Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Reungwetwattana T, Cho BC, Lee KH, Pang YK, Fong CH, Kang JH, et al.
    J Thorac Oncol, 2023 Oct;18(10):1351-1361.
    PMID: 37702629 DOI: 10.1016/j.jtho.2023.06.016
    INTRODUCTION: Lazertinib is a third-generation central nervous system-penetrant tyrosine kinase inhibitor targeting mutant EGFR in NSCLC. Lazertinib exhibited improved efficacy versus gefitinib in the LASER301 study; this subset analysis compared lazertinib with gefitinib among Asian patients.

    METHODS: The phase 3 LASER301 study evaluated lazertinib efficacy and safety in treatment-naive patients with EGFR-mutated (exon 19 deletion or L858R) locally advanced or metastatic NSCLC. Patients were randomized one-to-one and received either lazertinib or gefitinib. The primary end point was investigator-assessed progression-free survival using Response Evaluation Criteria in Solid Tumors version 1.1. Secondary end points included overall survival, objective response rate, duration of response, and safety.

    RESULTS: Between February 13, 2020, and July 29, 2022, among 258 patients of Asian descent, the median progression-free survival was significantly longer with lazertinib than gefitinib (20.6 versus 9.7 mo; hazard ratio: 0.46; 95% confidence interval [CI]: 0.34-0.63, p < 0.001), and the benefit was consistent across predefined subgroups (exon 19 deletion, L858R, baseline central nervous system metastases). Objective response rate and disease control rates were similar between treatment groups. The median duration of response was 19.4 months (95% CI: 16.6-24.9) versus 9.6 months (95% CI: 6.9-12.4) in the lazertinib versus gefitinib group. Adverse event rates in Asian patients were comparable with the overall LASER301 population. Adverse events leading to discontinuation in the lazertinib and gefitinib groups were 13% and 12%, respectively.

    CONCLUSIONS: In LASER301, efficacy and safety results in Asian patients were consistent with the overall population. Lazertinib exhibited better efficacy than gefitinib in Asian patients with a tolerable safety profile.

    Matched MeSH terms: ErbB Receptors/genetics
  2. Ninomiya K, Arimura H, Tanaka K, Chan WY, Kabata Y, Mizuno S, et al.
    Comput Methods Programs Biomed, 2023 Jun;236:107544.
    PMID: 37148668 DOI: 10.1016/j.cmpb.2023.107544
    OBJECTIVES: To elucidate a novel radiogenomics approach using three-dimensional (3D) topologically invariant Betti numbers (BNs) for topological characterization of epidermal growth factor receptor (EGFR) Del19 and L858R mutation subtypes.

    METHODS: In total, 154 patients (wild-type EGFR, 72 patients; Del19 mutation, 45 patients; and L858R mutation, 37 patients) were retrospectively enrolled and randomly divided into 92 training and 62 test cases. Two support vector machine (SVM) models to distinguish between wild-type and mutant EGFR (mutation [M] classification) as well as between the Del19 and L858R subtypes (subtype [S] classification) were trained using 3DBN features. These features were computed from 3DBN maps by using histogram and texture analyses. The 3DBN maps were generated using computed tomography (CT) images based on the Čech complex constructed on sets of points in the images. These points were defined by coordinates of voxels with CT values higher than several threshold values. The M classification model was built using image features and demographic parameters of sex and smoking status. The SVM models were evaluated by determining their classification accuracies. The feasibility of the 3DBN model was compared with those of conventional radiomic models based on pseudo-3D BN (p3DBN), two-dimensional BN (2DBN), and CT and wavelet-decomposition (WD) images. The validation of the model was repeated with 100 times random sampling.

    RESULTS: The mean test accuracies for M classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.810, 0.733, 0.838, 0.782, and 0.799, respectively. The mean test accuracies for S classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.773, 0.694, 0.657, 0.581, and 0.696, respectively.

    CONCLUSION: 3DBN features, which showed a radiogenomic association with the characteristics of the EGFR Del19/L858R mutation subtypes, yielded higher accuracy for subtype classifications in comparison with conventional features.

    Matched MeSH terms: ErbB Receptors/genetics
  3. Cho BC, Ahn MJ, Kang JH, Soo RA, Reungwetwattana T, Yang JC, et al.
    J Clin Oncol, 2023 Sep 10;41(26):4208-4217.
    PMID: 37379502 DOI: 10.1200/JCO.23.00515
    PURPOSE: Lazertinib is a potent, CNS-penetrant, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor. This global, phase III study (LASER301) compared lazertinib versus gefitinib in treatment-naïve patients with EGFR-mutated (exon 19 deletion [ex19del]/L858R) locally advanced or metastatic non-small-cell lung cancer (NSCLC).

    PATIENTS AND METHODS: Patients were 18 years and older with no previous systemic anticancer therapy. Neurologically stable patients with CNS metastases were allowed. Patients were randomly assigned 1:1 to lazertinib 240 mg once daily orally or gefitinib 250 mg once daily orally, stratified by mutation status and race. The primary end point was investigator-assessed progression-free survival (PFS) by RECIST v1.1.

    RESULTS: Overall, 393 patients received double-blind study treatment across 96 sites in 13 countries. Median PFS was significantly longer with lazertinib than with gefitinib (20.6 v 9.7 months; hazard ratio [HR], 0.45; 95% CI, 0.34 to 0.58; P < .001). The PFS benefit of lazertinib over gefitinib was consistent across all predefined subgroups. The objective response rate was 76% in both groups (odds ratio, 0.99; 95% CI, 0.62 to 1.59). Median duration of response was 19.4 months (95% CI, 16.6 to 24.9) with lazertinib versus 8.3 months (95% CI, 6.9 to 10.9) with gefitinib. Overall survival data were immature at the interim analysis (29% maturity). The 18-month survival rate was 80% with lazertinib and 72% with gefitinib (HR, 0.74; 95% CI, 0.51 to 1.08; P = .116). Observed safety of both treatments was consistent with their previously reported safety profiles.

    CONCLUSION: Lazertinib demonstrated significant efficacy improvement compared with gefitinib in the first-line treatment of EGFR-mutated advanced NSCLC, with a manageable safety profile.

    Matched MeSH terms: ErbB Receptors/genetics
  4. Lu S, Shih JY, Jang TW, Liam CK, Yu Y
    Adv Ther, 2021 May;38(5):2038-2053.
    PMID: 33730350 DOI: 10.1007/s12325-021-01696-9
    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are a standard of care in the first-line treatment of patients with EGFR mutation-positive metastatic non-small-cell lung cancer (NSCLC). EGFR mutations are relatively common in Asian patients with NSCLC, and there is an increasing number of studies supporting the effectiveness of the second-generation TKI afatinib in routine clinical practice in Asia. This article reviews these real-world studies investigating afatinib as first-line treatment for EGFR mutation-positive NSCLC in Asian patients. Evidence from real-world studies with afatinib in this patient population supports findings from randomized controlled trials (RCTs) showing that afatinib is associated with more favorable outcomes compared with the first-generation EGFR TKIs. The effectiveness of afatinib has also been shown in real-world studies in Asian patients with poor prognostic factors, who are often under-represented or excluded from RCTs, such as those with uncommon EGFR mutations, brain metastases, or poor performance status, and elderly patients. The tolerability profile of afatinib in the real-world setting reflects that seen in RCTs, with no new safety signals reported in real-world studies in Asian patients with EGFR mutation-positive NSCLC. Dose-modification strategies also seem to be effective in the real world, with results of the RealGido study, which included 44% Asian patients, confirming findings from prospective clinical trials showing that tolerability-guided afatinib dose modifications can reduce the incidence of adverse events without adversely affecting clinical outcomes. While further research, including clinical trial data, is needed, real-world data have also demonstrated the feasibility of sequential afatinib followed by the third-generation TKI osimertinib in T790M-positive EGFR mutation-positive patients, which showed longer overall survival. Together, these real-world results demonstrate the real-world clinical effectiveness of afatinib as first-line treatment for patients with EGFR mutation-positive NSCLC.
    Matched MeSH terms: ErbB Receptors/genetics
  5. Liam CK, Yew CY, Pang YK, Wong CK, Poh ME, Tan JL, et al.
    BMC Cancer, 2023 Jul 14;23(1):659.
    PMID: 37452277 DOI: 10.1186/s12885-023-11156-y
    BACKGROUND: In non-small cell lung cancer (NSCLC), there may be a relationship between programmed death-ligand 1 (PD-L1) expression, driver mutations and cigarette smoking.

    METHODS: In this single-center retrospective study, the relationship between common driver mutations (EGFR mutation and ALK rearrangement) and PD-L1 expression in advanced NSCLC according to the patients' smoking history was examined. Light, moderate and heavy smokers had smoked 

    Matched MeSH terms: ErbB Receptors/genetics
  6. Soo RA, Cho BC, Kim JH, Ahn MJ, Lee KH, Zimina A, et al.
    J Thorac Oncol, 2023 Dec;18(12):1756-1766.
    PMID: 37865896 DOI: 10.1016/j.jtho.2023.08.017
    INTRODUCTION: Lazertinib, a third-generation mutant-selective EGFR tyrosine kinase inhibitor, improved progression-free survival compared with gefitinib in the phase 3 LASER301 study (ClinicalTrials.gov Identifier: NCT04248829). Here, we report the efficacy of lazertinib and gefitinib in patients with baseline central nervous system (CNS) metastases.

    METHODS: Treatment-naive patients with EGFR-mutated advanced NSCLC were randomized one-to-one to lazertinib (240 mg/d) or gefitinib (250 mg/d). Patients with asymptomatic or stable CNS metastases were included if any planned radiation, surgery, or steroids were completed more than 2 weeks before randomization. For patients with CNS metastases confirmed at screening or subsequently suspected, CNS imaging was performed every 6 weeks for 18 months, then every 12 weeks. End points assessed by blinded independent central review and Response Evaluation Criteria in Solid Tumors version 1.1 included intracranial progression-free survival, intracranial objective response rate, and intracranial duration of response.

    RESULTS: Of the 393 patients enrolled in LASER301, 86 (lazertinib, n = 45; gefitinib, n = 41) had measurable and or non-measurable baseline CNS metastases. The median intracranial progression-free survival in the lazertinib group was 28.2 months (95% confidence interval [CI]: 14.8-28.2) versus 8.4 months (95% CI: 6.7-not reached [NR]) in the gefitinib group (hazard ratio = 0.42, 95% CI: 0.20-0.89, p = 0.02). Among patients with measurable CNS lesions, the intracranial objective response rate was numerically higher with lazertinib (94%; n = 17) versus gefitinib (73%; n = 11, p = 0.124). The median intracranial duration of response with lazertinib was NR (8.3-NR) versus 6.3 months (2.8-NR) with gefitinib. Tolerability was similar to the overall LASER301 population.

    CONCLUSIONS: In patients with CNS metastases, lazertinib significantly improved intracranial progression-free survival compared with gefitinib, with more durable responses.

    Matched MeSH terms: ErbB Receptors/genetics
  7. Shi Yeen TN, Pathmanathan R, Shiran MS, Ahmad Zaid FA, Cheah YK
    J Biomed Sci, 2013 Apr 16;20:22.
    PMID: 23590575 DOI: 10.1186/1423-0127-20-22
    BACKGROUND: Somatic mutations of the epidermal growth factor receptor (EGFR) are reportedly associated with various responses in non-small cell lung cancer (NSCLC) patients receiving the anti-EGFR agents. Detection of the mutation therefore plays an important role in therapeutic decision making. The aim of this study was to detect EGFR mutations in formalin fixed paraffin embedded (FFPE) samples using both Scorpion ARMS and high resolution melt (HRM) assay, and to compare the sensitivity of these methods.

    RESULTS: All of the mutations were found in adenocarcinoma, except one that was in squamous cell carcinoma. The mutation rate was 45.7% (221/484). Complex mutations were also observed, wherein 8 tumours carried 2 mutations and 1 tumour carried 3 mutations.

    CONCLUSIONS: Both methods detected EGFR mutations in FFPE samples. HRM assays gave more EGFR positive results compared to Scorpion ARMS.

    Matched MeSH terms: ErbB Receptors/genetics*
  8. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Anbu P
    Mikrochim Acta, 2019 07 18;186(8):546.
    PMID: 31321546 DOI: 10.1007/s00604-019-3696-y
    A genomic DNA-based colorimetric assay is described for the detection of the early growth factor receptor (EGFR) mutation, which is the protruding reason for non-small cell lung cancer. A DNA sequence was designed and immobilized on unmodified gold nanoparticles (GNPs). The formation of the respective duplex indicates the presence of an EGFR mutation. It is accompanied by the aggregation of the GNPs in the presence of monovalent ions, and it indicates the presence of an EGFR mutation. This is accompanied by a color change from red (520 nm) to purple (620 nm). Aggregation was evidenced by transmission electron microscopy, scanning electron microscopy and atomic force microscopy. The limit of detection is 313 nM of the mutant target strand. A similar peak shift was observed for 2.5 μM concentrations of wild type target. No significant peak shift was observed with probe and non-complementary DNA. Graphical abstract Schematic representation of high-specific genomic DNA sequence on gold nanoparticle (GNP) aggregation with sodium chloride (NaCl). It illustrates the detection method for EGFR mutation on lung cancer detection. Red and purple colors of tubes represent dispersed and aggregated GNP, respectively.
    Matched MeSH terms: ErbB Receptors/genetics*
  9. Ahn MJ, Mendoza MJL, Pavlakis N, Kato T, Soo RA, Kim DW, et al.
    Clin Lung Cancer, 2022 Dec;23(8):670-685.
    PMID: 36151006 DOI: 10.1016/j.cllc.2022.07.012
    Non-small cell lung cancer (NSCLC) is a heterogeneous disease, with many oncogenic driver mutations, including de novo mutations in the Mesenchymal Epithelial Transition (MET) gene (specifically in Exon 14 [ex14]), that lead to tumourigenesis. Acquired alterations in the MET gene, specifically MET amplification is also associated with the development of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance in patients with EGFR-mutant NSCLC. Although MET has become an actionable biomarker with the availability of MET-specific inhibitors in selected countries, there is differential accessibility to diagnostic platforms and targeted therapies across countries in Asia-Pacific (APAC). The Asian Thoracic Oncology Research Group (ATORG), an interdisciplinary group of experts from Australia, Hong Kong, Japan, Korea, Mainland China, Malaysia, the Philippines, Singapore, Taiwan, Thailand and Vietnam, discussed testing for MET alterations and considerations for using MET-specific inhibitors at a consensus meeting in January 2022, and in subsequent offline consultation. Consensus recommendations are provided by the ATORG group to address the unmet need for standardised approaches to diagnosing MET alterations in NSCLC and for using these therapies. MET inhibitors may be considered for first-line or second or subsequent lines of treatment for patients with advanced and metastatic NSCLC harbouring MET ex14 skipping mutations; MET ex14 testing is preferred within multi-gene panels for detecting targetable driver mutations in NSCLC. For patients with EGFR-mutant NSCLC and MET amplification leading to EGFR TKI resistance, enrolment in combination trials of EGFR TKIs and MET inhibitors is encouraged.
    Matched MeSH terms: ErbB Receptors/genetics
  10. Dzul Keflee R, Leong KH, Ogawa S, Bignon J, Chan MC, Kong KW
    Biochem Pharmacol, 2022 Nov;205:115262.
    PMID: 36191627 DOI: 10.1016/j.bcp.2022.115262
    The role of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) has been vastly studied over the last decade. This has led to the rapid development of many generations of EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, patients treated with third-generation TKIs (osimertinib, avitinib and rociletinib) targeting the EGFR T790M mutation have shown emerging resistances and relapses. Therefore, further molecular understanding of NSCLC mutations, bypass signalling, tumour microenvironment and the existence of cancer stem cells to overcome such resistances is warranted. This will pave the way for designing novel and effective chemotherapies to improve patients' overall survival. In this review, we provide an overview of the multifaceted mechanisms of resistance towards EGFR-TKIs, as well as the challenges and perspectives that should be addressed in strategising chemotherapeutic treatments to overcome the ever-evolving and adaptive nature of NSCLC.
    Matched MeSH terms: ErbB Receptors/genetics
  11. Rohilla S, Singh M, Alzarea SI, Almalki WH, Al-Abbasi FA, Kazmi I, et al.
    PMID: 36734951 DOI: 10.1615/JEnvironPatholToxicolOncol.2022042983
    Treatment of lung cancer with conventional therapies, which include radiation, surgery, and chemotherapy results in multiple undesirable adverse or side effects. The major clinical challenge in developing new drug therapies for lung cancer is resistance, which involves mutations and disturbance in various signaling pathways. Molecular abnormalities related to epidermal growth factor receptor (EGFR), v-Raf murine sarcoma viral oncogene homolog B1 (B-RAF) Kirsten rat sarcoma virus (KRAS) mutations, translocation of the anaplastic lymphoma kinase (ALK) gene, mesenchymal-epithelial transition factor (MET) amplification have been studied to overcome the resistance and to develop new therapies for non-small cell lung cancer (NSCLC). But, inevitable development of resistance presents limits the clinical benefits of various new drugs. Here, we review current progress in the development of molecularly targeted therapies, concerning six clinical biomarkers: EGFR, ALK, MET, ROS-1, KRAS, and B-RAF for NSCLC treatment.
    Matched MeSH terms: ErbB Receptors/genetics
  12. Liam CK, Ahmad AR, Hsia TC, Zhou J, Kim DW, Soo RA, et al.
    Clin Cancer Res, 2023 May 15;29(10):1879-1886.
    PMID: 36971777 DOI: 10.1158/1078-0432.CCR-22-3318
    PURPOSE: The final analyses of the INSIGHT phase II study evaluating tepotinib (a selective MET inhibitor) plus gefitinib versus chemotherapy in patients with MET-altered EGFR-mutant NSCLC (data cut-off: September 3, 2021).

    PATIENTS AND METHODS: Adults with advanced/metastatic EGFR-mutant NSCLC, acquired resistance to first-/second-generation EGFR inhibitors, and MET gene copy number (GCN) ≥5, MET:CEP7 ≥2, or MET IHC 2+/3+ were randomized to tepotinib 500 mg (450 mg active moiety) plus gefitinib 250 mg once daily, or chemotherapy. Primary endpoint was investigator-assessed progression-free survival (PFS). MET-amplified subgroup analysis was preplanned.

    RESULTS: Overall (N = 55), median PFS was 4.9 months versus 4.4 months [stratified HR, 0.67; 90% CI, 0.35-1.28] with tepotinib plus gefitinib versus chemotherapy. In 19 patients with MET amplification (median age 60.4 years; 68.4% never-smokers; median GCN 8.8; median MET/CEP7 2.8; 89.5% with MET IHC 3+), tepotinib plus gefitinib improved PFS (HR, 0.13; 90% CI, 0.04-0.43) and overall survival (OS; HR, 0.10; 90% CI, 0.02-0.36) versus chemotherapy. Objective response rate was 66.7% with tepotinib plus gefitinib versus 42.9% with chemotherapy; median duration of response was 19.9 months versus 2.8 months. Median duration of tepotinib plus gefitinib was 11.3 months (range, 1.1-56.5), with treatment >1 year in six (50.0%) and >4 years in three patients (25.0%). Seven patients (58.3%) had treatment-related grade ≥3 adverse events with tepotinib plus gefitinib and five (71.4%) had chemotherapy.

    CONCLUSIONS: Final analysis of INSIGHT suggests improved PFS and OS with tepotinib plus gefitinib versus chemotherapy in a subgroup of patients with MET-amplified EGFR-mutant NSCLC, after progression on EGFR inhibitors.

    Matched MeSH terms: ErbB Receptors/genetics
  13. Zhou C, Tang KJ, Cho BC, Liu B, Paz-Ares L, Cheng S, et al.
    N Engl J Med, 2023 Nov 30;389(22):2039-2051.
    PMID: 37870976 DOI: 10.1056/NEJMoa2306441
    BACKGROUND: Amivantamab has been approved for the treatment of patients with advanced non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) exon 20 insertions who have had disease progression during or after platinum-based chemotherapy. Phase 1 data showed the safety and antitumor activity of amivantamab plus carboplatin-pemetrexed (chemotherapy). Additional data on this combination therapy are needed.

    METHODS: In this phase 3, international, randomized trial, we assigned in a 1:1 ratio patients with advanced NSCLC with EGFR exon 20 insertions who had not received previous systemic therapy to receive intravenous amivantamab plus chemotherapy (amivantamab-chemotherapy) or chemotherapy alone. The primary outcome was progression-free survival according to blinded independent central review. Patients in the chemotherapy group who had disease progression were allowed to cross over to receive amivantamab monotherapy.

    RESULTS: A total of 308 patients underwent randomization (153 to receive amivantamab-chemotherapy and 155 to receive chemotherapy alone). Progression-free survival was significantly longer in the amivantamab-chemotherapy group than in the chemotherapy group (median, 11.4 months and 6.7 months, respectively; hazard ratio for disease progression or death, 0.40; 95% confidence interval [CI], 0.30 to 0.53; P<0.001). At 18 months, progression-free survival was reported in 31% of the patients in the amivantamab-chemotherapy group and in 3% in the chemotherapy group; a complete or partial response at data cutoff was reported in 73% and 47%, respectively (rate ratio, 1.50; 95% CI, 1.32 to 1.68; P<0.001). In the interim overall survival analysis (33% maturity), the hazard ratio for death for amivantamab-chemotherapy as compared with chemotherapy was 0.67 (95% CI, 0.42 to 1.09; P = 0.11). The predominant adverse events associated with amivantamab-chemotherapy were reversible hematologic and EGFR-related toxic effects; 7% of patients discontinued amivantamab owing to adverse reactions.

    CONCLUSIONS: The use of amivantamab-chemotherapy resulted in superior efficacy as compared with chemotherapy alone as first-line treatment of patients with advanced NSCLC with EGFR exon 20 insertions. (Funded by Janssen Research and Development; PAPILLON ClinicalTrials.gov number, NCT04538664.).

    Matched MeSH terms: ErbB Receptors/genetics
  14. Soo R, Mery L, Bardot A, Kanesvaran R, Keong TC, Pongnikorn D, et al.
    ESMO Open, 2022 Oct;7(5):100560.
    PMID: 35988454 DOI: 10.1016/j.esmoop.2022.100560
    BACKGROUND: Lung cancer is the second most common cancer and leading cause of cancer mortality worldwide. Recent advances in molecular testing and targeted therapy have improved survival among patients with metastatic non-small-cell lung cancer (NSCLC). We sought to quantify and describe molecular testing among metastatic non-squamous NSCLC cases in selected Southeast Asian countries and describe first-line therapy chosen.

    PATIENTS AND METHODS: A retrospective study was conducted based on incident lung cancer cases diagnosed between 2017 and 2019 in Lampang (Thailand), Penang (Malaysia), Singapore and Yogyakarta (Indonesia). Cases (n = 3413) were defined using the International Classification of Diseases for Oncology third edition. In Singapore, a clinical series obtained from the National Cancer Centre was used to identify patients, while corresponding population-based cancer registries were used elsewhere. Tumor and clinical information were abstracted by chart review according to a predefined study protocol. Molecular testing of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) gene rearrangement, ROS1 gene rearrangement and BRAF V600 mutation was recorded.

    RESULTS: Among 2962 cases with a specified pathological diagnosis (86.8%), most patients had non-squamous NSCLC (75.8%). For cases with staging information (92.1%), the majority presented with metastatic disease (71.3%). Overall, molecular testing rates in the 1528 patients with stage IV non-squamous NSCLC were 67.0% for EGFR, 42.3% for ALK, 39.1% for ROS1, 7.8% for BRAF and 36.1% for PD-L1. Among these patients, first-line systemic treatment included chemotherapy (25.9%), targeted therapy (35.6%) and immunotherapy (5.9%), with 31% of patients having no record of antitumor treatment. Molecular testing and the proportion of patients receiving treatment were highly heterogenous between the regions.

    CONCLUSIONS: This first analysis of data from a clinically annotated registry for lung cancer from four settings in Southeast Asia has demonstrated the feasibility of integrating clinical data within population-based cancer registries. Our study results identify areas where further development could improve patient access to optimal treatment.

    Matched MeSH terms: ErbB Receptors/genetics
  15. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Anbu P, Lakshmipriya T, et al.
    Sci Rep, 2019 11 19;9(1):17013.
    PMID: 31745155 DOI: 10.1038/s41598-019-53573-9
    Lung cancer is one of the most serious threats to human where 85% of lethal death caused by non-small cell lung cancer (NSCLC) induced by epidermal growth factor receptor (EGFR) mutation. The present research focuses in the development of efficient and effortless EGFR mutant detection strategy through high-performance and sensitive genosensor. The current amplified through 250 µm sized fingers between 100 µm aluminium electrodes indicates the voltammetry signal generated by means of the mutant DNA sequence hybridization. To enhance the DNA immobilization and hybridization, ∼25 nm sized aluminosilicate nanocomposite synthesized from the disposed joss fly ash was deposited on the gaps between aluminium electrodes. The probe, mutant (complementary), and wild (single-base pair mismatch) targets were designed precisely from the genomic sequences denote the detection of EGFR mutation. Fourier-transform Infrared Spectroscopy analysis was performed at every step of surface functionalization evidences the relevant chemical bonding of biomolecules on the genosensor as duplex DNA with peak response at 1150 cm-1 to 1650 cm-1. Genosensor depicts a sensitive EGFR mutation as it is able to detect apparently at 100 aM mutant against 1 µM DNA probe. The insignificant voltammetry signal generated with wild type strand emphasizes the specificity of genosensor in the detection of single base pair mismatch. The inefficiency of genosensor in detecting EGFR mutation in the absence of aluminosilicate nanocomposite implies the insensitivity of genosensing DNA hybridization and accentuates the significance of aluminosilicate. Based on the slope of the calibration curve, the attained sensitivity of aluminosilicate modified genosensor was 3.02E-4 A M-1. The detection limit of genosensor computed based on 3σ calculation, relative to the change of current proportional to the logarithm of mutant concentration is at 100 aM.
    Matched MeSH terms: ErbB Receptors/genetics
  16. Passaro A, Wang J, Wang Y, Lee SH, Melosky B, Shih JY, et al.
    Ann Oncol, 2024 Jan;35(1):77-90.
    PMID: 37879444 DOI: 10.1016/j.annonc.2023.10.117
    BACKGROUND: Amivantamab plus carboplatin-pemetrexed (chemotherapy) with and without lazertinib demonstrated antitumor activity in patients with refractory epidermal growth factor receptor (EGFR)-mutated advanced non-small-cell lung cancer (NSCLC) in phase I studies. These combinations were evaluated in a global phase III trial.

    PATIENTS AND METHODS: A total of 657 patients with EGFR-mutated (exon 19 deletions or L858R) locally advanced or metastatic NSCLC after disease progression on osimertinib were randomized 2 : 2 : 1 to receive amivantamab-lazertinib-chemotherapy, chemotherapy, or amivantamab-chemotherapy. The dual primary endpoints were progression-free survival (PFS) of amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy. During the study, hematologic toxicities observed in the amivantamab-lazertinib-chemotherapy arm necessitated a regimen change to start lazertinib after carboplatin completion.

    RESULTS: All baseline characteristics were well balanced across the three arms, including by history of brain metastases and prior brain radiation. PFS was significantly longer for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy [hazard ratio (HR) for disease progression or death 0.48 and 0.44, respectively; P < 0.001 for both; median of 6.3 and 8.3 versus 4.2 months, respectively]. Consistent PFS results were seen by investigator assessment (HR for disease progression or death 0.41 and 0.38 for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy, respectively; P < 0.001 for both; median of 8.2 and 8.3 versus 4.2 months, respectively). Objective response rate was significantly higher for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy (64% and 63% versus 36%, respectively; P < 0.001 for both). Median intracranial PFS was 12.5 and 12.8 versus 8.3 months for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy (HR for intracranial disease progression or death 0.55 and 0.58, respectively). Predominant adverse events (AEs) in the amivantamab-containing regimens were hematologic, EGFR-, and MET-related toxicities. Amivantamab-chemotherapy had lower rates of hematologic AEs than amivantamab-lazertinib-chemotherapy.

    CONCLUSIONS: Amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy improved PFS and intracranial PFS versus chemotherapy in a population with limited options after disease progression on osimertinib. Longer follow-up is needed for the modified amivantamab-lazertinib-chemotherapy regimen.

    Matched MeSH terms: ErbB Receptors/genetics
  17. Bates T, Kennedy M, Diajil A, Goodson M, Thomson P, Doran E, et al.
    Cancer Epidemiol Biomarkers Prev, 2016 Jun;25(6):927-35.
    PMID: 27197272 DOI: 10.1158/1055-9965.EPI-15-0949
    BACKGROUND: Oral squamous cell carcinoma (OSCC) is a global healthcare problem associated with poor clinical outcomes. Early detection is key to improving patient survival. OSCC may be preceded by clinically recognizable lesions, termed oral potentially malignant disorders (OPMD). As histologic assessment of OPMD does not accurately predict their clinical behavior, biomarkers are required to detect cases at risk of malignant transformation. Epidermal growth factor receptor gene copy number (EGFR GCN) is a validated biomarker in lung non-small cell carcinoma. We examined EGFR GCN in OPMD and OSCC to determine its potential as a biomarker in oral carcinogenesis.

    METHODS: EGFR GCN was examined by in situ hybridization (ISH) in biopsies from 78 patients with OPMD and 92 patients with early-stage (stages I and II) OSCC. EGFR ISH signals were scored by two pathologists and a category assigned by consensus. The data were correlated with patient demographics and clinical outcomes.

    RESULTS: OPMD with abnormal EGFR GCN were more likely to undergo malignant transformation than diploid cases. EGFR genomic gain was detected in a quarter of early-stage OSCC, but did not correlate with clinical outcomes.

    CONCLUSION: These data suggest that abnormal EGFR GCN has clinical utility as a biomarker for the detection of OPMD destined to undergo malignant transformation. Prospective studies are required to verify this finding. It remains to be determined if EGFR GCN could be used to select patients for EGFR-targeted therapies.

    IMPACT: Abnormal EGFR GCN is a potential biomarker for identifying OPMD that are at risk of malignant transformation. Cancer Epidemiol Biomarkers Prev; 25(6); 927-35. ©2016 AACR.

    Matched MeSH terms: ErbB Receptors/genetics*
  18. Liam CK, Leow HR, How SH, Pang YK, Chua KT, Lim BK, et al.
    Asian Pac J Cancer Prev, 2014;15(1):321-6.
    PMID: 24528049
    BACKGROUND: Mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) in non- small cell lung cancer (NSCLC) are predictive of response to EGFR-targeted therapy in advanced stages of disease. This study aimed to determine the frequency of EGFR mutations in NSCLCs and to correlate their presence with clinical characteristics in multiethnic Malaysian patients.

    MATERIALS AND METHODS: In this prospective study, EGFR mutations in exons 18, 19, 20 and 21 in formalin-fixed paraffin-embedded biopsy specimens of consecutive NSCLC patients were asessed by real-time polymerase chain reaction.

    RESULTS: EGFR mutations were detected in NSCLCs from 55 (36.4%) of a total of 151 patients, being significantly more common in females (62.5%) than in males (17.2%) [odds ratio (OR), 8.00; 95% confidence interval (CI), 3.77-16.98; p<0.001] and in never smokers (62.5%) than in ever smokers (12.7%) (OR, 11.50; 95%CI, 5.08-26.03; p<0.001). Mutations were more common in adenocarcinoma (39.4%) compared to non-adenocarcinoma NSCLCs (15.8%) (p=0.072). The mutation rates in patients of different ethnicities were not significantly different (p=0.08). Never smoking status was the only clinical feature that independently predicted the presence of EGFR mutations (adjusted OR, 5.94; 95%CI, 1.94- 18.17; p=0.002).

    CONCLUSIONS: In Malaysian patients with NSCLC, the EGFR mutation rate was similar to that in other Asian populations. EGFR mutations were significantly more common in female patients and in never smokers. Never smoking status was the only independent predictor for the presence of EGFR mutations.

    Matched MeSH terms: ErbB Receptors/genetics*
  19. Naidu R, Yadav M, Nair S, Kutty MK
    Br. J. Cancer, 1998 Nov;78(10):1385-90.
    PMID: 9823984
    Expression of c-erbB3 protein was investigated in 104 primary breast carcinomas comprising nine comedo ductal carcinoma in situ (DCIS), 91 invasive ductal carcinomas and four invasive lobular carcinomas using two monoclonal antibodies, RTJ1 and RTJ2. Of the 91 invasive ductal carcinomas, seven contained the comedo DCIS component adjacent to the invasive component. An immunohistochemical technique was used to evaluate the association between expression of c-erbB3 and clinical parameters and tumour markers such as epidermal growth factor receptor (EGFR), c-erbB2, cathepsin-D and p53 in archival formalin-fixed paraffin-embedded tumour tissues. Our results indicated that RTJ1 and RTJ2 gave identical staining patterns and concordant results. It was found that the overexpression of c-erbB3 protein was observed in 67% (6/9) of comedo DCIS, 52% (44/84) of invasive ductal carcinomas, 71% (5/7) of carcinomas containing both the in situ and invasive lesions and 25% (1/4) of invasive lobular carcinomas. A significant relationship (P < 0.05) was observed between strong immunoreactivity of c-erbB3 protein and histological grade, EGFR and cathepsin-D, but not with expression of c-erbB2, p53, oestrogen receptor status, lymph node metastases or age of patient. However, we noted that a high percentage of oestrogen receptor-negative tumours (59%), lymph node-positive tumours (63%) and c-erbB2 (63%) were strongly positive for c-erbB3 protein. We have also documented that a high percentage of EGFR (67%), c-erbB2 (67%), p53 (75%) and cathepsin-D-positive DCIS (60%) were strongly positive for c-erbB3. These observations suggest that overexpression of c-erbB3 protein could play an important role in tumour progression from non-invasive to invasive and, also, that it may have the potential to be used as a marker for poor prognosis of breast cancer.
    Matched MeSH terms: ErbB Receptors/genetics*
  20. Ho GF, Chai CS, Alip A, Wahid MIA, Abdullah MM, Foo YC, et al.
    BMC Cancer, 2019 Sep 09;19(1):896.
    PMID: 31500587 DOI: 10.1186/s12885-019-6107-1
    BACKGROUND: This study aimed to evaluate the efficacy, side-effects and resistance mechanisms of first-line afatinib in a real-world setting.

    METHODS: This is a multicenter observational study of first-line afatinib in Malaysian patients with epidermal growth factor receptor (EGFR)-mutant advanced non-small cell lung cancer (NSCLC). Patients' demographic, clinical and treatment data, as well as resistance mechanisms to afatinib were retrospectively captured. The statistical methods included Chi-squared test and independent t-test for variables, Kaplan-Meier curve and log-rank test for survival, and Cox regression model for multivariate analysis.

    RESULTS: Eighty-five patients on first-line afatinib from 1st October 2014 to 30th April 2018 were eligible for the study. EGFR mutations detected in tumors included exon 19 deletion in 80.0%, exon 21 L858R point mutation in 12.9%, and rare or complex EGFR mutations in 7.1% of patients. Among these patients, 18.8% had Eastern Cooperative Oncology Group performance status of 2-4, 29.4% had symptomatic brain metastases and 17.6% had abnormal organ function. Afatinib 40 mg or 30 mg once daily were the most common starting and maintenance doses. Only one-tenth of patients experienced severe side-effects with none having grade 4 toxicities. The objective response rate was 76.5% while the disease control rate was 95.3%. At the time of analysis, 56 (65.9%) patients had progression of disease (PD) with a median progression-free survival (mPFS) of 14.2 months (95% CI, 11.85-16.55 months). Only 12.5% of the progressed patients developed new symptomatic brain metastases. The overall survival (OS) data was not mature. Thirty-three (38.8%) patients had died with a median OS of 28.9 months (95% CI, 19.82-37.99 months). The median follow-up period for the survivors was 20.0 months (95% CI, 17.49-22.51 months). Of patients with PD while on afatinib, 55.3% were investigated for resistance mechanisms with exon 20 T790 M mutation detected in 42.0% of them.

    CONCLUSIONS: Afatinib is an effective first-line treatment for patients with EGFR-mutant advanced NSCLC with a good response rate and long survival, even in patients with unfavorable clinical characteristics. The side-effects of afatinib were manageable and T790 M mutation was the most common resistance mechanism causing treatment failure.

    Matched MeSH terms: ErbB Receptors/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links