca2+ spark vasoregulation through a tightly controlled pathway with a graded onset switch. The pathway, underpinned by oxidant activation of PKG, cannot be further boosted by additional pressure or oxidation once active. We propose that these restrictive characteristics of pressure-induced Ca2+ spark vasoregulation confer stability for the artery in order to provide a constant flow independent of additional pressure fluctuations or exogenous oxidants.
    Matched MeSH terms: Enzyme Activation/drug effects; Enzyme Activation/physiology
  11. Ting SY, Janaranjani M, Merosha P, Sam KK, Wong SC, Goh PT, et al.
    J Agric Food Chem, 2020 Apr 08;68(14):4116-4130.
    PMID: 32186869 DOI: 10.1021/acs.jafc.9b06692
    While the capacity for long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis has been elucidated in vertebrates and several invertebrate phyla, the comparative knowledge in crustaceans remains vague. A key obstacle in mapping the full spectrum of LC-PUFA biosynthesis in crustacean is the limited evidence of the functional activities of enzymes involved in desaturation or elongation of polyunsaturated fatty acid substrates. In this present study, we report on the cloning and functional characterization of two Elovl elongases from the orange mud crab, Scylla olivacea. Sequence and phylogenetic analysis suggest these two Elovl as putative Elovl4 and Elovl6, respectively. Using the recombinant expression system in Saccharomyces cerevisiae, we demonstrate the elongation capacity for C18-C22 PUFA substrates in the S. olivacea Elovl4. The S. olivacea Elovl6 elongated saturated fatty acids, monounsaturated fatty acids, and interestingly, C18-C20 PUFA. Taken together, both Elovl fulfill the elongation steps required for conversion of C18 PUFA to their respective LC-PUFA products. Elovl4 is expressed mainly in the hepatopancreas and gill tissues, while Elovl6 is predominant in digestive tissues. The mRNA expression of both enzymes was higher in mud crabs fed with vegetable oil-based diets. Tissue fatty acid composition also showed the existence of LC-PUFA biosynthesis intermediate products in tissues expressing these two elongases. In summary, we report here two novel Elovl with PUFA elongating activities in a marine brachyuran. This will contribute significantly to the understanding of the LC-PUFA biosynthesis pathway in crustaceans and advance the development of aquafeed for intensive farming of the mud crab.
    Matched MeSH terms: Enzyme Activation
  12. Amid M, Manap Y, Zohdi NK
    Molecules, 2014;19(3):3731-43.
    PMID: 24662085 DOI: 10.3390/molecules19033731
    Amylase is one of the most important enzymes in the world due to its wide application in various industries and biotechnological processes. In this study, amylase enzyme from Hylocereus polyrhizus was encapsulated for the first time in an Arabic gum-chitosan matrix using freeze drying. The encapsulated amylase retained complete biocatalytic activity and exhibited a shift in the optimum temperature and considerable increase in the pH and temperature stabilities compared to the free enzyme. Encapsulation of the enzyme protected the activity in the presence of ionic and non-ionic surfactants and oxidizing agents (H₂O₂) and enhanced the shelf life. The storage stability of amylase is found to markedly increase after immobilization and the freeze dried amylase exhibited maximum encapsulation efficiency value (96.2%) after the encapsulation process. Therefore, the present study demonstrated that the encapsulation of the enzyme in a coating agent using freeze drying is an efficient method to keep the enzyme active and stable until required in industry.
    Matched MeSH terms: Enzyme Activation/drug effects
  13. Ahmad W, Kumolosasi E, Jantan I, Bukhari SN, Jasamai M
    Chem Biol Drug Des, 2014 Jun;83(6):670-81.
    PMID: 24406103 DOI: 10.1111/cbdd.12280
    Arachidonic acid and its metabolites have generated a heightened interest due to their significant role in inflammation. Inhibiting the enzymes involved in arachidonic acid metabolism has been considered as the synergistic anti-inflammatory effect. A series of novel curcumin diarylpentanoid analogues were synthesized and evaluated for their inhibitory effects on activity of secretory phospholipase A2 , cyclooxygenases, soybean lipo-oxygenase as well as microsomal prostaglandin E synthase-1. Among the curcumin analogues, compounds 3, 6, 9, 12, and 17 exhibited strong inhibition of secretory phospholipase A2 activity, with IC50 values ranging from 5.89 to 11.02 μm. Seven curcumin analogues 1, 3, 6, 7, 9, 11, and 12 showed inhibition of cyclooxygenases-2 with IC50 values in the range of 46.11 to 94.86 μm, which were lower than that of curcumin. Compounds 3, 6, 7, 12, and 17 showed strong inhibition of lipo-oxygenase enzyme activity. Preliminary screening of diarylpentanoid curcumin analogues for microsomal prostaglandin E synthase-1 activity revealed that four diarylpentanoid curcumin analogues 5, 6, 7, and 13 demonstrated higher inhibition of microsomal prostaglandin E synthase-1 activity with IC50 ranging from 2.41 to 4.48 μm, which was less than that of curcumin. The present results suggest that some of these diarylpentanoid analogues were able to inhibit the activity of these enzymes. This raises the possibility that diarylpentanoid analogues of curcumin might serve as useful starting point for the design of improved anti-inflammatory agents.
    Matched MeSH terms: Enzyme Activation/drug effects
  14. Syam S, Abdelwahab SI, Al-Mamary MA, Mohan S
    Molecules, 2012 May 25;17(6):6179-95.
    PMID: 22634834 DOI: 10.3390/molecules17066179
    Several chalcones were synthesized and their in vitro cytotoxicity against various human cell lines, including human breast adenocarcinoma cell line MCF-7, human lung adenocarcinoma cell line A549, human prostate cancer cell line PC3, human adenocarcinoma cell line HT-29 (colorectal cancer) and human normal liver cell line WRL-68 was evaluated. Most of the compounds being active cytotoxic agents, four of them with minimal IC₅₀ values were chosen and studied in detail with MCF-7 cells. The compounds 1, 5, 23, and 25 were capable in eliciting apoptosis in MCF-7 cells as shown by multiparameter cytotoxicity assay and caspase-3/7, -8, and -9 activities (p < 0.05). The ROS level showed 1.3-fold increase (p < 0.05) at the low concentrations used and thus it was concluded that the compounds increased the ROS level eventually leading to apoptosis in MCF-7 cells through intrinsic as well as extrinsic pathways.
    Matched MeSH terms: Enzyme Activation/drug effects
  15. Khoo BY, Chua SL, Balaram P
    Int J Mol Sci, 2010;11(5):2188-99.
    PMID: 20559509 DOI: 10.3390/ijms11052188
    Chrysin is a natural flavonoid currently under investigation due to its important biological anti-cancer properties. In most of the cancer cells tested, chrysin has shown to inhibit proliferation and induce apoptosis, and is more potent than other tested flavonoids in leukemia cells, where chrysin is likely to act via activation of caspases and inactivation of Akt signaling in the cells. Moreover, structure-activity relationships have revealed that the chemical structure of chrysin meets the key structural requirements of flavonoids for potent cytotoxicity in leukemia cells. It is possible that combination therapy or modified chrysin could be more potent than single-agent use or administration of unmodified chrysin. This study may help to develop ways of improving the effectiveness of chrysin in the treatment of leukemia and other human cancers in vitro.
    Matched MeSH terms: Enzyme Activation/drug effects
  16. Makpol S, Abidin AZ, Sairin K, Mazlan M, Top GM, Ngah WZ
    Oxid Med Cell Longev, 2010 Jan-Feb;3(1):35-43.
    PMID: 20716926 DOI: 10.4161/oxim.3.1.9940
    The effects of palm gamma-tocotrienol (GGT) on oxidative stress-induced cellular ageing was investigated in normal human skin fibroblast cell lines derived from different age groups; young (21-year-old, YF), middle (40-year-old, MF) and old (68-year-old, OF). Fibroblast cells were treated with gamma-tocotrienol for 24 hours before or after incubation with IC50 dose of H2O2 for 2 hours. Changes in cell viability, telomere length and telomerase activity were assessed using the MTS assay (Promega, USA), Southern blot analysis and telomere repeat amplification protocol respectively. Results showed that treatment with different concentrations of gamma-tocotrienol increased fibroblasts viability with optimum dose of 80 microM for YF and 40 microM for both MF and OF. At higher concentrations, gamma-tocotrienol treatment caused marked decrease in cell viability with IC50 value of 200 microM (YF), 300 microM (MF) and 100 microM (OF). Exposure to H2O2 decreased cell viability in dose dependent manner, shortened telomere length and reduced telomerase activity in all age groups. The IC50 of H2O2 was found to be; YF (700 microM), MF (400 microM) and OF (100 microM). Results showed that viability increased significantly (p < 0.05) when cells were treated with 80 microM and 40 microM gamma-tocotrienol prior or after H2O2-induced oxidative stress in all age groups. In YF and OF, pretreatment with gamma-tocotrienol prevented shortening of telomere length and reduction in telomerase activity. In MF, telomerase activity increased while no changes in telomere length was observed. However, post-treatment of gamma-tocotrienol did not exert any significant effects on telomere length and telomerase activity. Thus, these data suggest that gamma-tocotrienol protects against oxidative stress-induced cellular ageing by modulating the telomere length possibly via telomerase.
    Matched MeSH terms: Enzyme Activation/drug effects
  17. Tee TT, Cheah YH, Hawariah LP
    Anticancer Res, 2007 Sep-Oct;27(5A):3425-30.
    PMID: 17970090
    F16 is a plant-derived pharmacologically active fraction extracted from Eurycoma longifolia Jack. Previously, we have reported that F16 inhibited the proliferation of MCF-7 human breast cancer cells by inducing apoptotic cell death while having some degree of cytoselectivity on a normal human breast cell line, MCF-10A. In this study, we attempted to further elucidate the mode of action of F16. We found that the intrinsic apoptotic pathway was invoked, with the reduction of Bcl-2 protein. Then, executioner caspase-7 was cleaved and activated in response to F16 treatment. Furthermore, apoptosis in the MCF- 7 cells was accompanied by the specific proteolytic cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). Surprisingly, caspase-9 and p53 were unchanged with F16 treatment. We believe that the F16-induced apoptosis in MCF-7 cells occurs independently of caspase-9 and p53. Taken together, these results suggest that F16 from E. longifolia exerts anti-proliferative action and growth inhibition on MCF-7 cells through apoptosis induction and that it may have anticancer properties.
    Matched MeSH terms: Enzyme Activation/drug effects
  18. Anouar el H, Zakaria NS, Alsalme A, Shah SA
    Mini Rev Med Chem, 2015;15(14):1148-58.
    PMID: 26205959
    A natural pentacyclic triterpenoid oleanolic acid 1 and its biotransformed metabolites 2-3 are potential α-glucosidase inhibitors. To elucidate the inhibitory mechanism of compounds 1, 2 and 3 against α-glucosidase, we calculated (i) their electronic and optical properties using DFT and TD-DFT at the B3LYP/6-31G(d) level in gas and IEF-PCM solvent; and (ii) their binding energies to α-glucosidase via docking study. DFT results showed that the α-glucosidase inhibtion is mainly depend on the polarity parameters of the studied compounds. Docking results revealed that the activity increased with binding energies (i.e. the stability of ligand-receptor complex). The specroscopic data of oleanolic acid 1 and its metabolites 2 and 3 are well predicetd for 13C NMR chemical shifts (R2=99%) and 1H NMR chemical shifts (R2=90%); and for (ii) UV/vis spectra. The assignments and interpretation of NMR chemical shifts and bathochromic shift of λMAX absorption bands are discussed.
    Matched MeSH terms: Enzyme Activation/drug effects
  19. Taha M, Ismail NH, Khan A, Shah SA, Anwar A, Halim SA, et al.
    Bioorg Med Chem Lett, 2015 Aug 15;25(16):3285-9.
    PMID: 26077497 DOI: 10.1016/j.bmcl.2015.05.069
    We synthesized a series of novel 5-24 derivatives of oxindole. The synthesis started from 5-chlorooxindole, which was condensed with methyl 4-carboxybezoate and result in the formation of benzolyester derivatives of oxindole which was then treated with hydrazine hydrate. The oxindole benzoylhydrazide was treated with aryl acetophenones and aldehydes to get target compounds 5-24. The synthesized compounds were evaluated for urease inhibition; the compound 5 (IC50 = 13.00 ± 0.35 μM) and 11 (IC50 = 19.20 ± 0.50 μM) showed potent activity as compared to the standard drug thiourea (IC50 = 21.00 ± 0.01 μM). Other compounds showed moderate to weak activity. All synthetic compounds were characterized by different spectroscopic techniques including (1)H NMR, (13)C NMR, IR and EI MS. The molecular interactions of the active compounds within the binding site of urease enzyme were studied through molecular docking simulations.
    Matched MeSH terms: Enzyme Activation/drug effects
  20. Alhawarri MB, Dianita R, Razak KNA, Mohamad S, Nogawa T, Wahab HA
    Molecules, 2021 Apr 29;26(9).
    PMID: 33946788 DOI: 10.3390/molecules26092594
    Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman's assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer's disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.
    Matched MeSH terms: Enzyme Activation/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links