Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Khayoon MS, Olutoye MA, Hameed BH
    Bioresour Technol, 2012 May;111:175-9.
    PMID: 22405756 DOI: 10.1016/j.biortech.2012.01.177
    Methyl esters were synthesized from crude karanj oil (CKO) by single step esterification with methanol using sulfuric acid (H(2)SO(4)) and phosphoric acid (H(3)PO(4)) as catalysts in a homogeneous batch process. H(3)PO(4) was less active than H(2)SO(4) during the process as it presented very low ester yields (<20%) for the various molar ratios of fatty acid to alcohol studied. With H(2)SO(4) as catalyst, the yield was as high as 89.8% at 65°C after 5h. The fatty acids profile of the oil (palmitic acid: ≈ 12%; stearic acid: ≈ 8%; oleic acid: ≈ 52% and linolenic acid of 17%) and the different reactivities of the acids were responsible for the observed differences in conversion to methyl esters. The findings attained with this study might contribute to the economic utilization of a non-edible feedstock.
    Matched MeSH terms: Esters/chemistry
  2. Zulkurnain M, Lai OM, Latip RA, Nehdi IA, Ling TC, Tan CP
    Food Chem, 2012 Nov 15;135(2):799-805.
    PMID: 22868161 DOI: 10.1016/j.foodchem.2012.04.144
    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation.
    Matched MeSH terms: Esters/chemistry*
  3. Chidan Kumar CS, Loh WS, Chandraju S, Win YF, Tan WK, Quah CK, et al.
    PLoS One, 2015;10(3):e0119440.
    PMID: 25742494 DOI: 10.1371/journal.pone.0119440
    A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity.
    Matched MeSH terms: Esters/chemistry
  4. Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Feb;102(4):3819-26.
    PMID: 21183335 DOI: 10.1016/j.biortech.2010.11.100
    Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle.
    Matched MeSH terms: Esters/chemistry*
  5. Al-Mulla EA, Yunus WM, Ibrahim NA, Rahman MZ
    J Oleo Sci, 2009;58(9):467-71.
    PMID: 19654456
    N,N'-Carbonyl difatty amides (CDFAs) have been synthesized from palm oil using sodium ethoxide as catalyst. Ethyl fatty esters (EFEs) were produced as a by-product as well as glycerol. The synthesis was carried out by reflux palm oil and urea in presence of ethanol. In this process, palm oil gave 79% pure CDFAs after 8 hours and molar ratio of urea to palm oil was 6.2: 1 at 78 degrees C. Both CDFAs and EFEs have been characterized using elemental analysis, Fourier transform infrared (FTIR) spectroscopy and (1)H nuclear magnetic resonance (NMR) technique.
    Matched MeSH terms: Esters/chemistry
  6. Tajau R, Rohani R, Abdul Hamid SS, Adam Z, Mohd Janib SN, Salleh MZ
    Sci Rep, 2020 12 10;10(1):21704.
    PMID: 33303818 DOI: 10.1038/s41598-020-78601-x
    Polymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core-shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core-shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.
    Matched MeSH terms: Esters/chemistry
  7. Danov KD, Stanimirova RD, Kralchevsky PA, Basheva ES, Ivanova VI, Petkov JT
    J Colloid Interface Sci, 2015 Nov 1;457:307-18.
    PMID: 26196714 DOI: 10.1016/j.jcis.2015.07.020
    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations.
    Matched MeSH terms: Esters/chemistry*
  8. Hew KS, Asis AJ, Tan TB, Yusoff MM, Lai OM, Nehdi IA, et al.
    Food Chem, 2020 Mar 01;307:125545.
    PMID: 31654951 DOI: 10.1016/j.foodchem.2019.125545
    Corresponding the high presence of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) in refined palm oil, this paper re-evaluated degumming and bleaching processes of physical palm oil refining to reduce the amount of said contaminants. Separation-free water degumming was incorporated into the process, and this significantly (p 
    Matched MeSH terms: Esters/chemistry*
  9. Ng IS, Song CP, Ooi CW, Tey BT, Lee YH, Chang YK
    Int J Biol Macromol, 2019 Aug 01;134:458-468.
    PMID: 31078593 DOI: 10.1016/j.ijbiomac.2019.05.054
    Nanofiber membrane chromatography integrates liquid membrane chromatography and nanofiber filtration into a single-step purification process. Nanofiber membrane can be functionalised with affinity ligands for promoting binding specificity of membrane. Dye molecules are a good affinity ligand for nanofiber membrane due to their low cost and high binding affinity. In this study, a dye-affinity nanofiber membrane (P-Chitosan-Dye membrane) was prepared by using polyacrylonitrile nanofiber membrane modified with chitosan molecules and immobilized with dye molecules. Reactive Orange 4, commercially known as Procion Orange MX2R, was found to be the best dye ligand for membrane chromatography. The binding capacity of P-Chitosan-Dye membrane for lysozyme was investigated under different operating conditions in batch mode. Furthermore, desorption of lysozyme using the P-Chitosan-Dye membrane was evaluated systematically. The recovery percentage of lysozyme was found to be ~100%. The optimal conditions obtained from batch-mode study were adopted to develop a purification process to separate lysozyme from chicken egg white. The process was operated continuously using the membrane chromatography and the characteristic of the breakthrough curve was evaluated. At a lower flow rate (i.e., 0.1 mL/min), the total recovery of lysozyme and purification factor of lysozyme were 98.59% and 56.89 folds, respectively.
    Matched MeSH terms: Sulfuric Acid Esters/chemistry*
  10. Abd Maurad Z, Abdullah LC, Anuar MS, Abdul Karim Shah NN, Idris Z
    Molecules, 2020 Jun 05;25(11).
    PMID: 32516971 DOI: 10.3390/molecules25112629
    Methyl ester sulphonates (MES) have been considered as an alternative green surfactant for the detergent market. Investigation on the purification of methyl ester sulphonates (MES) with various carbon chains of C12, C14, C16 and C16-18 derived from palm methyl ester is of great interest. These MES powders have been repeatedly crystallized with ethanol and the purity of MES has increased to a maximum of 99% active content and 96% crystallinity index without changing the structure. These crystallized MES with high active content have 1.0% to 2.3% moisture content and retained its di-salt content in the range of 5%. The crystallized MES C16 and C16-18 attained excellent flow characteristics. Morphology, structural and its crystallinity analyses showed that the crystals MES had good solubility properties, stable crystal structure (β polymorphic) and triclinic lateral structure when it is in high active content. The brittleness of MES crystals increased from a β' to a β subcell. Crystal with high brittleness has the potential to ease production of powder, which leads to a reduction in the cost of production and improves efficiency.
    Matched MeSH terms: Esters/chemistry*
  11. Mohammed IA, Jawad AH, Abdulhameed AS, Mastuli MS
    Int J Biol Macromol, 2020 Oct 15;161:503-513.
    PMID: 32534088 DOI: 10.1016/j.ijbiomac.2020.06.069
    Chitosan (CS) was physically modified with fly ash (FA) powder and subjected to chemical cross-linking reaction with tripolyphosphate (TPP) to produce a cross-linked CS-TPP/FA composite as adsorbent for removal of reactive orange 120 (RR120) dye. Different ratios of FA such as 25% FA particles (CS-TPP/FA-25) and 50% FA particles (CS-TPP/FA-50) were loaded into the molecular structure of CS-TPP. Box-Behnken design (BBD) was applied to optimize the input variables that affected the synthesis of the adsorbent and the adsorption of RR120 dye. These variables included FA loading (A: 0-50%), adsorbent dose (B: 0.04-0.1 g), solution pH (C: 4-10), temperature (D: 30 °C-60 °C), and time (E: 30-90 min). Results revealed that the highest removal (88.8%) of RR120 dye was achieved by CS-TPP/FA-50 at adsorbent dosage of 0.07 g, solution of pH 4, temperature of 45 °C, and time of 60 min. The adsorption equilibrium was described by the Freundlich model, with 165.8 mg/g at 45 °C as the maximum adsorption capacity of CS-TPP/FA-50 for RR120 dye. This work introduces CS-TPP/FA-50 as an ideal composite adsorbent for removal of textile dyes from the aqueous environment.
    Matched MeSH terms: Sulfuric Acid Esters/chemistry
  12. Oskoueian E, Abdullah N, Ahmad S
    Molecules, 2012 Sep 10;17(9):10816-30.
    PMID: 22964499 DOI: 10.3390/molecules170910816
    Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC₅₀ of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA) as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC₅₀ concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun). These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy.
    Matched MeSH terms: Phorbol Esters/chemistry
  13. Low SY, Tan JY, Ban ZH, Siwayanan P
    J Oleo Sci, 2021 Aug 05;70(8):1027-1037.
    PMID: 34248098 DOI: 10.5650/jos.ess21078
    Liquid detergent has an increasing demand in North America, Western Europe, and Southeast Asia countries owing to its convenience to use and efficiency to clean. Alpha methyl ester sulfonates (α-MES), an anionic surfactant derived from palm oil based methyl ester, was reported to have lower manufacturing cost, good detergency with less dosage, excellent biodegradability, higher tolerance to hard water, and lower eco-toxicity as compared to linear alkylbenzene sulfonates (LABS). LABS was known as the workhorse of the detergent industry in the 20th century. Although palm-based α-MES was successfully used as the sole surfactant in powder detergent, there are still some unsettled technical issues related to phase stability and viscosity when using this anionic surfactant in heavy-duty laundry liquid detergent formulations. This paper will review not only the market overview of detergents, the application and performance of green surfactants in laundry detergents but also will highlight the technical issues related to the application of palm-based α-MES in laundry liquid detergent and some of the possible methods to overcome the formulation adversities.
    Matched MeSH terms: Esters/chemistry; Sulfuric Acid Esters/chemistry
  14. Tiong SH, Nair A, Abd Wahid SA, Saparin N, Ab Karim NA, Ahmad Sabri MP, et al.
    PMID: 34407744 DOI: 10.1080/19440049.2021.1960430
    Chlorinated compounds such as sphingolipid-based organochlorine compounds are precursors for the formation of 3-monochlororopanediol (3-MCPD) esters in palm oil. This study evaluates the effects of several factors within the palm oil supply chain on the levels of sphingolipid-based organochlorine, which in turn may influence the formation of 3-MCPD esters during refining. These factors include application of inorganic chlorinated fertiliser in the oil palm plantation, bruising and degradation of oil palm fruits after harvest, recycling of steriliser condensate as water for dilution of crude oil during oil palm milling, water washing of palm oil and different refining conditions. It was observed that bruised and degraded oil palm fruits showed higher content of sphingolipid-based organochlorine than control. In addition, recycling steriliser condensate during milling resulted in elevated content of sphingolipid-based organochlorine in palm oil. However, the content of sphingolipid-based organochlorine compounds was reduced by neutralisation, degumming and bleaching steps during refining. Although water washing of crude palm oils (CPO) prior to refining did not reduce the content of sphingolipid-based organochlorine, it did reduce the formation of 3-MCPD esters through the removal of water-soluble chlorinated compounds. It was found that the use of inorganic chlorinated fertiliser in plantations did not increase the content of chlorinated compounds in oil palm fruits and extracted oil, and hence chlorinated fertiliser does not seem to play a role in the formation of 3-MCPD esters in palm oil. Overall, this study concluded that lack of freshness and damage to the fruits during transport to mills, combined with water and oil recycling in mills are the major contributors of chlorinated precursor for 3-MCPD esters formation in palm oil.
    Matched MeSH terms: Esters/chemistry*
  15. Ashari SE, Mohamad R, Ariff A, Basri M, Salleh AB
    J Oleo Sci, 2009;58(10):503-10.
    PMID: 19745577
    Kojic acid monooleate is a fatty acid derivative of kojic acid which can be widely used as a skin whitening agent in a cosmetic applications. In avoiding any possible harmful effects from chemically synthesized product, the enzymatic synthesis appears to be the best way to satisfy the consumer demand nowadays. The ability of immobilized lipase from Rhizomucor meihei (lipozyme RMIM) to catalyze the direct esterification of kojic acid and oleic acid was investigated. Response Surface Methodology (RSM) and 5-level-4-factor central composite rotatable were employed to evaluate the effects of synthesis parameters such as enzyme amount (0.1-0.4 g), temperature (30-60 degrees C), substrate molar ratio (1-4 mmol, kojic acid:oleic acid) and reaction time (24-48 h) on percentage molar conversion to kojic acid monooleate. Analysis of the product using TLC, GC and FTIR showed the presence of kojic acid monooleate. The optimal conditions for the enzymatic reaction were obtained after analysis with backward elimination using 0.17 g of enzyme and 4 mmol of substrate at 52.50 degrees C for 42 h. Under these conditions the esterification percentage was 37.21%. The results demonstrated that response surface methodology can be applied effectively to optimize the lipase-catalysed synthesis of kojic acid monooleate. The optimum conditions can be used to scale up the process.
    Matched MeSH terms: Esters/chemistry
  16. Ramadan NS, Wessjohann LA, Mocan A, Vodnar DC, El-Sayed NH, El-Toumy SA, et al.
    Molecules, 2020 May 22;25(10).
    PMID: 32455938 DOI: 10.3390/molecules25102423
    Averrhoa carambola L. is a tropical tree with edible fruit that grows at different climatic conditions. Despite its nutritive value and reported health benefits, it is a controversial fruit owing to its rich oxalate content. The present study aimed at investigating aroma and nutrient primary metabolites distribution in A. carambola fruits grown in Indonesia, Malaysia (its endemic origin) versus Egypt, and at different ripening stages. Two techniques were employed to assess volatile and non-volatile metabolites including headspace solid-phase micro-extraction (HS-SPME) joined with gas chromatography coupled with mass-spectrometry (GC-MS) and GC-MS post silylation, respectively. Twenty-four volatiles were detected, with esters amounting for the major class of volatiles in Egyptian fruit at ca. 66%, with methyl caproate as the major component, distinguishing it from other origins. In contrast, aldehydes predominated tropically grown fruits with the ether myristicin found exclusively in these. Primary metabolites profiling led to the identification of 117 metabolites viz. sugars, polyols and organic acids. Fructose (38-48%) and glucose (21-25%) predominated sugar compositions in ripe fruits, whereas sorbitol was the major sugar alcohol (2.4-10.5%) in ripe fruits as well. Oxalic acid, an anti-nutrient with potential health risks, was the major organic acid detected in all the studied fruits (1.7-2.7%), except the Malaysian one (0.07%). It increases upon fruit ripening, including considerable amounts of volatile oxalate esters detected via SPME, and which must not be omitted in total oxalate determinations for safety assessments.
    Matched MeSH terms: Esters/chemistry
  17. Wong YH, Goh KM, Nyam KL, Cheong LZ, Wang Y, Nehdi IA, et al.
    Sci Rep, 2020 09 15;10(1):15110.
    PMID: 32934328 DOI: 10.1038/s41598-020-72118-z
    3-Monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GE) are heat-induced contaminants which form during oil refining process, particularly at the high temperature deodorization stage. It is worth to investigate the content of 3-MCPD and GE in fries which also involved high temperature. The content of 3-MCPD esters and GE were monitored in fries. The factors that been chosen were temperature and duration of frying, and different concentration of salt (NaCl). The results in our study showed that the effect was in the order of concentration of sodium chloride 
    Matched MeSH terms: Esters/chemistry
  18. Abedi Karjiban R, Basri M, Abdul Rahman MB, Salleh AB
    Int J Mol Sci, 2012;13(8):9572-9583.
    PMID: 22949816 DOI: 10.3390/ijms13089572
    Palm oil-based esters (POEs) are unsaturated and non-ionic esters with a great potential to act as chemical penetration enhancers and drug carriers for transdermal drug nano-delivery. A ratio of palmitate ester and nonionic Tween80 with and without diclofenac acid was chosen from an experimentally determined phase diagram. Molecular dynamics simulations were performed for selected compositions over a period of 15 ns. Both micelles showed a prolate-like shape, while adding the drug produced a more compact micellar structure. Our results proposed that the drug could behave as a co-surfactant in our simulated model.
    Matched MeSH terms: Esters/chemistry*
  19. Kamil RN, Yusup S
    Bioresour Technol, 2010 Aug;101(15):5877-84.
    PMID: 20304636 DOI: 10.1016/j.biortech.2010.02.084
    A mathematical model describing chemical kinetics of transesterification of palm-based methyl esters with trimethylolpropane has been developed. The model was developed by utilizing nonlinear regression method, which is an efficient and powerful way to determine rate constants for both forward and reverse reactions. A comparison with previous study which excludes the reverse reactions was made. The model was based on the reverse mechanism of transesterification reactions and describes concentration changes of trimethylolpropane, monoesters and diesters production. The developed model was validated against data from the literature. The reaction rate constants were determined using MATLAB version 7.2 and the ratios of rate constants obtained were well in agreement with those reported in the literature. A good correlation between model simulations and experimental data was observed. It was proven that both methods were able to predict the rate constants with plausible accuracy.
    Matched MeSH terms: Esters/chemistry*
  20. Bin Sintang MD, Danthine S, Patel AR, Rimaux T, Van De Walle D, Dewettinck K
    J Colloid Interface Sci, 2017 Oct 15;504:387-396.
    PMID: 28586736 DOI: 10.1016/j.jcis.2017.05.114
    In order to modify the self-assembly of sucrose esters (SEs) in sunflower oil, we added sunflower lecithin (SFL) as co-surfactant. It is hypothesized that SFL modifies the self-assembly of SEs by interrupting the extensive hydrogen bonding between SEs monomers. The addition of SFL into SEs induced gelation of the mixed surfactant system oleogels at all studied ratios. The 7:3 SEs:SFL combination showed enhanced rheological properties compared to the other studied ratios, which suggests better molecular ordering induced by SFL. The modifications might have been caused by interference in the hydrogen bonding, connecting the polar heads of SEs molecules in the presence of SFL. This effect was confirmed by thermal behavior and small angle X-ray diffraction (SAXD) analysis. From the crystallization and melting analyses, it was shown that the peak temperature, shape and enthalpy decreased as the SFL ratio increases. Meanwhile, the bi-component oleogels exhibited new peaks in the SAXD profile, which imply a self-assembly modification. The microscopic study through polarized and electrons revealed a change in the structure. Therefore, it can be concluded that a synergistic effect between SEs and SFL, more particularly at 7:3 ratio, towards sunflower oil structuring could be obtained. These findings shed light for greater applications of SEs as structuring and carrier agent in foods and pharmaceutical.
    Matched MeSH terms: Esters/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links