Displaying publications 1 - 20 of 821 in total

Abstract:
Sort:
  1. Zeshan MQ, Ashraf M, Omer MO, Anjum AA, Ali MA, Najeeb M, et al.
    Trop Biomed, 2023 Jun 01;40(2):174-182.
    PMID: 37650404 DOI: 10.47665/tb.40.2.008
    The present study was conducted to investigate the antimicrobial potential of essential oils of Curcuma longa and Syzygium aromaticum against multidrug-resistant pathogenic bacteria. Four identified bacterial isolates including Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii were selected and their antibiotic sensitivity was checked by disc diffusion assay. C. longa and S. aromaticum were subjected to steam distillation to obtain their essential oils. The crude essential oils were fractioned by employing column chromatography. Crude essential oils and their fractions were evaluated for their antibacterial activity by agar well diffusion assay and minimum inhibitory concentrations were calculated. All the selected bacterial isolates showed resistance to three or more than three antibiotic groups and were declared as multidrugresistant (MDRs). Crude essential oils of C. longa and S. aromaticum exhibited antimicrobial activity against all selected isolates but S. aromaticum activity was better than the C. longa with a maximum 19.3±1.50 mm zone of inhibition against A. baumannii at 1.04 µL/mL MIC. GC/MS analysis revealed the abundance of components including eugenol, eugenyl acetate, b- caryophyllene, and a- Humulene in both crude oil and fractions of S. aromaticum. While the main components of C. longa essential oil were Ar-tumerone, a-tumerone, b- Tumerone, I-Phellandrene, a-zingibirene, b- sesquiphellandrene, and p- Cymene. This study highlights that plant-based essential oils could be a promising alternative to antibiotics for which pathogens have developed resistance. C. longa and S. aromaticum carry compounds that have antimicrobial potential against multiple drug-resistant bacteria including MRSA. E. coli, K. pneumoniae and A. baumannii.
    Matched MeSH terms: Escherichia coli
  2. Zeimaran E, Pourshahrestani S, Djordjevic I, Pingguan-Murphy B, Kadri NA, Wren AW, et al.
    J Mater Sci Mater Med, 2016 Jan;27(1):18.
    PMID: 26676864 DOI: 10.1007/s10856-015-5620-2
    Bioactive glasses may function as antimicrobial delivery systems through the incorporation and subsequent release of therapeutic ions. The aim of this study was to evaluate the antimicrobial properties of a series of composite scaffolds composed of poly(octanediol citrate) with increased loads of a bioactive glass that releases zinc (Zn(2+)) and gallium (Ga(3+)) ions in a controlled manner. The antibacterial activity of these scaffolds was investigated against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The ability of the scaffolds to release ions and the subsequent ingress of these ions into hard tissue was evaluated using a bovine bone model. Scaffolds containing bioactive glass exhibited antibacterial activity and this increased in vitro with higher bioactive glass loads; viable cells decreased to about 20 % for the composite scaffold containing 30 % bioactive glass. The Ga(3+) release rate increased as a function of time and Zn(2+) was shown to incorporate into the surrounding bone.
    Matched MeSH terms: Escherichia coli/growth & development
  3. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, et al.
    Molecules, 2011 Aug 08;16(8):6667-76.
    PMID: 25134770 DOI: 10.3390/molecules16086667
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. One of the most important applications of Ag-NPs is their use as an anti-bacterial agent. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the biosynthesis of silver nanoparticles using Vitex negundo L. extract and its antimicrobial properties has been reported. The resulting silver particles are characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-Visible (UV-Vis) spectroscopic techniques. The TEM study showed the formation of silver nanoparticles in the 10-30 nm range and average 18.2 nm in size. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The silver nanoparticles showed the antimicrobial activity against Gram positive and Gram negative bacteria. Vitex negundo L. was found to display strong potential for the synthesis of silver nanoparticles as antimicrobial agents by rapid reduction of silver ions (Ag+ to Ag0).
    Matched MeSH terms: Escherichia coli/drug effects
  4. Zaman K, Rahim F, Taha M, Wadood A, Shah SAA, Ahmed QU, et al.
    Sci Rep, 2019 11 05;9(1):16015.
    PMID: 31690793 DOI: 10.1038/s41598-019-52100-0
    Here in this study regarding the over expression of TP, which causes some physical, mental and socio problems like psoriasis, chronic inflammatory disease, tumor angiogenesis and rheumatoid arthritis etc. By this consideration, the inhibition of this enzyme is vital to secure life from serious threats. In connection with this, we have synthesized twenty derivatives of isoquinoline bearing oxadiazole (1-20), characterized through different spectroscopic techniques such as HREI-MS, 1H- NMR and 13C-NMR and evaluated for thymidine phosphorylase inhibition. All analogues showed outstanding inhibitory potential ranging in between 1.10 ± 0.05 to 54.60 ± 1.50 µM. 7-Deazaxanthine (IC50 = 38.68 ± 1.12 µM) was used as a positive control. Through limited structure activity relationships study, it has been observed that the difference in inhibitory activities of screened analogs are mainly affected by different substitutions on phenyl ring. The effective binding interactions of the most active analogs were confirmed through docking study.
    Matched MeSH terms: Escherichia coli/enzymology; Escherichia coli Proteins/metabolism; Escherichia coli Proteins/chemistry
  5. Zaman K, Rahim F, Taha M, Wadood A, Adnan Ali Shah S, Gollapalli M, et al.
    Bioorg Chem, 2019 08;89:102999.
    PMID: 31151055 DOI: 10.1016/j.bioorg.2019.102999
    Isoquinoline analogues (KA-1 to 16) have been synthesized and evaluated for their E. coli thymidine phosphorylase inhibitory activity. Except compound 11, all other analogs showed outstanding thymidine inhibitory potential ranging in between 4.40 ± 0.20 to 69.30 ± 1.80 µM when compared with standard drug 7-Deazaxanthine (IC50 = 38.68 ± 4.42 µM). Structure Activity Relationships has been established for all compounds, mainly based on substitution pattern on phenyl ring. All analogs were characterized by various spectroscopic techniques such as 1H NMR, 13C NMR and EI-MS. The binding interactions of isoquinoline analogues with the active site of TP enzyme, the molecular docking studies were performed. Furthermore, the angiogenic inhibitory potentials of isoquinoline analogues (KA-1-9, 14, 12 and 16) were determined in the presence of standard drug Dexamethasone based on percentage inhibitions at various concentrations. Herein this work analogue KA-12, 14 and 16 emerged with most potent angiogenic inhibitory potentials among the synthesized analogues.
    Matched MeSH terms: Escherichia coli/enzymology
  6. Zakaria MA, Mohd Yusoff MZ, Zakaria MR, Hassan MA, Wood TK, Maeda T
    3 Biotech, 2018 Oct;8(10):435.
    PMID: 30306004 DOI: 10.1007/s13205-018-1461-2
    Pseudogenes in the Escherichia coli genome are assumed to be non-functional. In this study, Keio collection BW25113∆yqiG and YqiG-producing strain (BW25113/pCA24N-YqiG) were used to evaluate the importance of pseudogene yqiG in hydrogen metabolism. Our results show pseudogene protein YqiG was identified as an essential protein in the production of biohydrogen from glucose. The mutant yqiG decreased biohydrogen production from 37 µmol mg-1 protein to 6 µmol mg-1 protein compared to the wild-type strain, and glucose consumption was reduced by 80%. Through transcriptional analysis, we found that the yqiG mutation represses pflB transcription tenfold; pflB encodes pyruvate-formate lyase, one of the key enzymes in the anaerobic metabolism of E. coli. Moreover, production of YqiG stimulated glycolysis and increased biohydrogen productivity 1.5-fold compared to that of the wild-type strain. Thus, YqiG is important for the central glycolysis reaction and is able to influence hydrogen metabolism activity in E. coli.
    Matched MeSH terms: Escherichia coli
  7. Zakaria II, Rahman RN, Salleh AB, Basri M
    Appl Biochem Biotechnol, 2011 Sep;165(2):737-47.
    PMID: 21633820 DOI: 10.1007/s12010-011-9292-1
    Flavonoids are secondary metabolites synthesized by plants shown to exhibit health benefits such as anti-inflammatory, antioxidant, and anti-tumor effects. Thus, due to the importance of this compound, several enzymes involved in the flavonoid pathway have been cloned and characterized in Escherichia coli. However, the formation of inclusion bodies has become a major disadvantage of this approach. As an alternative, chalcone synthase from Physcomitrella patens was secreted into the medium using a bacteriocin release protein expression vector. Secretion of P. patens chalcone synthase into the culture media was achieved by co-expression with a psW1 plasmid encoding bacteriocin release protein in E. coli Tuner (DE3) plysS. The optimized conditions, which include the incubation of cells for 20 h with 40 ng/ml mitomycin C at OD(600) induction time of 0.5 was found to be the best condition for chalcone synthase secretion.
    Matched MeSH terms: Escherichia coli/enzymology; Escherichia coli/genetics*
  8. Zainol MKM, Linforth RJC, Winzor DJ, Scott DJ
    Eur Biophys J, 2021 Dec;50(8):1103-1110.
    PMID: 34611772 DOI: 10.1007/s00249-021-01572-y
    This investigation of the temperature dependence of DppA interactions with a subset of three dipeptides (AA. AF and FA) by isothermal titration calorimetry has revealed the negative heat capacity ([Formula: see text]) that is a characteristic of hydrophobic interactions. The observation of enthalpy-entropy compensation is interpreted in terms of the increased structuring of water molecules trapped in a hydrophobic environment, the enthalpic energy gain from which is automatically countered by the entropy decrease associated with consequent loss of water structure flexibility. Specificity for dipeptides stems from appropriate spacing of designated DppA aspartate and arginine residues for electrostatic interaction with the terminal amino and carboxyl groups of a dipeptide, after which the binding pocket closes to become completely isolated from the aqueous environment. Any differences in chemical reactivity of the dipeptide sidechains are thereby modulated by their occurrence in a hydrophobic environment where changes in the structural state of entrapped water molecules give rise to the phenomenon of enthalpy-entropy compensation. The consequent minimization of differences in the value of ΔG0 for all DppA-dipeptide interactions thus provides thermodynamic insight into the biological role of DppA as a transporter of all dipeptides across the periplasmic membrane.
    Matched MeSH terms: Escherichia coli/metabolism; Escherichia coli Proteins*
  9. Zainol MI, Mohd Yusoff K, Mohd Yusof MY
    PMID: 23758747 DOI: 10.1186/1472-6882-13-129
    Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa.
    Matched MeSH terms: Escherichia coli/drug effects; Escherichia coli/growth & development
  10. Zainin, N. S., Lau, K. Y., Zakaria, M., Son, R., Abdull Razis, A. F., Rukayadi, Y.
    MyJurnal
    An awareness of Escherichia coli as a foodborne pathogen and illness causing bacterium has been increased among consumers. Moreover, there is demand for natural product in order to reduce synthetic product that can cause toxic to the human. In this study, antibacterial activity, in term of MIC, MBC and killing-time curve of methanolic extract of Boesenbergia rotunda have been tested against a standard E. coli ATCC 25922 and two E. coli isolated from milk products using Clinical and Laboratory Standard Institute (CLSI) methods. The results show that B. rotunda extract was susceptible to all E. coli strains. The MIC and MBC values of B. rotunda extract against E. coli ranged 0.019 mg/mL 2.5 mg/mL and 0.039 mg/mL – 5.0 µg/mL, respectively. Killing-time curves were constructed at concentrations of 0x MIC, 1/2x MIC, 1x MIC, and 2x MIC. All E. coli strains can be killed with concentration of 2x MIC after 2 hours. The results show that B. rotunda extract has potential antibacterial activity against E. coli.
    Matched MeSH terms: Escherichia coli
  11. Zainal D, Baba A
    Singapore Med J, 1994 Aug;35(4):374-5.
    PMID: 7899895
    Urinary tract infection is the most common of bacterial infections. Screening children for asymptomatic bacteriuria to prevent pyelonephritis and renal scarring is widely recommended. In Malaysia no such attempt has been made to establish the prevalence of asymptomatic bacteriuria. Bacteriuria was screened among 44,816 healthy school children from three different districts in Kelantan. There were 23,132 boys and 21,684 girls. The prevalence of bacteriuria was 0.12% after second screening. Higher prevalence was seen in other reports.
    Matched MeSH terms: Escherichia coli/isolation & purification
  12. Zain NM, Stapley AG, Shama G
    Carbohydr Polym, 2014 Nov 4;112:195-202.
    PMID: 25129735 DOI: 10.1016/j.carbpol.2014.05.081
    Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively.
    Matched MeSH terms: Escherichia coli/drug effects
  13. Zahedi SN, Hejazi SH, Boshtam M, Amini F, Fazeli H, Sarmadi M, et al.
    Acta Parasitol, 2021 Mar;66(1):53-59.
    PMID: 32676917 DOI: 10.1007/s11686-020-00251-w
    PURPOSE: Leishmaniasis, a widespread parasitic disease, is a public health concern that is endemic in more than 90 countries. Owing to the drug resistance and also undesirable complications, designing new therapeutic methods are essential. C-reactive protein (CRP) is an acute phase protein of plasma with several immune modulatory functions. This study aimed to evaluate the effect of human recombinant CRP (hrCRP) on treating cutaneous leishmaniasis in mice models.

    METHODS: hrCRP was expressed in E. coli Rosetta-gami and extracted from the SDS-PAGE gel. Male BALB/c mice were inoculated subcutaneously at the base of their tails by 1 × 105 stationary-phase of Leishmania major promastigotes (MHRO/IR/75/ER) suspended in sterile phosphate buffered saline (PBS). Nodules and subsequently, ulcers developed 14 days post-injection. 1.5 µg of the purified protein was administered on lesions of pre-infected mice by Leishmania major in the intervention group for five consecutive days.

    RESULTS: The mean area of the lesions was decreased by about seven folds in the intervention group as compared to the control group after two weeks of the treatment (p = 0.024). The results were verified by the real-time polymerase chain reaction so that the parasite burden was determined 27 times in the control group as compared to the intervention group (p = 0.02). Two weeks after treatment, the conversion of the lesions to scars in the intervention group was observed.

    CONCLUSION: The results indicate a potential therapeutic role for hrCRP in improving cutaneous leishmaniasis due to Leishmania major in mice models. The healing was in a stage-dependent manner.

    Matched MeSH terms: Escherichia coli
  14. Yusoff, N. A. H., Sanuan, F. M., Rukayadi, Y.
    MyJurnal
    Nowadays consumer is more demand on natural foodstuff instead of synthetic product due to their concern on health. The objective of this study is to investigate the effect of C. caudatus extract on the number of microflora in oyster mushroom at different concentration of C. caudatus extract and exposure time using dilution method. The results showed that the number of microorganisms (Log10 CFU/g) in oyster mushroom in term of Total Plate Count (TPC), Bacillus cereus, Escherichia coli and Staphylococcus aureus were 6.13 ± 0.04, 6.15 ± 0.09, 5.97 ± 0.04, and 6.46 ± 0.00, respectively. The effect of C. caudatus extract on microflora in oyster mushroom at concentrations of 0.00%, 0.05%, 0.5%, and 5.0% with exposure time of 0, 5, 10, and 15 min demonstrated that the reduction number of microflora in oyster mushroom was dependent on the concentration of C. caudatus extract and exposure times. The number of TPC (Log10 CFU/g) in oyster mushroom was significantly reduced after treated with C. caudatus extract at concentration of 0.05% for 15 min; 6.13 ± 0.04 reduced to 2.62 ± 0.07. Moreover, B. cereus (Log10 CFU/g) in oyster mushroom was significantly reduced by treatment of C. caudatus extract at concentration of 0.05% for 5 min; 6.15 ± 0.09 reduced to 3.77 ± 0.15. Meanwhile, the number of E. coli (Log10 CFU/g) in oyster mushroom was significantly reduced at concentration of 0.05% for 10 min; 5.97 ± 0.04 reduced to 3.21 ± 0.13. Lastly, the survival number of S. aureus in oyster mushroom was significantly reduced after treated with C. caudatus extract at concentration of 0.05% for 15 min; 6.46 ± 0.00 reduced to 4.83 ± 0.07. In conclusion, C. caudatus extract has potentiality to be developed as natural sanitizer for rinsing raw food materials such as oyster mushroom.
    Matched MeSH terms: Escherichia coli
  15. Yusof RM, Haque F, Ismail M, Hassan Z
    Asia Pac J Clin Nutr, 2000 Jun;9(2):130-5.
    PMID: 24394399
    Probiotic organism Bifidobacteria was isolated from the faeces of breast-fed infants at Universiti Putra Malaysia. Trypticase phytone peptone yeast extract agar (TPY) was used as a selective media for the isolation. Morphological examination of the isolates indicated that Bifidobacteria was Gram-positive rods in nature, curved with characteristics of V and Y shapes. The organisms were non-catalase producing, non-nitrate reducing, non-motile, had an absence of indole and were unable to liquify gelatin. The ratios of acetic and lactic acids were determined using high performance liquid chromatography (HPLC). Using carbohydrate fermentation profile test API-CH-50 kits, 20 Bifidobacteria strains had been identified: they were the species of Bifidobacteria infantis and two different sub-species, mainly infantis and lacentis. Based on a wide zone of inhibition, three suitable strains of B. infantis, Bifi-11, Bifi-19 and Bifi-20, were tested in weaning foods for antimicrobial activity towards two human pathogens: E. coli-0157 (World Health Organization) and Salmonella typhimurium S-285. The pH, titratable acidity of weaning foods and total colony count for Bifidobacteria, enteropathogenic Escherichia coli and S. typhimurium were recorded at 3-h intervals for 30 h. It was found that after 9 h of incubation of weaning foods, the pH declined to < 3.6 from pH 6.0, whereas titratable acidity increased from 0.026 to 0.08%. It was indicated that Bifidobacteria inhibited E. coli better than did S typhimurium due to low pH. After 24 h of incubation, approximately 98% of E. coli was inhibited by Bifidobacteria. It is suggested that the inhibitory effect of Bifidobacteria strains in weaning foods towards the growth of enteropathogenic E. coli and S. typhimurium was solely due to low pH and the production of volatile acid components by the organism.
    Matched MeSH terms: Enteropathogenic Escherichia coli
  16. Yusof NY, Quay DHX, Kamaruddin S, Jonet MA, Md Illias R, Mahadi NM, et al.
    Extremophiles, 2024 Feb 01;28(1):15.
    PMID: 38300354 DOI: 10.1007/s00792-024-01333-7
    Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.
    Matched MeSH terms: Escherichia coli
  17. Yusof NAA, Zain NM, Pauzi N
    Int J Biol Macromol, 2019 Mar 01;124:1132-1136.
    PMID: 30496864 DOI: 10.1016/j.ijbiomac.2018.11.228
    Antibacterial activity of zinc oxide (ZnO) nanoparticles have received significant interest, particularly by the implementation of nanotechnology to synthesize particles in nanometer region. ZnO nanoparticles were successfully synthesized through microwave heating by using chitosan as a stabilizing agent and characterized by UV-vis, FTIR, XRD and FESEM-EDX. The aim of the present study is to determine the antibacterial activity of ZnO nanoparticles against Gram-positive bacterium Staphylococcus aureus (S. aureus) and Gram-negative bacterium Escherichia coli (E. coli). The antibacterial effect of ZnO nanoparticles was investigated for the inhibition zone and inactivation of cell growth. The absorption of ZnO nanoparticles was found to be around 360 nm. FTIR results showed the stretching mode of ZnO nanoparticles at 475 cm-1 of the absorption band. EDX results indicated that ZnO nanoparticles have been successfully formed with an atomic percentage of zinc and oxygen at 23.61 and 46.57% respectively. X-ray diffraction result was confirmed the single-phase formation of ZnO nanoparticles and the particle sizes were observed to be around 50 to 130 nm. The results showed that ZnO nanoparticles have displayed inhibition zone of 16 and 13 mm against S. aureus and E. coli respectively. Gram-negative bacteria seemed to be more resistant to ZnO nanoparticles than Gram-positive bacteria.
    Matched MeSH terms: Escherichia coli
  18. Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Illias RM, Bakar FD, et al.
    Cell Stress Chaperones, 2016 Jul;21(4):707-15.
    PMID: 27154490 DOI: 10.1007/s12192-016-0696-2
    The ability of eukaryotes to adapt to an extreme range of temperatures is critically important for survival. Although adaptation to extreme high temperatures is well understood, reflecting the action of molecular chaperones, it is unclear whether these molecules play a role in survival at extremely low temperatures. The recent genome sequencing of the yeast Glaciozyma antarctica, isolated from Antarctic sea ice near Casey Station, provides an opportunity to investigate the role of molecular chaperones in adaptation to cold temperatures. We isolated a G. antarctica homologue of small heat shock protein 20 (HSP20), GaSGT1, and observed that the GaSGT1 mRNA expression in G. antarctica was markedly increased following culture exposure at low temperatures. Additionally, we demonstrated that GaSGT1 overexpression in Escherichia coli protected these bacteria from exposure to both high and low temperatures, which are lethal for growth. The recombinant GaSGT1 retained up to 60 % of its native luciferase activity after exposure to luciferase-denaturing temperatures. These results suggest that GaSGT1 promotes cell thermotolerance and employs molecular chaperone-like activity toward temperature assaults.
    Matched MeSH terms: Escherichia coli/metabolism
  19. Yun, Mei Lai, Myo, Thura Zaw, Nor Amalina Emran, Lin, Zaw
    MyJurnal
    Escherichia coli sequence type 131 (ST131) carries multiple drug resistance (MDR) genes as well as virulence genes. Drug resistant characteristics give a management problem to health care personnel. Four MDR Escherichia coli ST131 H30-Rx subclones were identified among 80 Uropathogenic E. coli (UPEC) isolates by using 4 allelic-specific Polymerase Chain Reactions (PCR) in two hospitals of Kota Kinabalu, Sabah, Malaysia. There is emergence of multidrug resistant E. coli in Kota Kinabalu.
    Matched MeSH terms: Uropathogenic Escherichia coli
  20. Yuhana Ariffin E, Heng LY, Tan LL, Abd Karim NH, Hasbullah SA
    Sensors (Basel), 2020 Feb 26;20(5).
    PMID: 32111092 DOI: 10.3390/s20051279
    A novel label-free electrochemical DNA biosensor was constructed for the determination of Escherichia coli bacteria in environmental water samples. The aminated DNA probe was immobilized onto hollow silica microspheres (HSMs) functionalized with 3-aminopropyltriethoxysilane and deposited onto a screen-printed electrode (SPE) carbon paste with supported gold nanoparticles (AuNPs). The biosensor was optimized for higher specificity and sensitivity. The label-free E. coli DNA biosensor exhibited a dynamic linear response range of 1 × 10-10 µM to 1 × 10-5 µM (R2 = 0.982), with a limit of detection at 1.95 × 10-15 µM, without a redox mediator. The sensitivity of the developed DNA biosensor was comparable to the non-complementary and single-base mismatched DNA. The DNA biosensor demonstrated a stable response up to 21 days of storage at 4 ℃ and pH 7. The DNA biosensor response was regenerable over three successive regeneration and rehybridization cycles.
    Matched MeSH terms: Escherichia coli/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links