Displaying publications 1 - 20 of 399 in total

Abstract:
Sort:
  1. Alashrah S, Kandaiya S, Lum LS, Cheng SK
    Z Med Phys, 2013 Dec;23(4):270-8.
    PMID: 24113373 DOI: 10.1016/j.zemedi.2013.09.001
    One of the factors which influence the spatial resolution of a 2D detector array is the size of the single detector, another the transport of the secondary electrons from the walls into the measuring volume. In this study, the single ion chamber dose response function of an I'mRT MatriXX array was determined by comparison between slit beam dose profiles measured with the array and with EBT2 radiochromic film in a solid water-equivalent phantom at a shallow depth of 0.5cm and at a depth of 5cm beyond the depth dose maximum for a 6 MV photon beam. The dose response functions were obtained using two methods, the best fit method and the deconvolution method. At the shallow depth, a Lorentz function and at 5cm depth a Gaussian function, both with the same FWHM of 7.4mm within limits of uncertainty, were identified as the best suited dose response functions of the 4.5mm diameter single array chamber. These dose response functions were then tested on various dose profiles whose true shape had been determined with EBT2 film and with the IC03 ionization chamber. By convolving these with the Lorentz kernel (at shallow depth) and the Gaussian kernel (at 5cm depth) the signal profiles measured with the I'mRT MatriXX array were closely approximated. Thus, the convolution of TPS-calculated dose profiles with these dose response functions can minimize the differences between calculation and measurement which occur due to the limited spatial resolution of the I'mRT MatriXX detector.
    Matched MeSH terms: Equipment Design
  2. Tee HP, Corte C, Al-Ghamdi H, Prakoso E, Darke J, Chettiar R, et al.
    World J Gastroenterol, 2010 Aug 21;16(31):3905-10.
    PMID: 20712051
    AIM: To study the significance of cap-fitted colonoscopy in improving cecal intubation time and polyp detection rate.

    METHODS: This study was a prospective randomized controlled trial conducted from March 2008 to February 2009 in a tertiary referral hospital at Sydney. The primary end point was cecal intubation time and the secondary endpoint was polyp detection rate. Consecutive cases of total colonoscopy over a 1-year period were recruited. Randomization into either standard colonoscopy (SC) or cap-assisted colonoscopy (CAC) was performed after consent was obtained. For cases randomized to CAC, one of the three sizes of cap was used: D-201-15004 (with a diameter of 15.3 mm), D-201-14304 (14.6 mm) and D-201-12704 (13.0 mm). All of these caps were produced by Olympus Medical Systems, Japan. Independent predictors for faster cecal time and better polyp detection rate were also determined from this study.

    RESULTS: There were 200 cases in each group. There was no significant difference in terms of demographic characteristics between the two groups. CAC, when compared to the SC group, had no significant difference in terms of cecal intubation rate (96.0% vs 97.0%, P = 0.40) and time (9.94 +/- 7.05 min vs 10.34 +/- 6.82 min, P = 0.21), or polyp detection rate (32.8% vs 31.3%, P = 0.75). On the subgroup analysis, there was no significant difference in terms of cecal intubation time by trainees (88.1% vs 84.8%, P = 0.40), ileal intubation rate (82.5% vs 79.0%, P = 0.38) or total colonoscopy time (23.24 +/- 13.95 min vs 22.56 +/- 9.94 min, P = 0.88). On multivariate analysis, the independent determinants of faster cecal time were consultant-performed procedures (P < 0.001), male patients (P < 0.001), non-usage of hyoscine (P < 0.001) and better bowel preparation (P = 0.01). The determinants of better polyp detection rate were older age (P < 0.001), no history of previous abdominal surgery (P = 0.04), patients not having esophagogastroduodenoscopy in the same setting (P = 0.003), trainee-performed procedures (P = 0.01), usage of hyoscine (P = 0.01) and procedures performed for polyp follow-up (P = 0.01). The limitations of the study were that it was a single-center experience, no blinding was possible, and there were a large number of endoscopists.

    CONCLUSION: CAC did not significantly different from SC in term of cecal intubation time and polyp detection rate.

    Matched MeSH terms: Equipment Design
  3. Mohd Shukoor NS, Mohd Tamrin SB, Guan NY, Mohd Suadi Nata DH
    Work, 2018;60(1):129-134.
    PMID: 29843301 DOI: 10.3233/WOR-182741
    BACKGROUND: Hard hats are among the personal protective equipment (PPE) used in many industries to reduce the impact of any falling object on the skull and also to prevent head and brain injuries. However, the practice of wearing a safety helmet during working hours is still low. This is due to the physical discomfort perceived by safety helmet users.

    OBJECTIVE: Given the unpopularity of the current hard hat, the general perception of workers concerning its use and its measurements are the determining factors in the development of a new hard hat.

    METHOD: A cross-sectional study was conducted in which 132 male oil palm harvesters between 19 and 60 years of age were selected from among the employees of the same oil palm harvesting company. A set of questionnaires was developed to collect their socio-demographic information as well as their perceptions of comfort and the prevalence of head injury. In addition, a set of measuring instruments, including Martin's anthropometry set, was used for head measurement and data collection in respect of the current hard hat. In this research, six respondents were randomly selected to attend an interview session for qualitative assessment.RESULTSBased on the questionnaires, the unpopularity in the use of the hard hat was largely influenced by factors related to poor design, in general, and, specifically, poor ventilation (64%), load (67% ), and physical discomfort (42% ). The measurements of the anthropometric parameters and the dimensions of the hard hat also showed a significant mismatch.

    CONCLUSION: The unpopularity of the current hard hat among oil palm harvesters stemmed from the discomfort from wearing, which showed that the development of a new hard hat could lead to better usage and the greater likelihood of wearing a hard hat throughout the working day.

    Matched MeSH terms: Equipment Design/instrumentation; Equipment Design/methods; Equipment Design/standards*
  4. Mohajeri S, Aziz HA, Isa MH, Zahed MA, Bashir MJ, Adlan MN
    Water Sci Technol, 2010;61(5):1257-66.
    PMID: 20220248 DOI: 10.2166/wst.2010.018
    In the present study, Electrochemical Oxidation was used to remove COD and color from semi-aerobic landfill leachate collected from Pulau Burung Landfill Site (PBLS), Penang, Malaysia. Experiments were conducted in a batch laboratory-scale system in the presence of NaCl as electrolyte and aluminum electrodes. Central composite design (CCD) under Response surface methodology (RSM) was applied to optimize the electrochemical oxidation process conditions using chemical oxygen demand (COD) and color removals as responses, and the electrolyte concentrations, current density and reaction time as control factors. Analysis of variance (ANOVA) showed good coefficient of determination (R(2)) values of >0.98, thus ensuring satisfactory fitting of the second-order regression model with the experimental data. In un-optimized condition, maximum removals for COD (48.77%) and color (58.21%) were achieved at current density 80 mA/cm(2), electrolyte concentration 3,000 mg/L and reaction time 240 min. While after optimization at current density 75 mA/cm(2), electrolyte concentration 2,000 mg/L and reaction time 218 min a maximum of 49.33 and 59.24% removals were observed for COD and color respectively.
    Matched MeSH terms: Equipment Design
  5. Ujang Z, Ng SS, Nagaoka H
    Water Sci Technol, 2005;51(10):335-42.
    PMID: 16104438
    Biofouling control is important for effective process of membrane bioreactor (MBR). In this study, phenomena of biofouling for immersed type extended aeration MBR with two different anti-fouling aeration intensities were studied through a laboratory set up. The objectives of this study were (a) to observe biofouling phenomena of MBR that operates under different anti-fouling bubbling intensity, and simultaneously monitors performance of the MBR in organic carbon and nutrients removal; (b) to compare effectiveness of detergent and detergent-enzyme cleaning solutions in recovering biofouled membranes that operated in the extended aeration MBR. For MBR, which operated under continuous anti-fouling aeration, deposition and accumulation of suspended biomass on membrane surface were prohibited. However, flux loss was inescapable that biofilm layer was the main problem. Membrane cleaning was successfully carried out with detergent-enzyme mixture solutions and its effectiveness was compared with result from cleaning with just detergent solution.
    Matched MeSH terms: Equipment Design
  6. Moradihamedani P, Abdullah AH
    Water Sci Technol, 2018 Jan;77(1-2):346-354.
    PMID: 29377819 DOI: 10.2166/wst.2017.545
    Removal of low-concentration ammonia (1-10 ppm) from aquaculture wastewater was investigated via polysulfone (PSf)/zeolite mixed matrix membrane. PSf/zeolite mixed matrix membranes with different weight ratios (90/10, 80/20, 70/30 and 60/40 wt.%) were prepared and characterized. Results indicate that PSf/zeolite (80/20) was the most efficient membrane for removal of low-concentration ammonia. The ammonia elimination by PSf/zeolite (80/20) from aqueous solution for 10, 7, 5, 3 and 1 ppm of ammonia was 100%, 99%, 98.8%, 96% and 95% respectively. The recorded results revealed that pure water flux declined in higher loading of zeolite in the membrane matrix due to surface pore blockage caused by zeolite particles. On the other hand, ammonia elimination from water was decreased in higher contents of zeolite because of formation of cavities and macrovoids in the membrane substructure.
    Matched MeSH terms: Equipment Design
  7. Ngu H, Wong KK, Law PL
    Water Environ Res, 2012 Apr;84(4):299-304.
    PMID: 22834217
    A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm.
    Matched MeSH terms: Equipment Design
  8. Tiong TJ, Price GJ, Kanagasingam S
    Ultrason Sonochem, 2014 Sep;21(5):1858-65.
    PMID: 24735986 DOI: 10.1016/j.ultsonch.2014.03.024
    One of the uses of ultrasound in dentistry is in the field of endodontics (i.e. root canal treatment) in order to enhance cleaning efficiency during the treatment. The acoustic pressures generated by the oscillation of files in narrow channels has been calculated using the COMSOL simulation package. Acoustic pressures in excess of the cavitation threshold can be generated and higher values were found in narrower channels. This parallels experimental observations of sonochemiluminescence. The effect of varying the channel width and length and the dimensions and shape of the file are reported. As well as explaining experimental observations, the work provides a basis for the further development and optimisation of the design of endosonic files.
    Matched MeSH terms: Equipment Design
  9. Dabbagh A, Abdullah BJ, Ramasindarum C, Abu Kasim NH
    Ultrason Imaging, 2014 Oct;36(4):291-316.
    PMID: 24626566 DOI: 10.1177/0161734614526372
    Tissue-mimicking phantoms that are currently available for routine biomedical applications may not be suitable for high-temperature experiments or calibration of thermal modalities. Therefore, design and fabrication of customized thermal phantoms with tailored properties are necessary for thermal therapy studies. A multitude of thermal phantoms have been developed in liquid, solid, and gel forms to simulate biological tissues in thermal therapy experiments. This article is an attempt to outline the various materials and techniques used to prepare thermal phantoms in the gel state. The relevant thermal, electrical, acoustic, and optical properties of these phantoms are presented in detail and the benefits and shortcomings of each type are discussed. This review could assist the researchers in the selection of appropriate phantom recipes for their in vitro study of thermal modalities and highlight the limitations of current phantom recipes that remain to be addressed in further studies.
    Matched MeSH terms: Equipment Design
  10. Raman R, Omar R
    Trop Doct, 2010 Oct;40(4):210.
    PMID: 20729262 DOI: 10.1258/td.2010.100141
    An idea to fix broken nose pads of spectacles has been suggested.
    Matched MeSH terms: Equipment Design
  11. Schmitz RF, Abu Bakar MH, Omar ZH, Kamalanathan S, Schulpen TW, van der Werken C
    Trop Doct, 2001 Jul;31(3):152-4.
    PMID: 11444337
    This study evaluates the safety and results of surgery usingTaraKlamp Circumcision Device during a group circumcision. Atotal of 64 circumcisions of Muslim boys were performed by Medical Assistants supervised by Medical Doctors in a hall in Kuala Lumpur, Malaysia. A new type disposable clamp was used, which was removed 4 days after the operation. No major complications occurred and the boys experienced in general mild pain postoperatively. Mostly good cosmetic results were obtained and 90% of the parents would recommend this new clamp to others. Group circumcisions withTaraKlamp Circumcision Device (Kuala Lumpur, Malaysia) are safe, although proper patient selection and adequate training in using the device are mandatory.
    Matched MeSH terms: Equipment Design
  12. Lim R, Liong ML, Leong WS, Khan NA, Yuen KH
    Trials, 2015;16:279.
    PMID: 26093910 DOI: 10.1186/s13063-015-0803-1
    There is currently a lack of randomized, sham-controlled trials that are adequately powered, using validated outcomes, to allow for firm recommendations on the use of magnetic stimulation for stress urinary incontinence. We report a protocol of a multicenter, randomized, double-blind, sham-controlled parallel-group trial to evaluate the efficacy of magnetic stimulation for stress urinary incontinence.
    Matched MeSH terms: Equipment Design
  13. Ahmed S, Butterworth P, Barwick A, Sharma A, Hasan MZ, Nancarrow S
    Trials, 2022 Dec 16;23(1):1017.
    PMID: 36527100 DOI: 10.1186/s13063-022-06968-5
    BACKGROUND: Foot complications occur in conjunction with poorly controlled diabetes. Plantar forefoot ulceration contributes to partial amputation in unstable diabetics, and the risk increases with concomitant neuropathy. Reducing peak plantar forefoot pressure reduces ulcer occurrence and recurrence. Footwear and insoles are used to offload the neuropathic foot, but the success of offloading is dependent on patient adherence. This study aims to determine which design and modification features of footwear and insoles improve forefoot plantar pressure offloading and adherence in people with diabetes and neuropathy.

    METHODS: This study, involving a series of N-of-1 trials, included 21 participants who had a history of neuropathic plantar forefoot ulcers. Participants were recruited from two public hospitals and one private podiatry clinic in Sydney, New South Wales, Australia. This trial is non-randomised and unblinded. Participants will be recruited from three sites, including two high-risk foot services and a private podiatry clinic in Sydney, Australia. Mobilemat™ and F-Scan® plantar pressure mapping systems by TekScan® (Boston, USA) will be used to measure barefoot and in-shoe plantar pressures. Participants' self-reports will be used to quantify the wearing period over a certain period of between 2 and 4 weeks during the trial. Participant preference toward footwear, insole design and quality-of-life-related information will be collected and analysed. The descriptive and inferential statistical analyses will be performed using IBM SPSS Statistics (version 27). And the software NVivo (version 12) will be utilised for the qualitative data analysis.

    DISCUSSION: This is the first trial assessing footwear and insole interventions in people with diabetes by using a series of N-of-1 trials. Reporting self-declared wearing periods and participants' preferences on footwear style and aesthetics are the important approaches for this trial. Patient-centric device designs are the key to therapeutic outcomes, and this study is designed with that strategy in mind.

    TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12620000699965p. Registered on June 23, 2020.

    Matched MeSH terms: Equipment Design
  14. Akeiber HJ, Wahid MA, Hussen HM, Mohammad AT
    ScientificWorldJournal, 2014;2014:391690.
    PMID: 25313367 DOI: 10.1155/2014/391690
    The application of phase change materials (PCMs) in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.
    Matched MeSH terms: Equipment Design/instrumentation
  15. Ali MS, Kamarudin SK, Masdar MS, Mohamed A
    ScientificWorldJournal, 2014;2014:103709.
    PMID: 25478581 DOI: 10.1155/2014/103709
    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.
    Matched MeSH terms: Equipment Design
  16. Ahsan MR, Islam MT, Habib Ullah M, Mahadi WN, Latef TA
    ScientificWorldJournal, 2014;2014:909854.
    PMID: 25165750 DOI: 10.1155/2014/909854
    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.
    Matched MeSH terms: Equipment Design*
  17. Megat Hasnan MM, Mohd Sabri MF, Mohd Said S, Nik Ghazali NN
    ScientificWorldJournal, 2014;2014:912683.
    PMID: 25165751 DOI: 10.1155/2014/912683
    This paper presents the design and evaluation of a high force density fishbone shaped electrostatic comb drive actuator. This comb drive actuator has a branched structure similar to a fishbone, which is intended to increase the capacitance of the electrodes and hence increase the electrostatic actuation force. Two-dimensional finite element analysis was used to simulate the motion of the fishbone shaped electrostatic comb drive actuator and compared against the performance of a straight sided electrostatic comb drive actuator. Performances of both designs are evaluated by comparison of displacement and electrostatic force. For both cases, the active area and the minimum gap distance between the two electrodes were constant. An active area of 800 × 300 μm, which contained 16 fingers of fishbone shaped actuators and 40 fingers of straight sided actuators, respectively, was used. Through simulation, improvement of drive force of the fishbone shaped electrostatic comb driver is approximately 485% higher than conventional electrostatic comb driver. These results indicate that the fishbone actuator design provides good potential for applications as high force density electrostatic microactuator in MEMS systems.
    Matched MeSH terms: Equipment Design*
  18. Islam MT, Samsuzzaman M
    ScientificWorldJournal, 2014;2014:673846.
    PMID: 24987742 DOI: 10.1155/2014/673846
    This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78-8.91 GHz) and 10.35% (9.16-10.19 GHz) where S11 < -10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band.
    Matched MeSH terms: Equipment Design*
  19. Yahaya Rashid AS, Ramli R, Mohamed Haris S, Alias A
    ScientificWorldJournal, 2014;2014:190214.
    PMID: 25101312 DOI: 10.1155/2014/190214
    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process.
    Matched MeSH terms: Equipment Design
  20. Azimi M, Bin Adnan A, Sam AR, Tahir MM, Faridmehr I, Hodjati R
    ScientificWorldJournal, 2014;2014:802605.
    PMID: 25309957 DOI: 10.1155/2014/802605
    The seismic performance of RC columns could be significantly improved by continuous spiral reinforcement as a result of its adequate ductility and energy dissipation capacity. Due to post-earthquake brittle failure observations in beam-column connections, the seismic behaviour of such connections could greatly be improved by simultaneous application of this method in both beams and columns. In this study, a new proposed detail for beam to column connection introduced as "twisted opposing rectangular spiral" was experimentally and numerically investigated and its seismic performance was compared against normal rectangular spiral and conventional shear reinforcement systems. In this study, three full scale beam to column connections were first designed in conformance with Eurocode (EC2-04) for low ductility class connections and then tested by quasistatic cyclic loading recommended by ACI Building Code (ACI 318-02). Next, the experimental results were validated by numerical methods. Finally, the results revealed that the new proposed connection could improve the ultimate lateral resistance, ductility, and energy dissipation capacity.
    Matched MeSH terms: Equipment Design
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links