Displaying publications 1 - 20 of 170 in total

Abstract:
Sort:
  1. Mahdi HI, Ramlee NN, da Silva Duarte JL, Cheng YS, Selvasembian R, Amir F, et al.
    Chemosphere, 2023 Apr;319:138003.
    PMID: 36731678 DOI: 10.1016/j.chemosphere.2023.138003
    Biodiesel is an alternative to fossil-derived diesel with similar properties and several environmental benefits. Biodiesel production using conventional catalysts such as homogeneous, heterogeneous, or enzymatic catalysts faces a problem regarding catalysts deactivation after repeated reaction cycles. Heterogeneous nanocatalysts and nanobiocatalysts (enzymes) have shown better advantages due to higher activity, recyclability, larger surface area, and improved active sites. Despite a large number of studies on this subject, there are still challenges regarding its stability, recyclability, and scale-up processes for biodiesel production. Therefore, the purpose of this study is to review current modifications and role of nanocatalysts and nanobiocatalysts and also to observe effect of various parameters on biodiesel production. Nanocatalysts and nanobiocatalysts demonstrate long-term stability due to strong Brønsted-Lewis acidity, larger active spots and better accessibility leading to enhancethe biodiesel production. Incorporation of metal supporting positively contributes to shorten the reaction time and enhance the longer reusability. Furthermore, proper operating parameters play a vital role to optimize the biodiesel productivity in the commercial scale process due to higher conversion, yield and selectivity with the lower process cost. This article also analyses the relationship between different types of feedstocks towards the quality and quantity of biodiesel production. Crude palm oil is convinced as the most prospective and promising feedstock due to massive production, low cost, and easily available. It also evaluates key factors and technologies for biodiesel production in Indonesia, Malaysia, Brazil, and the USA as the biggest biodiesel production supply.
    Matched MeSH terms: Esterification
  2. Masudi A, Muraza O, Jusoh NWC, Ubaidillah U
    Environ Sci Pollut Res Int, 2023 Feb;30(6):14104-14125.
    PMID: 36585583 DOI: 10.1007/s11356-022-25048-4
    Fewer fossil fuel deposits, price volatility, and environmental concerns have intensified biofuel-based studies. Saccharification, gasification, and pyrolysis are some of the potential methods of producing carbohydrate-based fuels, while lipid extraction is the preferred method of producing biodiesel and green diesel. Over the years, multiple studies have attempted to identify an ideal catalyst as well as optimize the abovementioned methods to produce higher yields at a lower cost. Therefore, this present study comprehensively examined the factors affecting biodiesel stability. Firstly, isomerization, which is typically used to reduce unsaturated fatty acid content, was found to improve oxidative stability as well as maintain and improve cold flow properties. Meanwhile, polymers, surfactants, or small molecules with low melting points were found to improve the cold flow properties of biodiesel. Meanwhile, transesterification with an enzyme could be used to remove monoacylglycerols from oil feedstock. Furthermore, combining two natural antioxidants could potentially slow lipid oxidation if stainless steel, carbon steel, or aluminum are used as biodiesel storage materials. This present review also recommends combining green diesel and biodiesel to improve stability. Furthermore, green diesel can be co-produced at oil refineries that are more selective and have a limited supply of hydrogen. Lastly, next-generation farming should be examined to avoid competing interests in food and energy as well as to improve agricultural efficiency.
    Matched MeSH terms: Esterification
  3. Dawood S, Ahmad M, Zafar M, Asif S, Klemeš JJ, Bokhari A, et al.
    Chemosphere, 2022 Mar;291(Pt 2):132780.
    PMID: 34767846 DOI: 10.1016/j.chemosphere.2021.132780
    The present work investigates the proficiency of green silver oxide nanocatalyst synthesised from Monotheca buxifolia (Falc.) Dcne. leaves extract, and their application for biodiesel synthesis from novel Prunus bokhariensis seed oil (non-edible). The seed oil content of 55% and FFA content of 0.80 mg KOH/g were reported. Several analytical tools (EDX, FT-IR, SEM and XRD) were used to characterise the Ag2O nanocatalyst. Maximum (89%) FAME yield of the PBSOB (Prunus bokhariensis seed oil biodiesel) was achieved at ambient transesterification conditions i.e. 3.5 wt% nanocatalyst loading, 2.5 h reaction time, 130 °C of reaction temperature and 12:1 alcohol to oil ratio. The synthesised PBSOB was additionally characterised by analytical methods like, GC-MS and FT-IR. The different aspects of fuel were identified i.e. flash point (84 °C), kinematic viscosity (4.01 cSt @ 40 °C), sulphur content (0.0003 wt %), density (0.853 kg/L) and acid number (0.167 mg KOH/g). All the above properties were verified and agreed well with biodiesel international standards (European Union (14214), China GB/T (20828) and ASTM (6751, 951). In general, Prunus bokhariensis seed oil and Ag2O nanocatalyst seem to be remarkably active, cheap and stable candidates for the biodiesel industry in future.
    Matched MeSH terms: Esterification
  4. Nabgan W, Nabgan B, Ikram M, Jadhav AH, Ali MW, Ul-Hamid A, et al.
    Chemosphere, 2022 Mar;290:133296.
    PMID: 34914962 DOI: 10.1016/j.chemosphere.2021.133296
    The fatty acid methyl ester (FAME) production from dairy effluent scum as a sustainable energy source using CaO obtained from organic ash over titanium dioxide nanoparticles (TNPs) as the transesterification nano-catalyst has been studied. The physical and chemical properties of the synthesized catalysts were characterized, and the effect of different experimental factors on the biodiesel yield was studied. It was revealed that the CaO-TiO2 nano-catalyst displayed bifunctional properties, has both basic and acid phases, and leads to various effects on the catalyst activity in the transesterification process. These bifunctional properties are critical for achieving simultaneous transesterification of dairy scum oil feedstock. According to the reaction results, the catalyst without and with a low ratio of TNPs showed a low catalytic activity. In contrast, the 3Ca-3Ti nano-catalyst had the highest catalytic activity and a strong potential for reusability, producing a maximum biodiesel yield of 97.2% for a 3 wt% catalyst, 1:20 oil to methanol molar ratio for the dairy scum, and a reaction temperature of 70 °C for a period of 120 min under a 300 kPa pressure. The physical properties of the produced biodiesel are within the EN14214 standards.
    Matched MeSH terms: Esterification
  5. Hosseinzadeh-Bandbafha H, Li C, Chen X, Peng W, Aghbashlo M, Lam SS, et al.
    J Hazard Mater, 2022 02 15;424(Pt C):127636.
    PMID: 34740507 DOI: 10.1016/j.jhazmat.2021.127636
    Waste cooking oil (WCO) is a hazardous waste generated at staggering values globally. WCO disposal into various ecosystems, including soil and water, could result in severe environmental consequences. On the other hand, mismanagement of this hazardous waste could also be translated into the loss of resources given its energy content. Hence, finding cost-effective and eco-friendly alternative pathways for simultaneous management and valorization of WCO, such as conversion into biodiesel, has been widely sought. Due to its low toxicity, high biodegradability, renewability, and the possibility of direct use in diesel engines, biodiesel is a promising alternative to mineral diesel. However, the conventional homogeneous or heterogeneous catalysts used in the biodiesel production process, i.e., transesterification, are generally toxic and derived from non-renewable resources. Therefore, to boost the sustainability features of the process, the development of catalysts derived from renewable waste-oriented resources is of significant importance. In light of the above, the present work aims to review and critically discuss the hazardous WCO application for bioenergy production. Moreover, various waste-oriented catalysts used to valorize this waste are presented and discussed.
    Matched MeSH terms: Esterification
  6. Abdullah RF, Rashid U, Hazmi B, Ibrahim ML, Tsubota T, Alharthi FA
    Chemosphere, 2022 Jan;286(Pt 3):131913.
    PMID: 34418662 DOI: 10.1016/j.chemosphere.2021.131913
    Hydrothermal carbonization (HTC) provides alternatives technique to produce a nanosize activated carbon from biomass with a high surface area. Herein, this study we prepared empty fruit bunch-based activated carbon (EFBHAC) using HTC technique. The activated carbon was then functionalized with K2CO3 and Cu(NO3)2 to produce bifunctional nano-catalyst for simultaneous esterification-transesterification of waste cooking oil (WCO). The physicochemical properties were performed i.e. N2 sorptions analysis, TPD-CO2/NH3, FESEM, EDX, FTIR and XRD analysis. The results revealed that produced EFBHAC possessed a BET surface area of 4056.17 m2 g-1, with pore volume of 0.827 cm3 g-1 and 5.42 nm of pore diameter resulting from hydrolysis, dehydration decarboxylation, aromatization and re-condensation during HTC process. Impregnation of EFBHAC with K2CO3 and Cu(NO3)2 granted a high amount of basicity and acidity of 9.21 mmol g-1 and 31.41 mmol g-1, respectively, accountable to high biodiesel yield of 97.1%, produced at the optimum condition of 5 wt% of catalyst loading, 12:1 of methanol to oil molar ratio at 70 °C for 2 h. More than 80% of biodiesel was produced after the 5th cycle depicted the good reusability. The transformations from WCO to biodiesel was confirmed via 1H NMR, FTIR and TGA analysis. Fuel properties revealed kinematic viscosity of 3.3 mm2 s-1, cetane number of 51, flash point of 160.5 °C, cloud and pour point of 11 °C and -3 °C, respectively. These results show the excellent potential of waste materials to prepare bifunctional nano-catalysts to produce higher biodiesel yield which has potential to be commercialized.
    Matched MeSH terms: Esterification
  7. Nawaz S, Ahmad M, Asif S, Klemeš JJ, Mubashir M, Munir M, et al.
    Bioresour Technol, 2022 Jan;343:126068.
    PMID: 34626762 DOI: 10.1016/j.biortech.2021.126068
    The efforts have been made to review phyllosilicate derived (clay-based) heterogeneous catalysts for biodiesel production via lignocellulose derived feedstocks. These catalysts have many practical and potential applications in green catalysis. Phyllosilicate derived heterogeneous catalysts (modified via any of these approaches like acid activated clays, ion exchanged clays and layered double hydroxides) exhibits excellent catalytic activity for producing cost effective and high yield biodiesel. The combination of different protocols (intercalated catalysts, ion exchanged catalysts, acidic activated clay catalysts, clay-supported catalysts, composites and hybrids, pillared interlayer clay catalysts, and hierarchically structured catalysts) was implemented so as to achieve the synergetic effects (acidic-basic) in resultant material (catalyst) for efficient conversion of lignocellulose derived feedstock (non-edible oils) to biodiesel. Utilisation of these Phyllosilicate derived catalysts will pave path for future researchers to investigate the cost-effective, accessible and improved approaches in synthesising novel catalysts that could be used for converting lignocellulosic biomass to eco-friendly biodiesel.
    Matched MeSH terms: Esterification
  8. Wafti NSA, Yunus R, Lau HLN, Yaw TCS, Aziz SA
    Bioprocess Biosyst Eng, 2021 Nov;44(11):2429-2444.
    PMID: 34269888 DOI: 10.1007/s00449-021-02615-6
    The present study reports the effects of three commercial immobilized lipases namely Novozyme 435 from Candida antarctica lipase B (CALB), Lipozyme TL IM from Thermomyces lanuginosus and Lipozyme RM IM from Rhizomucor miehei on the production of trimethylolpropane (TMP) ester from high oleic palm methyl ester (HO-PME) and TMP. The TMP ester is a promising base oil for biolubricants that are easily biodegradable and non-toxic to humans and the environment. Enzymatic catalysts are insensitive to free fatty acid (FFA) content, hence able to mitigate the side reactions and consequently reduce product separation cost. The potential of these enzymes to produce TMP ester in a solvent-free medium was screened at various reaction time (8, 23, 30 and 48 h), operating pressure (0.1, 0.3 and 1.0 mbar) and enzyme dosage (1, 3, 5 and 10% w/w). The reaction was conducted at a constant temperature of 70 °C and a molar ratio of 3.9:1 (HO-PME: TMP). Novozyme 435 produced the highest yield of TMP ester of 95.68 ± 3.60% under the following conditions: 23 h reaction time, 0.1 mbar operating pressure and 5% w/w of enzyme dosage. The key lubrication properties of the produced TMP ester are viscosity index (208 ± 2), pour point (- 30 ± - 2 °C), cloud point (- 15 ± - 2 °C), onset thermal degradation temperature (427.8 °C), and oxidation stability, RPVOT (42 ± 4 min). The properties of the TMP ester produced from the enzymatic transesterification are comparable to other vegetable oil-based biolubricants produced by chemical transesterification.
    Matched MeSH terms: Esterification
  9. Gonawan FN, Bakar PNMA, Kamaruddin AH
    J Oleo Sci, 2021 Oct 05;70(10):1437-1445.
    PMID: 34497176 DOI: 10.5650/jos.ess21010
    The Lipase-catalyzed synthesis of glyceryl monocaffeate (GMC) in choline chloride-urea of natural deep eutectic solvent (NADES) media is reported to provide amphiphilic character to caffeic acid (CA). The modification of CA into GMC could potentially increase its solubility and widen the application of CA's biological activities in water and oil-based systems. The high conversion was achieved when the reaction was carried out with the addition of more than 20 %v/v water, at a high molar ratio of glycerol and 40°C. It was found that the lipase-catalyzed transesterification of ethyl caffeate (EC) and glycerol in choline chloride-urea of DES media obeyed ping-pong bi-bi mechanism with Vmax = 10.9 mmol.min-1, KmEC = 126.5 mmol and KmGly = 1842.7 mmol.
    Matched MeSH terms: Esterification
  10. Dawood S, Koyande AK, Ahmad M, Mubashir M, Asif S, Klemeš JJ, et al.
    Chemosphere, 2021 Sep;278:130469.
    PMID: 33839393 DOI: 10.1016/j.chemosphere.2021.130469
    The present study defines a novel green method for the synthesis of the nickel oxide nanocatalyst by using an aqueous latex extract of the Ficus elastic. The catalyst was examined for the conversion of novel Brachychiton populneus seed oil (BPSO) into biodiesel. The Brachychiton populneus seeds have a higher oil content (41 wt%) and free fatty acid value (3.8 mg KOH/g). The synthesised green nanocatalyst was examined by the Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-Ray (EDX) spectroscopy, X-Ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The obtained results show that the synthesised green nanocatalyst was 22-26 nm in diameter and spherical-cubic in shape with a higher rate of catalytic efficiency. It was utilised further for the conversion of BPSO into biofuel. Due to the high free fatty acid value, the biodiesel was synthesised by the two-step process, i.e., pretreatment of the BPSO by means of acid esterification and then followed by the transesterification reaction. The acidic catalyst (H2SO4) was used for the pretreatment of BPSO. The optimum condition for the transesterification of the pretreated BPSO was 1:9 of oil-methanol molar ratio, 2.5 wt % of prepared nanocatalyst concentration and 85 °C of reaction temperature corresponding to the highest biodiesel yield of 97.5 wt%. The synthesised biodiesel was analysed by the FT-IR and GC-MS technique to determine the chemical composition of fatty acid methyl esters. Fuel properties of Brachychiton populneus seed oil biodiesel (BPSOB) were also examined, compared, and it falls in the prescribed range of ASTM standards.
    Matched MeSH terms: Esterification
  11. Jacob AG, Wahab RA, Mahat NA
    Enzyme Microb Technol, 2021 Aug;148:109807.
    PMID: 34116744 DOI: 10.1016/j.enzmictec.2021.109807
    Oil palm leaves (OPL) silica (SiO2) can replace the energy-intensive, commercially produced SiO2. Moreover, the agronomically sourced biogenic SiO2 is more biocompatible and cost-effective enzyme support, which properties could be improved by the addition of magnetite (Fe3O4) and graphene oxide (GO) to yield better ternary support to immobilize enzymes, i.e., Candida rugosa lipase (CRL). This study aimed to optimize the Candida rugosa lipase (CRL immobilization onto the ternary OPL-silica-magnetite (Fe3O4)-GO (SiO2/Fe3O4/GO) support, for use as biocatalyst for ethyl valerate (EV) production. Notably, this is the first study detailing the CRL/SiO2/Fe3O4/GO biocatalyst preparation for rapid and high yield production of ethyl valerate (EV). AFM and FESEM micrographs revealed globules of CRL covalently bound to GL-A-SiO2/Fe3O4/GO; similar to Raman and UV-spectroscopy results. FTIR spectra revealed amide bonds at 3478 cm-1 and 1640 cm-1 from covalent interactions between CRL and GL-A-SiO2/Fe3O4/GO. Optimum immobilization conditions were 4% (v/v) glutaraldehyde, 8 mg/mL CRL, at 16 h stirring in 150 mM NaCl at 30 °C, offering 24.78 ± 0.26 mg/g protein (specific activity = 65.24 ± 0.88 U/g). The CRL/SiO2/Fe3O4/GO yielded 77.43 ± 1.04 % of EV compared to free CRL (48.75 ± 0.70 %), verifying the suitability of SiO2/Fe3O4/GO to hyperactivate and stabilize CRL for satisfactory EV production.
    Matched MeSH terms: Esterification
  12. Munir M, Ahmad M, Mubashir M, Asif S, Waseem A, Mukhtar A, et al.
    Bioresour Technol, 2021 May;328:124859.
    PMID: 33621759 DOI: 10.1016/j.biortech.2021.124859
    The potential of new trimetallic (Ce, Cu, La) loaded montmorillonite clay catalyst for synthesizing biodiesel using novel non-edible Celastrus paniculatus Willd seed oil via two-step transesterification reaction has been reported along with catalyst characterization. Transesterification reaction was optimized and maximum biodiesel yield of 89.42% achieved under optimal operating reaction states like; 1:12 oil to methanol ratio, 3.5% of catalyst amount, 120 °C of reaction temperature for 3 h. The predicted and experimental biodiesel yields under these reaction conditions were 89.42 and 89.40%, which showing less than 0.05% variation. Additionally, optimum biodiesel yield can be predicted by drawing 3D surface plots and 2D contour plots using MINITAB 17 software. For the characterization of the obtained biodiesel, analysis including the GC/MS, FT-IR, 1H NMR and 13C NMR were applied. The fuel properties of obtained biodiesel agrees well with the different European Union (EU-14214), China (GB/T 20828), and American (ASTM-951, 6751) standards.
    Matched MeSH terms: Esterification
  13. Cheryl-Low YL, Kong PS, Lee HV
    J Hazard Mater, 2021 04 05;407:124365.
    PMID: 33162238 DOI: 10.1016/j.jhazmat.2020.124365
    Non-edible bio-oil derived from lignocellulosic biomass could be used as environmentally friendly lubricant-ester base stock for maritime and road-type transportations. However, the use of crude bio-oil with highly oxygenated compounds required further upgrading to yield ester that mimicked the characteristics of Group V base oil (polyolesters). In this study, bio-oil based polyolesters was produced via esterification using green biopolymer alginate acid catalyst (Al-Alg). The bio-oil compounds used were acetic acid (AcA), propionic acid (PrA) and levulinic acid (LA), while polyols such as neopentyl glycol (NPG), trimethylolpropane (TMP) and pentaerythritol (PE) were used. Optimization studies revealed that NPG-PrA ester gave the best ester purity of 100%, with 95% of diester selectivity under optimum conditions of 15 wt% Al-Alg, 8 h, 6:1 PrA:NPG and 140 °C. The produced polyolesters showed potential lube characteristics with viscosity index of 76, kinematic viscosity of 2.3 mm2 s-1 at 40 °C and oxidative induction time of 15 min at 100 °C. Furthermore, a reusability study of the Al-Alg catalyst indicated high NPG-PrA diester selectivity (above 90%) for 8 consecutive cycles. The physico-chemical properties of spent Al-Alg catalyst were also discussed.
    Matched MeSH terms: Esterification
  14. Balan WS, Janaun J, Chung CH, Semilin V, Zhu Z, Haywood SK, et al.
    J Hazard Mater, 2021 02 15;404(Pt B):124092.
    PMID: 33091694 DOI: 10.1016/j.jhazmat.2020.124092
    In this study, carbon-silica based acid catalysts derived from rice husks (RH) were successfully synthesised using microwave (MW) technology. The results showed that MW sulphonation produced Sulphur (S) content of 17.2-18.5 times higher than in raw RH. Fourier-transform Infrared Spectroscopy (FTIR) showed peak at 1035 cm-1 which corresponded to O˭S˭O stretching of sulphonic (-SO3H) group. XRD showed sulfonated RH catalysts (SRHCs) have amorphous structure, and through SEM, broadening of the RH voids and also formation of pores is observed. RH600 had the highest surface area of 14.52 m2/g. SRHCs showed high catalytic activity for esterification of oleic acid with methanol with RH600 had the highest initial formation rate (6.33 mmolL-1min-1) and yield (97%). The reusability of the catalyst showed gradually dropped yield of product for every recycle, which might be due to leaching of -SO3H. Finally, esterification of oil recovered from palm oil mill effluent (POME) with methanol achieved a conversion of 87.3% free fatty acids (FFA) into fatty acid methyl esters (FAME).
    Matched MeSH terms: Esterification
  15. Mohamad Aziz NA, Yunus R, Kania D, Abd Hamid H
    Molecules, 2021 Feb 03;26(4).
    PMID: 33546303 DOI: 10.3390/molecules26040788
    Biodiesels and biolubricants are synthetic esters produced mainly via a transesterification of other esters from bio-based resources, such as plant-based oils or animal fats. Microwave heating has been used to enhance transesterification reaction by converting an electrical energy into a radiation, becoming part of the internal energy acquired by reactant molecules. This method leads to major energy savings and reduces the reaction time by at least 60% compared to a conventional heating via conduction and convection. However, the application of microwave heating technology alone still suffers from non-homogeneous electromagnetic field distribution, thermally unstable rising temperatures, and insufficient depth of microwave penetration, which reduces the mass transfer efficiency. The strategy of integrating multiple technologies for biodiesel and biolubricant production has gained a great deal of interest in applied chemistry. This review presents an advanced transesterification process that combines microwave heating with other technologies, namely an acoustic cavitation, a vacuum, ionic solvent, and a supercritical/subcritical approach to solve the limitations of the stand-alone microwave-assisted transesterification. The combined technologies allow for the improvement in the overall product yield and energy efficiency. This review provides insights into the broader prospects of microwave heating in the production of bio-based products.
    Matched MeSH terms: Esterification
  16. Loh SH, Chen MK, Fauzi NS, Aziz A, Cha TS
    Sci Rep, 2021 Feb 01;11(1):2720.
    PMID: 33526809 DOI: 10.1038/s41598-021-81609-6
    Conventional microalgae oil extraction applies physicochemical destruction of dry cell biomass prior to transesterification process to produce fatty acid methyl esters (FAMEs). This report presents a simple and rapid direct transesterification (DT) method for FAMEs production and fatty acid profiling of microalgae using freshly harvested biomass. Results revealed that the FAMEs recovered from Chlorella vulgaris were 50.1 and 68.3 mg with conventional oil-extraction-transesterification (OET) and DT method, respectively. While for Messastrum gracile, the FAMEs recovered, were 49.9 and 76.3 mg, respectively with OET and DT methods. This demonstrated that the DT method increased FAMEs recovery by 36.4% and 53.0% from C. vulgaris and M. gracile, respectively, as compared to OET method. Additionally, the DT method recovered a significantly higher amount of palmitic (C16:0) and stearic (C18:0) acids from both species, which indicated the important role of these fatty acids in the membranes of cells and organelles. The DT method performed very well using a small volume (5 mL) of fresh biomass coupled with a shorter reaction time (~ 15 min), thus making real-time monitoring of FAMEs and fatty acid accumulation in microalgae culture feasible.
    Matched MeSH terms: Esterification
  17. Lee YY, Tang TK, Chan ES, Phuah ET, Lai OM, Tan CP, et al.
    PMID: 33480262 DOI: 10.1080/10408398.2021.1873729
    Structured lipid is a type of modified form of lipid that is "fabricated" with the purpose to improve the nutritional and functional properties of conventional fats and oils derived from animal and plant sources. Such healthier choice of lipid received escalating attention from the public for its capability to manage the rising prevalence of metabolic syndrome. Of which, medium-chain triacylglycerol (MCT) and medium-and long-chain triacylglycerol (MLCT) are the few examples of the "new generation" custom-made healthful lipids which are mainly composed of medium chain fatty acid (MCFA). MCT is made up exclusively of MCFA whereas MLCT contains a mixture of MCFA and long chain fatty acid (LCFA), respectively. Attributed by the unique metabolism of MCFA which is rapidly metabolized by the body, MCFA and MCT showed to acquire multiple physiological and functional properties in managing and reversing certain health disorders. Several chemically or enzymatically oils and fats modification processes catalyzed by a biological or chemical catalyst such as acidolysis, interesterification and esterification are adopted to synthesis MCT and MLCT. With their purported health benefits, MCT and MLCT are widely being used as nutraceutical in food and pharmaceutical sectors. This article aims to provide a comprehensive review on MCT and MLCT, with an emphasis on the basic understanding of its structures, properties, unique metabolism; the current status of the touted health benefits; latest routes of production; its up-to-date applications in the different food systems; relevant patents filed and its drawbacks.
    Matched MeSH terms: Esterification
  18. Noraini Hamzah, Izyan Yusof, Sabiha Hanim Saleh, Nazrizawati Ahmad Tajuddin, Mohd Lokman Ibrahim, Wan Zurina Samad
    MyJurnal
    Demand for diesel continues to increase due to rapid population growth, which could contribute to fossil fuel exhaustion. Biodiesel has been widely developed as a replacement for conventional diesel to resolve the issue. Biodiesel production from waste cooking oil (WCO) was carried out via the transesterification process using two types of bentonite catalysts, which are raw bentonite and NaOH/bentonite. By using the impregnation method, the NaOH/bentonite catalyst was synthesized at 60°C for 12 hours. The transesterification was conducted with 0.5wt% of catalyst, at 15:1 (methanol- to-oil), for 2 hours at different reaction temperatures. The characterization of both raw bentonite and NaOH/bentonite was done using X-ray Diffraction (XRD) and Brunauer, Emmett, Teller (BET) surface characterization. A high yield of FAMEs (72%) was found to be obtained in continuous stirring at 55ºC for 2 hours and 15:1 methanol/oil molar ratio with 0.5wt.% (0.15g) of NaOH/bentonite catalyst.
    Matched MeSH terms: Esterification
  19. Quah RV, Tan YH, Mubarak NM, Kansedo J, Khalid M, Abdullah EC, et al.
    Waste Manag, 2020 Dec;118:626-636.
    PMID: 33011540 DOI: 10.1016/j.wasman.2020.09.016
    Due to its environment-friendly and replenishable characteristics, biodiesel has the potential to substitute fossil fuels as an alternative source of energy. Although biodiesel has many benefits to offer, manufacturing biodiesel on an industrial scale is uneconomical as a high cost of feedstock is required. A novel sulfonated and magnetic catalyst synthesised from a palm kernel shell (PMB-SO3H) was first introduced in this study for methyl ester or biodiesel production to reduce capital costs. The wasted palm kernel shell (PKS) biochar impregnated with ferrite Fe3O4 was synthesised with concentrated sulphuric acid through the sulfonation process. The SEM, EDX, FTIR, VSM and TGA characterization of the catalysts were presented. Then, the optimisation of biodiesel synthesis was catalysed by PMB-SO3H via the Response Surface Methodology (RSM). It was found that the maximum biodiesel yield of 90.2% was achieved under these optimum operating conditions: 65 °C, 102 min, methanol to oil ratio of 13:1 and the catalyst loading of 3.66 wt%. Overall, PMB-SO3H demonstrated acceptable catalysing capability on its first cycle, which subsequently showed a reduction of the reusability performance after 4 cycles. An important practical implication is that PMB-SO3H can be established as a promising heterogeneous catalyst by incorporating an iron layer which can substantially improve the catalyst separation performance in biodiesel production.
    Matched MeSH terms: Esterification
  20. Aziz NAM, Yunus R, Hamid HA, Ghassan AAK, Omar R, Rashid U, et al.
    Sci Rep, 2020 11 12;10(1):19652.
    PMID: 33184363 DOI: 10.1038/s41598-020-76775-y
    Microwave-assisted synthesis is known to accelerate the transesterification process and address the issues associated with the conventional thermal process, such as the processing time and the energy input requirement. Herein, the effect of microwave irradiation on the transesterification of palm oil methyl ester (PME) with trimethylolpropane (TMP) was evaluated. The reaction system was investigated through five process parameters, which were reaction temperature, catalyst, time, molar ratio of TMP to PME and vacuum pressure. The yield of TMP triester at 66.9 wt.% and undesirable fatty soap at 17.4% were obtained at 130 °C, 10 mbar, sodium methoxide solution at 0.6 wt.%, 10 min reaction time and molar ratio of TMP to PME at 1:4. The transesterification of palm oil-based methyl ester to trimethylolpropane ester was 3.1 folds faster in the presence of microwave irradiation. The total energy requirement was markedly reduced as compared to the conventional heating method. The findings indicate that microwave-assisted transesterification could probably be an answer to the quest for a cheaper biodegradable biolubricant.
    Matched MeSH terms: Esterification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links